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We study Lanczos-based methods for tasks involving matrix functions. We
begin by resurfacing a range of ideas regarding matrix-free quadrature which,
to thebestof ourknowledge, havenotbeen treatedsimultaneously. Thisenables
the development of a unified perspective from which a number of commonly
used randomized methods for spectrum and spectral sum approximation can
be understood. We proceed to develop optimal Krylov subspace methods for
approximating the product of a rational matrix function with a fixed vector.
Finally,we showhowthe optimalityof suchmethods can be used to obtainfine-
grained spectrum dependent bounds for standard Lanczos-based methods for
approximating awide class of matrix functions applied to a vector.
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Preface

At night, my apartment looks out to a thousand illuminated windows. I’m
drawn such views because they make me feel an isolating sense of closeness;
behind each window is a person—a family enjoying dinner, a student working
on their homework, a cleaning person ending their shift. I do not know them
and theydo not knowme, yetwe are all connected in thismoment of existence.
This is sonder, a concept for which we find a definition in the Dictionary of
Obscure Sorrows:

sonder

n. the realization that each random passerby is living a life as vivid
and complex as your own

Sonder, even with the accompanying melancholy, has been the single most
consistent force driving my success throughout my tertiary education. It only
fitting, then, that it receivesmention inmydissertation, the symbolic culmina-
tion of my formal education.

Chinatown/International District
Seattle,Washington
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Chapter 1

Introduction

Computational approaches to today’smost pressing andworld-changing ques-
tions are reliant on subroutines for fundamental linear algebraic tasks. The fo-
cus of this thesis is on the design and analysis of algorithms for an increasingly
prevalent subset of such tasks: those involving matrix functions of Hermitian
(or real symmetric) matrices. For the duration of this thesis, 𝐀 will be a 𝑛 × 𝑛
Hermitianmatrixwith eigenvaluesΛ ∶= {𝜆𝑖}𝑛−1

𝑖=0 and (orthonormal) eigenvectors
{𝐮𝑖}𝑛−1

𝑖=0; i.e.,

𝐀 =
𝑛−1

∑
𝑖=0

𝜆𝑖𝐮𝑖𝐮H
𝑖 . (1.1)

A matrix function transforms the eigenvalues of a Hermitian (or symmetric)
matrix according to some scalar function, while leaving the eigenvectors un-
touched.

Definition 1.1. Thematrix function 𝑓(𝐀), induced by 𝑓 ∶ ℝ → ℝ and𝐀, is defined as

𝑓(𝐀) ∶=
𝑛−1

∑
𝑖=0

𝑓(𝜆𝑖)𝐮𝑖𝐮H
𝑖 .

Perhaps themostwell knownexample of amatrix function is thematrix inverse
𝐀−1, which corresponds to the inverse function 𝑓(𝑥) = 𝑥−1. Other common
matrix functions including thematrix sign, logarithm, exponential, square root,
and inverse square root, each of which has many applications throughout the
mathematical sciences.

A reference sheet containing common notation and useful factscan be found in Chapter 10.
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A common task involving matrix functions is computing the product 𝑓(𝐀)𝐯
of a matrix function 𝑓(𝐀) with a fixed vector 𝐯; for instance, the matrix in-
verse applied to a vector corresponds to the solution of a linear system of
equations. Beyond the multitude of applications of linear systems, matrix
functions applied to vectors are used for computing the overlap operator in
quantum chromodynamics [Esh+02], solving differential equations in applied
math [Saa92; HL97], Gaussian process sampling in statistics [Ple+20], principle
componentprojection and regression indata science [JS19], anda rangeof other
applications [Hig08].

Another related and especially interesting task involving matrix functions is
estimating the spectral sum,

tr(𝑓(𝐀)) =
𝑛−1

∑
𝑖=0

𝑓(𝜆𝑖). (1.2)

Applications of spectral sums include characterizing the degree of protein fold-
ing in biology [Est00], studying the thermodynamics of spin systems in quan-
tumphysics and chemistry [Wei+06; SS10; SRS20; Jin+21], benchmarkingquan-
tum devices in quantum information theory [Joz94], maximum likelihood es-
timation in statistics [BP99; PL04], designing better public transit in urban
planning [BS22; Wan+21], and finding triangle counts and other structure in
network science [Avr10; DBB19; BB20].

The trace of matrix functions is intimately related to the spectral measure of 𝐀
which encodes the eigenvalues of 𝐀.

Definition 1.2. The cumulative empirical spectral measure (CESM) Φ ∶ ℝ → [0, 1],
induced by𝐀, is defined by

Φ(𝑥) = Φ𝐀 ∶=
𝑛−1

∑
𝑖=0

𝑛−1𝟙[𝜆𝑖 ≤ 𝑥].

Here 𝟙[true] = 1 and 𝟙[false] = 0.

Not only is Φ(𝑥) itself a spectral sum for each 𝑥 ∈ ℝ, but

tr(𝑓(𝐀)) = 𝑛 ∫ 𝑓 dΦ.

In this sense, approximating the CESM Φ is equivalent to approximating spec-
tral sums. However, approximations to Φ are also useful in that they provide a
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global picture of the spectrum of 𝐀. Such coarse grained approximations are
used in electronic structure computations and other tasks in physics1 [Wei+06;
Jin+21], probing the behavior of neural networks in machine learning [GKX19;
Pap19; GWG19; Yao+20], load balancing modern parallel eigensolvers in nu-
merical linear algebra [Pol09; Li+19], and computing the product of matrix
functionswith vectors [Fan+19].

The simplest, and arguably most elegant, approach to spectrum and spectral
sum approximation involves computing quadratic forms 𝐯H𝑓(𝐀)𝐯 for suitably
chosen randomvectors𝐯. For anyfixed𝐯, the task of computing𝐯H𝑓(𝐀)𝐯 is inti-
matelyrelated to quadrature [GM94;GM09] and, besides themanyapplications
of spectrumand spectral sumapproximation, is used for estimating the error of
Krylov subspacemethods [DEG72; GS94; GM09].

1.1 Lanczos-based methods

The algorithms we study in this thesis fall into a general class of algorithms
called Krylov subspace methods (KSMs). KSMs produce approximations using
information from the set of low-degree polynomials in 𝐀 applied to a vector 𝐯;
i.e. from the so-called Krylov subspace generated by𝐀 and 𝐯.

Definition 1.3. The dimension 𝑘Krylov subspace𝒦𝑘 generated by𝐀 and 𝐯 is defined as

𝒦𝑘 = 𝒦𝑘(𝐀, 𝐯) ∶= span{𝐯, 𝐀𝐯, … , 𝐀𝑘−1𝐯} = {𝑝(𝐀)𝐯 ∶ deg(𝑝) < 𝑘}.

The information from a given Krylov subspace can be used to approximate
𝑓(𝐀)𝐯 and 𝐯H𝑓(𝐀)𝐯. In particular, a natural approach is to use the approxima-
tions

𝑓(𝐀)𝐯 ≈ [𝑓]∘p
𝑠 (𝐀)𝐯, 𝐯H𝑓(𝐀)𝐯 ≈ 𝐯H[𝑓]∘p

𝑠 (𝐀)𝐯,

where [𝑓]∘p
𝑠 ∶ ℝ → ℝ is a degree 𝑠 polynomial chosen to approximate 𝑓.

Throughout this thesis, the symbol “∘” should be interpreted as a parameter
encompassing any other parameters which impact how [𝑓]∘p

𝑠 (𝐀) is determined
for 𝑓. For instance, once choice of ∘ may correspond to the interpolating poly-
nomial to 𝑓 at some set of nodes while another choice of ∘ may correspond

1In physics, the “density” dΦ/d𝑥 is often called the density of states (DOS).
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to the Chebyshev approximation to 𝑓. Specific choices of ∘ corresponding to
widely used algorithms will be defined as they come up. Here the use of “p”
stands for polynomial, and will be used to differentiate between polynomial
approximations of a function and quadrature approximations of a distribution
function,whichwill be defined later.

Remark 1.4. When 𝐀 is Hermitian, Krylov subspace methods are, in one way
or another, related to the Lanczos algorithm [Lan50] described in Algorithm 1.1.
Even so,weuse the termLanczos-basedmethods to refer to algorithmswhichmake
use of the information generated by the Lanczos algorithm in some non-trivial
way. This is in contrast to methods, such as those based on explicit polynomial
approximation,which can easily be constructed directly. △

Assumption 1.5. From this point onwards, we will assume ‖𝐯‖2 = 1.

The Lanczos algorithm (Algorithm 1.1) [Lan50] produces an orthonormal basis
{𝐪𝑖}𝑘

𝑖=0 for the Krylov subspace 𝒦𝑘+1 such that, for all 𝑖 = 0, 1, … , 𝑘,

span{𝐪0, 𝐪1, … , 𝐪𝑖} = 𝒦𝑖+1.

These basis vectors satisfy a three term recurrence, for all 𝑖 = 0, 1, … , 𝑘 − 1,

𝐀𝐪𝑖 = 𝛽𝑖−1𝐪𝑖−1 + 𝛼𝑖𝐪𝑖 + 𝛽𝑖𝐪𝑖+1

with initial conditions 𝐪−1 = 𝟎 and 𝛽−1 = 0. The coefficients {𝛼𝑖}𝑘−1
𝑖=0 and {𝛽𝑖}𝑘−1

𝑖=0

defining the three term recurrence are also generated by the algorithm. This
recurrence can bewritten inmatrix form as

𝐀𝐐 = 𝐐𝐓 + 𝛽𝑘−1𝐪𝑘𝐞T𝑘−1 (1.3)

where

𝐐 ∶=
⎡
⎢
⎢
⎣

| | |
𝐪0 𝐪1 ⋯ 𝐪𝑘−1

| | |

⎤
⎥
⎥
⎦

, 𝐓 ∶=

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0 𝛽0

𝛽0 𝛼1 ⋱
⋱ ⋱ 𝛽𝑘−2

𝛽𝑘−2 𝛼𝑘−1

⎤
⎥
⎥
⎥
⎥
⎦

.
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Algorithm 1.1 Lanczos algorithm
1: procedure Lanczos(𝐀, 𝐯, 𝑘)
2: 𝐪0 = 𝐯, 𝛽−1 = 0, 𝐪−1 = 𝟎
3: for 𝑖 = 0, 1, … , 𝑘 − 1 do
4: �̃�𝑖+1 = 𝐀𝐪𝑖 − 𝛽𝑖−1𝐪𝑖−1

5: 𝛼𝑖 = 𝐪H
𝑖 �̃�𝑖+1

6: �̂�𝑖+1 = �̃�𝑖+1 − 𝛼𝑖𝐪𝑖

7: optionally, reorthogonalize, �̂�𝑖+1 against {𝐪𝑗}𝑖
𝑗=0

8: 𝛽𝑖 = ‖�̂�𝑖+1‖
9: 𝐪𝑖+1 = �̂�𝑖+1/𝛽𝑖

10: return {𝐪𝑖}𝑘
𝑖=0, {𝛼𝑖}𝑘−1

𝑖=0, {𝛽𝑖}𝑘−1
𝑖=0.

Remark 1.6. It is not uncommon for the matrices which we call 𝐐 and 𝐓 to be
denoted by 𝐐𝑘 and 𝐓𝑘. We omit these subscripts for legibility, as the number
of iterations 𝑘 can be treated as fixed throughout this thesis. Note also that we
begin indexing at zero so that indices match the degree of the corresponding
polynomial. △

1.1.1 The insufficiency of interval-based bounds

As we previously noted, this thesis is concerned with polynomial approxima-
tions to 𝑓(𝐀)𝐯 and 𝐯H𝑓(𝐀)𝐯. The error of such methods is often closely related
to problems in scalar polynomial approximation theory. In particular, note that

‖𝑔(𝐀)‖2 = max
𝑥∈Λ

|𝑔(𝑥)| =∶ ‖𝑔‖Λ,

where Λ is the set of eigenvalues of 𝐀. Here we have introduced the notation
‖𝑔‖𝑆 = sup𝑥∈𝑆 |𝑔(𝑥)| for 𝑔 ∶ ℂ → ℂ and 𝑆 ⊂ ℂ. Let ‖ ⋅ ‖ be any norm
induced by a positive definite matrix with the same eigenvectors as 𝐀. Then,
a simple application of the sub-multiplicative property of matrix norms (see
Lemma 10.1) implies

‖𝑓(𝐀)𝐯 − [𝑓]∘p
𝑠 (𝐀)𝐯‖

‖𝐯‖ ≤ ‖𝑓(𝐀) − [𝑓]∘p
𝑠 (𝐀)‖2 = ‖𝑓 − [𝑓]∘p

𝑠 ‖Λ. (1.4)

Recalling our assumption ‖𝐯‖2 = 1, we also have

|𝐯H𝑓(𝐀)𝐯 − 𝐯H[𝑓]∘p
𝑠 (𝐀)𝐯| ≤ ‖𝑓(𝐀) − [𝑓]∘p

𝑠 (𝐀)‖2‖𝐯‖2
2 = ‖𝑓 − [𝑓]∘p

𝑠 ‖Λ. (1.5)
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Thus, we see that the quality of our approximations can be studied in terms of
the quality of the polynomial approximation [𝑓]∘p

𝑠 to 𝑓 on the eigenvalues of 𝐀.

Since polynomial approximation on an interval is well understood, it is com-
mon to bound the quality of Krylov subspace methods in terms of the best
polynomial approximations on an interval. It is always true that

‖𝑓 − 𝑝‖Λ ≤ ‖𝑓 − 𝑝‖ℐ,

where ℐ ∶= [𝜆min, 𝜆max] is the smallest interval containing all of the eigenvalues.
Thus, it is common tobound the lefthand sides of (1.4) and (1.5) byan expression
like

2 min
deg(𝑝)<𝑠

‖𝑓 − 𝑝‖ℐ. (1.6)

However, while such bounds are useful in some situations, they often provide
a large overestimate of the true behavior of Lanczos-based methods and are
therefore unsuitable for use as practical stopping criteria.

1.1.2 The effect of finite precision arithmetic

While reorthogonalization in the Lanczos algorithm is unnecessary in exact
arithmetic, omitting it often results indrasticallydifferent behaviorwhenusing
finite precision arithmetic. Specifically, the Lanczos basis 𝐐 may be far from
orthogonal, and the tridiagonal matrix 𝐓 may be far from what would have
been obtained in exact arithmetic. Because the Lanzcos algorithm is osten-
sibly unstable, there has been a widespread hesitance towards Lanczos-based
approaches for problems involvingmatrix functions, at leastwithout reorthog-
onalization [JP94; Sil+96; Aic+03;Wei+06; UCS17; GWG19].

The two primary effects of finite precision arithmetic on Lanczos-basedmeth-
ods when run without reorthogonalization are (i) a delay of convergence (in-
crease in the number of iterations to reach a given level of accuracy) and (ii) a
reduction in the maximal attainable accuracy. However, while both effects are
easilynoticeable onmost problems, theydo not imply that reorthogonalization
is needed. In fact, throughout this thesis,we argue that Lanczos-basedmethods
are highly effective evenwithout reorthogonalization.
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1.1.3 Amotivating example

We now provide a simple and familiar example chosen to illustrate the themes
introduced in this section. The conjugate gradient algorithm (CG) [HS52] is used
to solve positive definite linear systems of equations, and is perhaps the most
well-known Lanczos-based KSM. When applied to a positive-definite linear
system 𝐀𝐱 = 𝐯, CG produces iterates cg𝑘 ∈ 𝒦𝑘 optimal in the 𝐀-norm. This
optimality implies the error bounds2

‖𝐀−1𝐯 − cg𝑘‖𝐀
‖𝐯‖𝐀

(a)
≤ min

deg(𝑝)<𝑘
‖𝑥−1 − 𝑝‖Λ

(b)
≤ min

deg(𝑝)<𝑘
‖𝑥−1 − 𝑝‖ℐ. (1.7)

Given ℐ = [𝜆min, 𝜆max], (1.7b) can be computed analytically and, roughly speak-
ing, it decreases linearly at a rate proportional to (1 − 1/√𝜅). In other words,
to reach accuracy 𝜖, CG requires at most 𝑂(√𝜅 log(𝜖−1)) iterations, where 𝜅 =
𝜆max/𝜆min is theconditionnumberof 𝐀. This is thewell known root conditionnum-

ber bound for CG. On the other hand, (1.7a) may be significantly better than the
latter bound involving ℐ andprovide amore realistic picture of the convergence
of CG. However, since (1.7a) depends on the spectrum of 𝐀, which is typically
unknown, the bound’s use is in that it provides intuition into the theoretical
behavior of CG rather than as a practical stopping critera.

In Figure 1.1, we plot the bounds (1.7a) and (1.7b) as well as the actual errors
in a Lanczos-based implementation of CG run with and without reorthogo-
nalization for a spectrum with exponentially spaced eigenvalues (the precise
details are not important at this point). Observe that the bound (1.7a) decreases
significantly faster than (1.7b) for the given spectrum. Note also that, even
without reorthogonalization, CG converges significantly faster than (1.7b).

Analternative toCG is theChebyshevsemi-iterativemethod [FS50;GR02]. This
method can be implemented without using the Lanczos algorithm by directly
constructing an explicit polynomial approximation to 𝑥−1 on ℐ. However, as
a result, the algorithm is unable to adapt to the spectrum of 𝐀 and usually
converges very similarly to (1.7b). Moreover, if ℐ is estimated inaccurately, then
the algorithm may become unstable. Interestingly, even in finite precision

2Throughout, we will occasionally use symbol “𝑥” for the identity function 𝑥 ∶ 𝜆 ↦ 𝜆 rather
than an unspecified real value. Thus, expressions like 𝑥𝑝 and 𝑥−1 − 𝑝 should respectively be
interpreted tomean the functions 𝜆 ↦ 𝜆𝑝(𝜆) and 𝜆 ↦ 𝜆−1 − 𝑝(𝜆).

eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
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Figure 1.1: CG convergence (with and without reorthgonalization) and
error bounds. Legend: CG error ‖𝐀−1𝐯 − cg𝑘‖𝐀/‖𝐯‖𝐀 with ( ) and
without ( ) reorthgonalization, bound (1.7a) on Λ ( ), and
bound (1.7b) on ℐ ( ).

arithmetic, an iterate very close to what would be produced by the Chebyshev
method canbeobtained fromtheLanczosmethod [Gre89;DK91;MMS18]. Since
the extreme eigenvalues of 𝐓 typically provide a very good estimate for ℐ, this
means that a Lanczos-based implementation of the Chebyshevmethod avoids
the need for a priori parameter selection.

Remark 1.7. Optimization algorithms such as accelerated gradient descent
also attain a root condition number iteration complexity on any smooth and
strongly convex function (such as 𝐱 ↦ 1

2𝐱H𝐀𝐱 − 𝐱H𝐯 for positive definite linear
systems). Since this rate is optimal among first-order methods for smooth and
strongly convex functions, accelerated gradient descent is often referred to as
“optimal”. The fact that CG has a similar convergence guarantee often leads
CG to be introduced as an alternative to accelerated gradient descent for linear
systems. However, accelerated gradient descent is essentially equivalent to
the Chebyshev semi-iterative methodwhen applied to the above objective and
therefore isnot typicallycompetitivewithCGin termsof thenumberof matrix-
vector products. △

eqn:spec_int_bd
eqn:spec_int_bd
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1.2 Context and contributions

Essentially anynumerical linear algebra textbookwill have at least one chapter
on KSMs. In fact, there are a number of texts which focus on the classical uses
of KSMs: eigenvalue problems and solving linear systems of equations [Pai71;
Gre97; Saa11; MS06; Meu06; LS13b]; see also [GO89] for a historical overview of
earlydevelopments. The largenumberof such resourcesmeans that treatments
of topics such as the behavior of algorithms infinite precision arithmetic canbe
found at a range of levels of detail.

Resources dealingwith generalmatrix functions are less plentiful. Whilemany
textbooks might have a chapter on functions such as the exponential or square
root, the only recent book I am aware of which is dedicated specifically to
matrix functions is [Hig08]. However, this book is focused primarilyon the case
of computing 𝑓(𝐀), with only one chapter devoted to the task of computing
𝑓(𝐀)𝐯 and no discussion on the task of 𝐯H𝑓(𝐀)𝐯. There are a number of more
specialized texts on these topics. The topic of 𝐯H𝑓(𝐀)𝐯 is covered thoroughly in
[GM94; GM09] from a theoretical quadrature perspective. Awidely used prac-
tical quadrature algorithm for estimating spectral sums and spectral densities
called the kernel polynomial method is discussed in [Wei+06] but not analyzed
theoretically. The thesis [Sch16] discusses practical error bounds for methods
for computing 𝑓(𝐀)𝐯 for symmetric and non-symmetric 𝐀 aswell as restarting
techniques for non-symmetric problems, and the thesis [Cor22] discusses low-
rank approximation of matrix functions as well as stochastic trace estimation
of matrix functions. None of the above texts discuss thoroughly the impacts of
finite precision arithmetic.

During my PhD studies, it became strikingly clear that the state of knowledge
surrounding Lanczos-based methods for matrix functions is fragmented. For
instance, there are several lines of workwithin the quantum physics literature
which contain results not discovered in applied math until decades later. Con-
versely, practitioners in physics, data science, andmachine learning, often lack
knowledge regarding the practical behavior of Lanczos-basedmethods infinite
precision arithmetic. While this can be partially attributed to a lack of due-
diligence in studyingbackgroundmaterial, a largerproblem is that the requisite
background is not easily accessible to non-specialists. In fact, some of themost
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relevant work on Lanczos-based methods in finite precision arithmetic is not
evenwell knownwithin the numerical analysis community.

This thesis aims to fill some of the gaps in the presentation of Lanczos-based
methods formatrix functions byproviding a comprehensive backgroundon the
topic. Indeed, several chapters are primarily expository, with the express goal
of providing amore thorough context for the other chapters. While there are a
number of technical contributions, arguably themost significant contributions
of this thesis are the following two themes:

– Boundsbasedonpolynomial approximationonasingle interval are insuf-
ficient to describe the true behavior of Lanczos-basedmethods formatrix
functions. Instead, one should seek bounds based on the spectrumwhich
are able to take advantage of more fine-grained spectral structure such as
gaps and outlying eigenvalues.

– While Lanczos-based methods may behave differently in finite precision
arithmetic than exact arithmetic, they still outperform Krylov subspace
methods based on explicit polynomial approximations. Moreover, the
hyper-parameters in explicit polynomial methods can be determined ef-
fectively through the use of Lanczos-based implementations.

It is my hope that the contributions of this thesis are presented in awaywhich
will promote understanding of and intuition for Lanczos-based methods for
matrix functions outside of the numerical analysis community.

This thesis contains primarilyworkwhich appears in the following papers:

[Che+22a] T. Chen, A. Greenbaum, C.Musco, and C.Musco. “Error Bounds for
Lanczos-Based Matrix Function Approximation”. In: SIAM Journal

onMatrix Analysis and Applications 43.2 (May 2022), pp. 787–811. doi:
10.1137/21m1427784. arXiv: 2106.09806 [math.NA].

[Che+22b] T. Chen,A.Greenbaum,C.Musco, andC.Musco.Low-memoryKrylov

subspace methods for optimal rational matrix function approximation.
2022. arXiv: 2202.11251 [math.NA].

https://doi.org/10.1137/21m1427784
https://arxiv.org/abs/2106.09806
https://arxiv.org/abs/2202.11251
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[CTU21] T. Chen, T. Trogdon, and S. Ubaru. “Analysis of stochastic Lanczos
quadrature for spectrum approximation”. In: Proceedings of the 38th
International Conference on Machine Learning. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 18–24 Jul 2021, pp. 1728–1739.
arXiv: 2105.06595 [cs.DS].

[CTU22] T. Chen, T. Trogdon, and S. Ubaru. Randomized matrix-free quadrature

for spectrum and spectral sum approximation. 2022. arXiv: 2204.01941
[math.NA].

Rather than stapling these papers together, I have arranged the content in
accordancewithmybroader goals for this thesis. In addition, a large amount of
new exposition has been included in order to tie things together more cleanly
and to provide additional context for non-experts. Towards this end, many of
the numerical examples from the above papers have been modified for consis-
tencywith the rest of the thesis. The files needed to generate the figures in this
thesis (aswell as the thesis itself) are freely available online.

https://arxiv.org/abs/2105.06595
https://arxiv.org/abs/2204.01941
https://arxiv.org/abs/2204.01941
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Chapter 2

Scalar polynomials

In this chapter, we introduce some basic theory regarding scalar polynomials1

whichwill come inhandythroughout the restof this thesis. Ascalarpolynomial
of degree 𝑘 is a function of the form

𝑥 ↦ 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑘𝑥𝑘,

where 𝑐0, 𝑐1, … , 𝑐𝑘 are fixed scalars. Such a polynomial is naturally extended to
matrices as

𝐀 ↦ 𝑐0𝐈 + 𝑐1𝐀 + ⋯ + 𝑐𝑘𝐀𝑘

in a manner compatible with our definition of matrix functions. Thus, matrix
polynomials are intimately related to Krylov subspacemethods.

2.1 Basic definitions

Our discussion on quadrature centers around approximating distributions and
integrals against distribution functions. Several examples of such functions are
illustrated in Figure 2.1.

Definition 2.1. A (signed) unit mass distribution functionΥ is a right continuous func-

tionΥ ∶ ℝ → ℝ such that lim𝑥→∞ Υ(𝑥) = 1 and lim𝑥→−∞ Υ(𝑥) = 0. IfΥ is also weakly

increasing, we say it is a probability distribution function.

1Polynomialswere perhaps thefirst abstractmathematical object I encountered—Idistinctly
remember grapplingwith themeaning of avariable 𝑥,which is “somehowanumber but also not”,
in the later years of elementary school. It’s amazing, then, that the theory of polynomials of a
single variable underlies somuch of myPhD thesis.
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Figure 2.1: Sample unit mass distribution functions. Legend: con-
tinuous increasing distribution function ( ), continuous distribu-
tion function which is not weakly-increasing ( ), discrete weakly-
increasing distribution function ( ), discrete distribution function
which is notweakly-increasing ( ).

Remark 2.2. If Υ is differentiable, then the derivative dΥ/d𝑥 = Υ′ is the usual
probability density function. Likewise, in the sense of distributions, d𝟙[𝑎 ≤
𝑥]/d𝑥 = 𝛿(𝑥 − 𝑎) where 𝛿(𝑥 − 𝑎) is a unit mass Dirac delta function centered
at 𝑎. Thus, if Υ is piecewise constant, then dΥ/d𝑥 can be expressed in terms of
the sum of weighted Dirac delta functions, where a delta function is located at
each discontinuity andweighted by the size of the corresponding jump. △

We now introduce several definitions which we will use throughout the next
several chapters.

Definition 2.3. Given a function𝑓 and distribution functionΥwe denote by∫𝑏
𝑎 𝑓 dΥ the

standard Riemann–Stieltjes integral

∫
𝑏

𝑎
𝑓 dΥ ∶= lim

‖𝑃‖→0

𝑝−1

∑
𝑖=0

𝑓(𝑐𝑖)(Υ(𝑥(𝑖+1)) − Υ(𝑥(𝑖))),

where 𝑃 = {𝑎 = 𝑥(0) < ⋯ < 𝑥(𝑝) = 𝑏} is a partition of [𝑎, 𝑏], ‖𝑃‖ = max𝑖 |𝑥(𝑖+1) − 𝑥(𝑖)|,
and 𝑐𝑖 ∈ [𝑥𝑖, 𝑥𝑖+1].
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For notational clarity, we will often write∫ 𝑓 dΥ in which case 𝑎, 𝑏 can be taken as ±∞.

Definition 2.4. In the setting of the previous definition,

∫
𝑏

𝑎
𝑓 |dΥ| ∶= lim

‖𝑃‖→0

𝑝−1

∑
𝑖=0

𝑓(𝑐𝑖)∣Υ(𝑥(𝑖+1)) − Υ(𝑥(𝑖))∣.

Definition 2.5. LetΥ be a (distribution) function. The total variation (TV) ofΥ, denoted
𝑑TV(Υ), is defined by

𝑑TV(Υ) ∶= ∫ |dΥ|.

Remark 2.6. If Ψ is aweakly-increasing unit-mass distribution function, then
𝑑TV(Ψ) = 1. △

Tomeasure the similarityof twodistribution functions,wewill typicallyuse the
Wasserstein (earthmover) distance.

Definition2.7. LetΥ1 andΥ2 be twoprobability distribution functions. TheWasserstein

distance betweenΥ1 andΥ2, denoted 𝑑W(Υ1, Υ2), is defined by

𝑑W(Υ1, Υ2) ∶= ∫ |Υ1 − Υ2|d𝑥.

It is well known that theWasserstein distance between two distribution func-
tions has a dual form involving 1-Lipshitz functions.

Definition2.8. Wesay that𝑓 ∈ Lip(𝐿, 𝑆) if |𝑓(𝑥)−𝑓(𝑦)| ≤ 𝐿|𝑥−𝑦| for all𝑥, 𝑦 ∈ 𝑆 ⊆ ℝ.

Lemma 2.9. Suppose Υ1 and Υ2 are two probability distribution functions of bounded

total variation each constant on (−∞, 𝑎) and (𝑏, ∞). Then,

𝑑W(Υ1, Υ2) = sup {∫ 𝑓d(Υ1 − Υ2) ∶ 𝑓 ∈ Lip(1, [𝑎, 𝑏])} .

Remark 2.10. In some situations, other metrics may be more meaningful. For
instance, if it is important for two distribution functions to agree to very high
precision in a certain region, but only to moderate accuracy in others, then the
Wasserstein distancemay be unsuitable. △
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2.2 Orthogonal polynomials

Throughout this thesis, 𝜇will be anon-negativeunitmassdistribution function.
Associatedwith 𝜇 is the inner product ⟨⋅, ⋅⟩𝜇 defined by

⟨𝑓, 𝑔⟩𝜇 ∶= ∫ 𝑓𝑔 d𝜇. (2.1)

The set of 𝜇-square-integrable functions forms a Hilbert space with respect
to this inner product, so we may hope to find an orthonormal basis {𝑝𝑖}∞

𝑖=0 of
polynomials with deg(𝑝𝑖) = 𝑖. Such a basis is easily produced by a simple
modification of the Gram-Schmidt algorithm which results in a naive imple-
mentation of the so-called Stieltjes algorithm. An implementation is described
in Algorithm 2.1.

Algorithm 2.1 Stieltjes algorithm (naive)
1: procedure Stieltjes(𝜇, 𝑘)
2: 𝑝0 = 1
3: for 𝑖 = 0, 1, … , 𝑘 − 1 do
4: ̃𝑝𝑖+1 = 𝑥𝑝𝑖

5: ̂𝑝𝑖+1 = ̃𝑝𝑖+1 − (⟨𝑝0, ̃𝑝𝑖+1⟩𝜇 𝑝0 + ⋯ + ⟨𝑝𝑖, ̃𝑝𝑖+1⟩𝜇 𝑝𝑖)
6: 𝑝𝑖+1 = ̂𝑝𝑖+1/‖ ̂𝑝𝑖+1‖𝜇

7: return {𝑝𝑖}𝑘
𝑖=0

Note that the polynomials satisfy, for all 𝑖 ≥ 0,

𝑥𝑝𝑖 = ‖ ̂𝑝𝑖+1‖𝜇 𝑝𝑖+1 + ⟨𝑝0, ̃𝑝𝑖+1⟩𝜇 𝑝0 + ⋯ + ⟨𝑝𝑖, ̃𝑝𝑖+1⟩𝜇 𝑝𝑖. (2.2)

This can bewritten inmatrix form as

𝑥 [𝑝0, 𝑝1, …] = [𝑝0, 𝑝1, …]𝐇,

where [𝑝0, 𝑝1, …] is a quasi-matrixwhose columns are the polynomials {𝑝𝑖}∞
𝑖=0 and

𝐇 is a semi-infinite upper-Hessenbergmatrix. Moreover, for all 𝑖, 𝑗 ≥ 0,

[𝐇]𝑖,𝑗 = ⟨𝑝𝑖, 𝑥𝑝𝑗⟩𝜇 = ⟨𝑝𝑗, 𝑥𝑝𝑖⟩𝜇 = [𝐇]𝑗,𝑖;

that is, 𝐇 is symmetric. Since, by construction, 𝐇 is upper-Hessenberg, this
implies that 𝐇 is symmetric tridiagonal!
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Therefore, for all 𝑖 ≥ 0, (2.2) becomes the symmetric three-term recurrence

𝑥𝑝𝑖 = 𝛽𝑖−1𝑝𝑖−1 + 𝛼𝑖𝑝𝑖 + 𝛽𝑖𝑝𝑖+1 (2.3)

with initial conditions 𝑝0 = 1, 𝑝−1 = 0, and 𝛽−1 = 0, where {𝛼𝑖}𝑖≥0 and
{𝛽𝑖}𝑖≥0 are chosen to enforce orthogonality. In particular, Algorithm 2.1 can be
modified to take advantage of this short-recurrence, resulting in the standard
implementation of the Stieltjes algorithm, Algorithm 2.2. In the case that 𝛽𝑖 =
0, the algorithm should be terminated as the dimension of Krylov subspaces
does not continue to grow.

Algorithm 2.2 Stieltjes algorithm
1: procedure Stieltjes(𝜇, 𝑘)
2: 𝑝0 = 1
3: for 𝑖 = 0, 1, … , 𝑘 − 1 do
4: ̃𝑝𝑖+1 = 𝑥𝑝𝑖

5: 𝛼𝑖 = ⟨𝑝𝑖, ̃𝑝𝑖+1⟩𝜇

6: ̂𝑝𝑖+1 = ̃𝑝𝑖+1 − 𝛼𝑖𝑝𝑖

7: 𝛽𝑖 = ‖ ̂𝑝𝑖+1‖𝜇

8: 𝑝𝑖+1 = ̂𝑝𝑖+1/𝛽𝑖

9: return {𝑝𝑖}𝑘
𝑖=0, {𝛼𝑖}𝑘−1

𝑖=0, {𝛽𝑖}𝑘−1
𝑖=0

Definition 2.11. The, possibly semi-infinite, tridiagonal matrix 𝐌 = 𝐌(𝜇) giving the
three-term recurrence coefficients for the orthogonal polynomials of 𝜇 is called the Jacobi

matrix corresponding to 𝜇. Unless specified otherwise, the coefficients are

𝐌 =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0 𝛽0

𝛽0 𝛼1 𝛽1

𝛽1 𝛼2 ⋱
⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎦

.

An important property of a distribution function Υ are it’s polynomial mo-
ments. We are particularly interested in those induced by 𝜇.

Definition 2.12. For each 𝑖 ≥ 0, the modifiedmoments ofΥ (with respect to 𝜇) are

𝑚𝑖 = 𝑚𝑖(Υ, 𝜇) ∶= ∫ 𝑝𝑖 dΥ.

If𝑚0, … , 𝑚𝑠 < ∞, we sayΥ has finite moments through degree 𝑠.
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Jacobi matrices have many interesting properties, several of which we review
here.

Lemma2.13. Theupper-leftmost𝑘×𝑘 submatrix of a Jacobimatrix is entirely determined

by the moments through degree 2𝑘 − 1 of the associated distribution function.

Proof. This is a direct consequence of the fact that the 𝑘-point (degree 2𝑘 − 1)
Gaussian quadrature rule for a distribution function can be determined from
the upper-leftmost 𝑘 × 𝑘 submatrix of the associated Jacobi matrix. This argu-
mentwill bemadewhole in Section 3.2.2.

Lemma 2.14. Denote the zeros of 𝑝𝑘 by {𝜃(𝑘)
𝑗 }𝑘−1

𝑗=0. Then, for any 𝑗 = 0, 1, … , 𝑘 − 1,

[𝑝0(𝜃(𝑘)
𝑗 ), 𝑝1(𝜃(𝑘)

𝑗 ), … , 𝑝𝑘−1(𝜃(𝑘)
𝑗 )]H

is an eigenvector of [𝐌]∶𝑘,∶𝑘 with eigenvalue 𝜃(𝑘)
𝑗 . Moreover, all eigenvectors are obtained in

this way.

Proof. Inmatrix form, (2.3) becomes

𝑥 [𝑝0, 𝑝1, … , 𝑝𝑘−1] = [𝑝0, 𝑝1, … , 𝑝𝑘−1]𝐌 + 𝛽𝑘−1𝑝𝑘𝐞T𝑘−1.

Evaluating each side of the above equalityat𝜃(𝑘)
𝑗 gives thefirst part of the result.

To show all eigenvectors are obtained in this way, it suffices to show that
{𝜃(𝑘)

𝑗 }0≤𝑗<𝑘 are distinct. Let {𝑡𝑗}𝑘′−1
𝑗=0 be the points atwhich 𝑝𝑘 changes signs. Then,

∫ 𝑝𝑘

𝑘′−1

∏
𝑗=0

(𝑥 − 𝑡𝑗)d𝜇 ≠ 0

since the integrand does not change signs. This implies 𝑘′ = 𝑘 since 𝑝𝑘 is
orthogonal to all polynomials of lower degree.

2.2.1 Chebyshev polynomials

Owing to the deep connection between Chebyshev polynomials and approxi-
mation theory [Tre19], one particularly important choice of 𝜇 is the distribution
function corresponding to the Chebyshevpolynomials of the first kind. Wewill
often treat this casewith special care.
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Definition 2.15. The Chebyshev distribution function of the first kind, 𝜇𝑇
𝑎,𝑏 ∶ [𝑎, 𝑏] →

[0, 1], is defined as

𝜇𝑇
𝑎,𝑏 ∶= 1

2 + 1
𝜋 arcsin ( 2

𝑏 − 𝑎𝑥 − 𝑏 + 𝑎
𝑏 − 𝑎) .

Thus, for 𝑥 ∈ [𝑎, 𝑏],

d𝜇𝑇
𝑎,𝑏

d𝑥 = 2
𝜋(𝑏 − 𝑎)(1 − ( 2

𝑏 − 𝑎𝑥 − 𝑏 + 𝑎
𝑏 − 𝑎)2)

−1/2
.

Definition2.16. TheChebyshevpolynomials of thefirstkind, denoted {𝑇𝑖}∞
𝑖=0, aredefined

by the recurrence 𝑇0 = 1, 𝑇1 = 𝑥, and, for all 𝑖 ≥ 1,

𝑇𝑖+1 ∶= 2𝑥𝑇𝑖 − 𝑇𝑖−1.

It can be verified that the orthogonal polynomials {𝑝𝑖}∞
𝑖=0 with respect to 𝜇𝑇

𝑎,𝑏 are
given by 𝑝0 = 𝑇0 = 1 and, for all 𝑖 ≥ 1,

𝑝𝑖 = √2𝑇𝑖 ( 2
𝑏 − 𝑎𝑥 + 𝑏 + 𝑎

𝑏 − 𝑎) .

Therefore, the Jacobimatrix𝐌(𝜇𝑇
𝑎,𝑏)hasdiagonal andoff diagonals entries given

by

[𝑎 + 𝑏
2 , 𝑎 + 𝑏

2 , …] and ⎡⎢
⎣

𝑏 − 𝑎
2√2

, 𝑏 − 𝑎
4 , 𝑏 − 𝑎

4 , …⎤⎥
⎦

,

respectively.

2.3 Polynomial approximations and bounds

Asnoted in the introduction,we use the notation [𝑓]∘p
𝑠 to denote a degree 𝑠poly-

nomial obtained from 𝑓 by some algorithm parameterized by ∘. In particular,
wewill make the following definitions.

Definition2.17. Givenanon-negative unitmass distribution function𝜇withdegree 𝑠+1
orthogonal polynomial 𝑝𝑠+1 we define,

[𝑓]∘p
𝑠 ∶=

⎧{
⎨{⎩

∘ = i degree 𝑠 interpolant to 𝑓 at roots of 𝑝𝑠+1

∘ = a degree 𝑠 truncated series for 𝑓 in ⟨⋅, ⋅⟩𝜇

.
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The damped projection [𝑓]d-ap𝑠 and damped interpolant [𝑓]d-ip𝑠 are respectively
obtained by scaling each of the coefficients of [𝑓]ap𝑠 and [𝑓]ip𝑠 , when represented
as a linear combination of the orthogonal polynomials {𝑝𝑖}𝑠

𝑖=0, by constants 𝜌𝑖

for each 𝑖 = 0, 1, … , 𝑠.

Definition 2.18. Write [𝑓]∘p
𝑠 in a polynomial series with respect to ⟨⋅, ⋅⟩𝜇 ; i.e. as

[𝑓]∘p
𝑠 =

𝑠

∑
𝑖=0

𝑐𝑖𝑝𝑖.

Then, given damping coefficients {𝜌𝑖}𝑠
𝑖=0 with 0 ≤ 𝜌𝑖 ≤ 1 for all 𝑖,

[𝑓]d-∘p𝑠 ∶=
𝑠

∑
𝑖=0

𝜌𝑖𝑐𝑖𝑝𝑖.

We now review several classical results from approximation theory which we
will use throughout this thesis. These are constructive bounds for the case
𝜇 = 𝜇𝑇

−1,1 which provide upper bounds for the quality of the best polynomial
approximation to 𝑓. In fact, both [𝑓]ap𝑠 and [𝑓]ip𝑠 provide nearly optimal approx-
imations inmany settings [Tre19].

A full treatment requiresat leasta textbook, andwerefer readers to [Tre19] foran
excellent such book. The following theorems are summarized from Theorems
7.2 and 8.2 in [Tre19].

Definition 2.19. We say that 𝑓 ∈ BV(𝑑, 𝑉, 𝑆) if, on 𝑆 ⊆ ℝ, 𝑓 is 𝑑 times differentiable, its

derivatives through 𝑓(𝑑−1) are absolutely continuous, and the 𝑑-th derivative 𝑓(𝑑) has total

variation bounded above by some constant𝑉 on 𝑆.

Definition2.20. For𝜌 ≥ 1 theBernstein ellipse𝐸𝜌(𝑎, 𝑏) is the ellipse centeredat 𝑎+𝑏
2 with

semi-axis lengths 𝑏−𝑎
2

1
2 (𝜌 + 𝜌−1) and 𝑏−𝑎

2
1
2 (𝜌 + 𝜌−1) along the real and imaginary directions;

i.e

𝐸𝜌(𝑎, 𝑏) = {𝑧 ∈ ℂ ∶ 𝑧 = 𝑏 − 𝑎
2

1
2(𝑢 + 𝑢−1) + 𝑎 + 𝑏

2 , 𝑢 = 𝜌 exp(𝑖𝜃), 𝜃 ∈ [0, 2𝜋)} .

Definition 2.21. We say that 𝑓 ∈ Anl(𝜌, 𝑀, [𝑎, 𝑏]) if 𝑓 is analytic on the region enclosed

by 𝐸𝜌(𝑎, 𝑏)where it satisfies |𝑓(𝑥)| ≤ 𝑀.

Theorem 2.22. For an integer 𝑑 ≥ 0, suppose 𝑓 is 𝑑 times differentiable, its derivatives

through 𝑓(𝑑−1) are absolutely continuous, and the 𝑑-th derivative 𝑓(𝑑) has total variation
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bounded above by some constant 𝑉 on [−1, −1]; i.e. , suppose 𝑓 ∈ BV(𝑑, 𝑉, [−1, 1]). Then,
with 𝜇 = 𝜇𝑇

−1,1, for any 𝑠 > 𝑑,

‖𝑓 − [𝑓]ap𝑠 ‖[−1,1] ≤ 2𝑉
𝜋𝑑(𝑠 − 𝑑)𝑑 , ‖𝑓 − [𝑓]ip𝑠 ‖[−1,1] ≤ 4𝑉

𝜋𝑑(𝑠 − 𝑑)𝑑 .

Theorem 2.23. Suppose 𝑓 is analytic on the region enclosed by the Bernstein ellipse

𝐸𝜌(−1, 1) where it satisfies ‖𝑓‖𝐸𝜌(−1,1)
≤ 𝑀; i.e. , suppose 𝑓 ∈ Anl(𝜌, 𝑀, [−1, 1]). Then,

with 𝜇 = 𝜇𝑇
−1,1, for any 𝑠 ≥ 0,

‖𝑓 − [𝑓]ap𝑠 ‖[−1,1] ≤ 2𝑀𝜌−𝑘

𝜌 − 1 , ‖𝑓 − [𝑓]ip𝑠 ‖[−1.1] ≤ 4𝑀𝜌−𝑘

𝜌 − 1 .

Lemma 2.24. Set 𝑐i = 2 and 𝑐a = 1. Then, for ∘ ∈ {i, a}, ‖𝑓 − [𝑓]∘p
𝑠 ‖∞ < 𝜖/2 provided

𝑠 ≥
⎧{
⎨{⎩

1
ln(𝜌) ln (4𝑐∘𝑀

𝜌−1 ) + 1
ln(𝜌) ln (𝜀−1) 𝑓 ∈ Anl(𝜌, 𝑀, [𝑎, 𝑏]),

𝑑 + (4𝑐∘𝑉
𝜋𝑑 )

1/𝑑
𝜀−1/𝑑 𝑓 ∈ BV(𝑑, 𝑉, [𝑎, 𝑏]).

Proof. Define ̃𝑓 ∶ ℝ → ℝ by ̃𝑓(𝑥) = 𝑓( 𝑏−𝑎
2 𝑥 + 𝑎+𝑏

2 ). Thenwe have that,

min
deg(𝑝)≤𝑠

‖𝑓 − 𝑝‖[𝑎,𝑏] = min
deg(𝑝)≤𝑠

‖ ̃𝑓 − 𝑝‖[−1,1].

Note that if 𝑓 ∈ Anl(𝜌, 𝑀, [𝑎, 𝑏]) then ̃𝑓 ∈ Anl(𝜌, 𝑀, [−1, 1]) and if 𝑓 ∈
BV(𝑑, 𝑉, [𝑎, 𝑏]) then ̃𝑓 ∈ BV(𝑑, 𝑉, [−1, 1]).

The result then follows by setting the upper bounds in Theorems 2.22 and 2.23
to 𝜖/2 and solving for 𝑠.

Next, we consider polynomial approximations to 1-Lipshitz functions. Note
that there exist 1-Lipshitz functionswhose derivatives are not of boundedvari-
ation. Therefore we cannot simply use Theorem 2.22. Fortunately, the best
approximation of differentiable functions is well studied. In particular, we
have the following theorem due to Jackson; see [Ach92, Section 87] and [Che00,
Section 6] for details.

Theorem 2.25. Suppose 𝑓 is 1-Lipshitz on [−1, 1]; i.e. , suppose that 𝑓 ∈ Lip(1, [−1, 1]).
Then,

min
deg(𝑝)≤𝑠

‖𝑓 − 𝑝‖[−1,1] ≤ 𝜋
2(𝑠 + 1)−1.
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In fact, the constant 𝜋/2 is the best possible under the stated conditions.

While the “vanilla” Chebyshev projection and interpolation do not attain this
rate for all 1-Lipshitz functions, we can constructively obtain polynomial ap-
proximationswhich do attain this rate by damping.

Definition 2.26. For 𝑖 = 0, 1, … , 𝑠, the degree 𝑠 Jackson’s damping coefficients are

𝜌𝐽
𝑖 =

(𝑠 − 𝑖 + 2) cos ( 𝑖𝜋
𝑠+2) + sin ( 𝑖𝜋

𝑠+2) cot ( 𝜋
𝑠+2)

𝑠 + 2 .

The damped projection and interpolant then satisfy a similar bound to Theo-
rem 2.25.

Theorem 2.27. Suppose 𝑓 ∈ Lip(1, [−1, 1]), 𝜇 = 𝜇𝑇
−1,1, and we use Jackson’s damping

coefficients as in Theorem 2.26. Then for ∘ ∈ {d-i,d-a},

‖𝑓 − [𝑓]∘p
𝑠 ‖[−1,1] ≤ 𝜋2

2 (𝑠 + 2)−1.

We provide a proof of this statement in Section 2.A. While our proof is based
closelyon [Riv81], the exact constantwe obtain is sharper than other boundswe
knowof for the quality of the damped projection [𝑓]d-ap𝑠 . Moreover, our version
of the proof works for the damped interpolant [𝑓]d-ip𝑠 . Wewere unable to find a
similar result in the literature, althoughwe suspect such a result is known.

2.A Proof of Jackson’s theorem

In this section we prove Theorem 2.27. We follow Chapter 1 of [Riv81] closely,
starting with trigonometric polynomials on [−𝜋, 𝜋] and then mapping to alge-
braic polynomials on [−1, 1]. Throughout this sectionwemaintain the notation
of [Riv81], so the constants in this section do not necessarily have the same
meaning as the rest of the paper. In particular, 𝑛 is the degree of the trigono-
metric polynomials used.

Given 𝑔 ∶ ℝ → ℝ, 1-Lipshitz and 2𝜋-periodic, for ∘ ∈ {i, a}, define

𝑠∘
𝑛(𝜃) ∶= 𝑎∘

0
2 +

𝑛

∑
𝑘=1

(𝑎∘
𝑘 cos(𝑘𝜃) + 𝑏∘

𝑘 sin(𝑘𝜃))
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where, for 𝑘 = 0, 1, … , 𝑛

𝑎∘
𝑘 ∶= 1

𝜋 ∫
𝜋−

−𝜋
𝑔(𝜙) cos(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙, 𝑏∘
𝑘 ∶= 1

𝜋 ∫
𝜋−

−𝜋
𝑔(𝜙) sin(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙.

Here 𝑀a
𝑛(𝜙) ∶= 1 and

𝑀i
𝑛(𝜙) ∶= 𝜋

𝑛 ∑
𝑖∈ℤ

𝛿(𝜙 − 𝜙𝑖), 𝜙𝑖 ∶= 2𝜋(𝑖 − 1/2)
2𝑛 − 𝜋

where 𝛿(𝜙) is a Dirac delta distribution centered at zero. Thus, 𝑠a𝑛 is the trunca-
tionof the Fourier series of 𝑔while 𝑠i𝑛 is the interpolant to 𝑔 at the equallyspaced
nodes {𝜙𝑖}2𝑛

𝑖−0.

Remark 2.28. Note that ∫𝜋−

−𝜋 means an integral over [−𝜋, 𝜋); i.e. the upper
endpoint of integration is excluded. This is important for integrals involving
𝑀i

𝑛 which can have nonzero integral at a single point. △

Finally, define the damped interpolant/approximant

𝑞∘
𝑛(𝜃) ∶= 𝑎∘

0
2 +

𝑛

∑
𝑘=1

𝜌𝑘 (𝑎∘
𝑘 cos(𝑘𝜃) + 𝑏∘

𝑘 sin(𝑘𝜃))

where the damping coefficients {𝜌𝑘}𝑛
𝑘=1 are arbitrary real numbers. Our aim is

to bound ‖𝑞∘
𝑛 − 𝑔‖[−𝜋,𝜋].

Lemma 2.29. For all 𝑘 = 0, 1, … , 𝑛,

1
𝜋 ∫

𝜋−

−𝜋
cos(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙 =
⎧{
⎨{⎩

2 𝑘 = 0

0 𝑘 ∈ 1, 2, … , 𝑛

and
1
𝜋 ∫

𝜋−

−𝜋
sin(𝑘𝑥)𝑀∘

𝑛(𝜙)d𝜙 = 0.

Proof. Clearly 1
𝜋 ∫𝜋−

−𝜋 cos(0𝜙)𝑀a
𝑛d𝜙 = 2, and for 𝑘 > 0, we have,

1
𝜋 ∫

𝜋−

−𝜋
cos(𝑘𝜙)𝑀a

𝑛(𝜙)d𝜙 = 0.

Bydefinition,

1
𝜋 ∫

𝜋−

−𝜋
cos(𝑘𝜙)𝑀i

𝑛(𝜙)d𝜙 = 1
𝑛

2𝑛

∑
𝑗=1

cos(𝑘𝜙𝑗) = 1
𝑛 Re

2𝑛

∑
𝑗=1

exp(𝒊𝑘𝜙𝑗).
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The case for 𝑘 = 0 is clear. Assume 𝑘 > 0. Then, using that 𝜙𝑗 = 𝜋
𝑛 (𝑗 − 1

2 ) − 𝜋we
have

1
𝑛 Re

2𝑛

∑
𝑗=1

exp(𝒊𝑘𝜙𝑗) = 1
𝑛 Re ⎡⎢

⎣
exp (𝒊𝑘 ( 𝜋

2𝑛 − 𝜋))
2𝑛−1

∑
𝑗=0

exp (𝒊𝑘𝜋
𝑛 𝑗)⎤⎥

⎦
.

The result follows by observing that

2𝑛−1

∑
𝑗=0

exp (𝒊𝑘𝜋
𝑛 𝑗) = exp(2𝒊𝑘𝜋) − 1

exp(𝒊𝑘𝜋/𝑛) − 1 = 0.

Finally, since sin(𝑘𝜙) is odd and 𝑀∘
𝑛 is symmetric about zero, the corresponding

integrals are zero.

We now introduce a generalized version of [Riv81, Lemma 1.4].

Lemma 2.30. Define

𝑢𝑛(𝜙) ∶= 1
2 +

𝑛

∑
𝑘=1

𝜌𝑘 cos(𝑘𝜙).

Then,

𝑞∘
𝑛(𝜃) = 1

𝜋 ∫
𝜋−

−𝜋
𝑔(𝜙 + 𝜃)𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙.

Proof. First, note that

𝜋𝑞∘
𝑛(𝜃) = 1

2( ∫
𝜋−

−𝜋
𝑔(𝜙)𝑀∘

𝑛(𝜙)d𝜙) +
𝑛

∑
𝑘=1

𝜌𝑘(( ∫
𝜋−

−𝜋
𝑔(𝜙) cos(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙) cos(𝑘𝜃)

+ ( ∫
𝜋−

−𝜋
𝑔(𝜙) sin(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙) sin(𝑘𝜃))

= ∫
𝜋−

−𝜋
𝑔(𝜙)(1

2 +
𝑛

∑
𝑘=1

𝜌𝑘(cos(𝑘𝜙) cos(𝑘𝜃) + sin(𝑘𝜙) sin(𝑘𝜃)))𝑀∘
𝑛(𝜙)d𝜙.

Thus, using the identity cos(𝛼) cos(𝛽) + sin(𝛼) sin(𝛽) = cos(𝛼 − 𝛽) and the
definition of 𝑢𝑛

𝑞∘
𝑛(𝜃) = 1

𝜋 ∫
𝜋−

−𝜋
𝑔(𝜙) ⎛⎜

⎝
1
2 +

𝑛

∑
𝑘=1

𝜌𝑘 cos(𝑘(𝜙 − 𝜃))⎞⎟
⎠

𝑀∘
𝑛(𝜙)d𝜙

= 1
𝜋 ∫

𝜋−

−𝜋
𝑔(𝜙)𝑢𝑛(𝜙 − 𝜃)𝑀∘

𝑛(𝜙)d𝜙
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Now, note that 𝑔, 𝑢𝑛, and 𝑀∘
𝑛 are 2𝜋-periodic so by a change of variables,

1
𝜋 ∫

𝜋−

−𝜋
𝑔(𝜙)𝑢𝑛(𝜙 − 𝜃)𝑀∘

𝑛(𝜙)d𝜙 = 1
𝜋 ∫

𝜋−−𝜃

−𝜋−𝜃
𝑔(𝜙 + 𝜃)𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙

= 1
𝜋 ∫

𝜋−

−𝜋
𝑔(𝜙 + 𝜃)𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙.

Next, we prove a result similar to [Riv81, Lemma 1.7], but by assuming that 𝑔 is
1-Lipshitzwe obtain a slightly better constant.

Lemma 2.31. Suppose 𝑢𝑛(𝜙) ≥ 0 for all𝜙. Then, if 𝑔 is 1-Lipshitz,

‖𝑔 − 𝑞∘
𝑛‖[−𝜋,𝜋] ≤ 𝜋

√2
(1 − 𝜌1)1/2.

Proof. Fix any𝜃 ∈ [−𝜋, 𝜋]. Recall that 𝑔 is 1-Lipshitz so that |𝑔(𝜃)−𝑔(𝜙+𝜃)| ≤ |𝜙|.
Using this and the fact that 𝑢𝑛 is non-negative,

|𝑔(𝜃) − 𝑞∘
𝑛(𝜃)| = ∣1𝜋 ∫

𝜋−

−𝜋
(𝑔(𝜃) − 𝑔(𝜙 + 𝜃)) 𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙∣

≤ 1
𝜋 ∫

𝜋−

−𝜋
|𝜙|𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙.

Next, note 𝑀∘
𝑛 and 𝑢𝑛 are 2𝜋-periodic. Using this followed by the fact that

cos(𝑘(𝜙 − 𝜃)) = cos(𝑘𝜙) cos(𝑘𝜃) − sin(𝑘𝜙) sin(𝑘𝜃), the definition of 𝑢𝑛, and
Lemma 2.29,we have

1
𝜋 ∫

𝜋−

−𝜋
𝑀∘

𝑛(𝜙 + 𝜃)𝑢𝑛(𝜙)d𝜙 = 1
𝜋 ∫

𝜋−

−𝜋
𝑀∘

𝑛(𝜙)𝑢𝑛(𝜙 − 𝜃)d𝜙 = 1.

Therefore, by the Cauchy–Schwarz inequality,

(1
𝜋 ∫

𝜋−

−𝜋
|𝜙|𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙)
2

= (1
𝜋 ∫

𝜋−

−𝜋
|𝜙|𝑢𝑛(𝜙) ⋅ 𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙)
2

≤ (1
𝜋 ∫

𝜋−

−𝜋
𝜙2𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙)(1
𝜋 ∫

𝜋−

−𝜋
𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙)

= 1
𝜋 ∫

𝜋−

−𝜋
𝜙2𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙.
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Using the fact that 𝜙2 ≤ 𝜋2

2 (1 − cos(𝜙))we have

1
𝜋 ∫

𝜋−

−𝜋
𝜙2𝑢𝑛(𝜙)𝐷𝑛(𝜙 + 𝜃)d𝜙 ≤ 𝜋2

2
1
𝜋 ∫

𝜋−

−𝜋
(1 − cos(𝜙))𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙.

Next,weuse that cos(𝜙) cos(𝑘𝜙) = 1
2 (cos((𝑘−1)𝜙)+cos((𝑘+1)𝜙))andLemma2.29

to obtain

𝜋2

2
1
𝜋 ∫

𝜋−

−𝜋
(1 − cos(𝜙))𝑢𝑛(𝜙)𝑀∘

𝑛(𝜙 + 𝜃)d𝜙 = 𝜋2

2 (1 − 𝜌1).

Combining this sequence of inequalitieswe find that

|𝑔(𝜃) − 𝑞∘
𝑛(𝜃)| ≤ 𝜋

√2
(1 − 𝜌1)1/2.

Lemma 2.32. If we use Jackson’s damping coefficents from Theorem 2.26, then 𝑢𝑛 is

positive and
𝜋

√2
(1 − 𝜌1)1/2 ≤ 𝜋2

2 (𝑛 + 2)−1.

Proof. Let {𝑐ℓ}𝑛
ℓ=0 be any real numbers. Then

(
𝑛

∑
ℓ=0

𝑐ℓ exp(𝒊ℓ𝜃))(
𝑛

∑
ℓ=0

𝑐ℓ exp(−𝒊ℓ𝜃)) = ∣
𝑛

∑
ℓ=0

𝑐ℓ exp(𝒊ℓ𝜃)∣
2

≥ 0.

Expanding and using that exp(𝒊𝑘𝜃) + exp(−𝒊𝑘𝜃) = 2 cos(𝑘𝜃)we find

(
𝑛

∑
ℓ=0

𝑐ℓ exp(𝒊ℓ𝜃))(
𝑛

∑
ℓ=0

𝑐ℓ exp(−𝒊ℓ𝜃)) =
𝑛

∑
𝑘=0

𝑐2
𝑘 + 2

𝑛

∑
𝑝=1

𝑛−𝑝

∑
𝑘=0

𝑐𝑘𝑐𝑘+𝑝 cos(𝑝𝜃).

Because 𝑢𝑛 must have the constant termequal to1/2we require 𝑐2
0+…+𝑐2

𝑛 = 1/2.

For ℓ = 0, 1, … , 𝑛, let
𝑐ℓ = 𝑐 sin ( ℓ + 1

𝑛 + 2𝜋)

where

𝑐2 = (
𝑛

∑
ℓ=0

2 sin2 ( ℓ + 1
𝑛 + 2𝜋) )

−1

= 1
𝑛 + 2.

Then setting 𝜌0 = 1 and

𝜌𝑘 = 2
𝑛−𝑘

∑
ℓ=0

𝑐ℓ𝑐𝑐+𝑘
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we obtain 𝑢𝑛.

Next, we show that these damping coefficients are equal to those described
above. Following [Wei+06]we have that

2
𝑛−𝑘

∑
ℓ=0

𝑐ℓ𝑐ℓ+𝑘 = 2𝑐2
𝑛−𝑘

∑
ℓ=0

sin ( ℓ + 1
𝑛 + 2𝜋) sin (ℓ + 𝑘 + 1

𝑛 + 2 𝜋)

= 2𝑐2
𝑛−𝑘+1

∑
ℓ=1

sin ( ℓ
𝑛 + 2𝜋) sin ( ℓ + 𝑘

𝑛 + 2𝜋)

= 𝑐2
𝑛−𝑘+1

∑
ℓ=1

(cos ( 𝑘
𝑛 + 2𝜋) − cos (2ℓ + 𝑘

𝑛 + 2 𝜋))

= 𝑐2 ⎛⎜
⎝

(𝑛 − 𝑘) cos ( 𝑘
𝑛 + 2𝜋) − Re

𝑛−𝑘+1

∑
ℓ=1

exp (𝒊2ℓ + 𝑘
𝑛 + 2 𝜋)⎞⎟

⎠

= 𝑐2 ((𝑛 − 𝑘 + 1) cos ( 𝑘
𝑛 + 2𝜋) − sin ( ℓ

𝑛 + 2𝜋) cot ( 𝜋
𝑛 + 2)) .

These are exactly Jackson’s damping coefficients.

Using this expression, it’s easy to verify that 𝜌1 = cos(𝜋/(𝑛 + 2)). Thus

(1 − 𝜌1)1/2 = (1 − cos ( 𝜋
𝑛 + 2))

1/2
= √2 sin ( 𝜋

2𝑛 + 4) ≤ √2 𝜋
2𝑛 + 4

so
𝜋

√2
(1 − 𝜌1)1/2 ≤ 𝜋2

2𝑛 + 4

Finally, we prove the desired theorem.

Proof of Theorem 2.27. Without loss of generality, we can consider the case that
𝑓 is 1-Lipshitz. For 𝜃 ∈ [−𝜋, 𝜋) define 𝑔 by 𝑔(𝜃) = 𝑓(cos(𝜃)). Then 𝑔 is 1-
Lipshitz,2𝜋-periodic, andeven. Nextdefine the inversemappingof thedamped
trigonometric polynomial 𝑞∘

𝑛 for 𝑔 as

𝑝∘
𝑛(𝑡) = 𝑞∘

𝑛(arccos(𝑡)).

For any 𝑡 ∈ [−1, 1], setting 𝜃 = arccos(𝑡) ∈ [0, 𝜋]we use Lemmas 2.31 and 2.32 to
obtain the bound

|𝑝∘
𝑛(𝑡) − 𝑓(𝑡)| = |𝑝∘

𝑛(cos(𝜃)) − 𝑓(cos(𝜃))| = |𝑞∘
𝑛(𝜃) − 𝑔(𝜃)| ≤ 𝜋2

2 𝑛−1.
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We will now show that 𝑝∘
𝑛(𝑡) = [𝑓]d-∘𝑛 . The mapping 𝜃 = arccos(𝑡) gives the

Chebyshev polynomials; indeed, it iswell known that

𝑇𝑘(𝑡) = cos(𝑘 arccos(𝑡)).

Since 𝑔 is evenwe have 𝑏∘
𝑘 = 0 so

𝑝∘
𝑛(𝑡) = 𝑞∘

𝑛(arccos(𝑡)) = 𝑎∘
0

2 +
𝑛

∑
𝑘=1

𝜌𝑘𝑎∘
𝑘𝑇𝑘(𝑡).

Thus, our goal is to show that 𝑎∘
𝑘 are the coefficients for the Chebyshev approxi-

mation/interpolation series.

Towards this end, recall that

𝑎∘
𝑘 = 1

𝜋 ∫
𝜋−

−𝜋
𝑔(𝜙) cos(𝑘𝜙)𝑀∘

𝑛(𝜙)d𝜙.

Since 𝑔 is even we can replace the integral on [−𝜋, 𝜋) an integral on (0, 𝜋) and
an integral on [0, 𝜋). We first consider the case 𝑀a

𝑛(𝜙) = 1. Noting that
−𝜋−1 arccos(𝑡) = 𝜇𝑇

−1,1(𝑡), we find

𝑎a
𝑘 = 2 ∫

1

−1
𝑓𝑇𝑘 d𝜇𝑇

−1,1

as desired. For 𝑗 = 1, 2, … , 2𝑛, we have the Chebyshev nodes

cos(𝜙𝑗) = cos (2𝜋(𝑗 − 1/2)
2𝑛 − 𝜋) = − cos (𝜋(𝑗 − 1/2)

𝑛 ) .

Thus,

𝑀i
𝑛(𝑡) = 𝜋

𝑛 ∑
𝑖∈ℤ

𝛿(𝑥 − 𝑥𝑖), 𝑥𝑖 = − cos (𝜋(𝑗 − 1/2)
𝑛 )

so

𝑎i
𝑘 = 2

2𝑛

∑
𝑖=1

𝜋
𝑛𝑓(𝑥𝑖)𝑇𝑘(𝑥𝑖) = 2 ∫

1

−1
𝑓𝑇𝑘 d[𝜇𝑇

−1,1]gq𝑛

as desired. The result follows by renaming 𝑛 to 𝑠.
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Chapter 3

Matrix-free quadrature

This chapter focuses primarily on quadrature rules for the weighted CESM in-
duced by𝐀 and a unit vector 𝐯.

Definition 3.1. The weighted CESMΨ ∶ ℝ → [0, 1], induced by𝐀 and a unit vector 𝐯,
is defined by

Ψ(𝑥) = Ψ𝐀,𝐯(𝑥) ∶= 𝐯H𝟙[𝐀 ≤ 𝑥]𝐯.

This definition implies that

∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯,

so it is clear that Ψ is closely related to the task of approximating 𝐯H𝑓(𝐀)𝐯. In
fact, in this chapter, we take the perspective that Krylov subspace methods for
𝐯H𝑓(𝐀)𝐯 are in correspondencewith quadrature rules for Ψ. Such a perspective
was popularized by [GM94; GM09]

Remark 3.2. It is now clear that the Lanczos algorithmAlgorithm 1.1 is simply
the Stieltjes procedure Algorithm 2.2 applied to theweighted CESM Ψ. Specif-
ically, 𝐪𝑖 ∝ 𝑝𝑖(𝐀)𝐯 for 𝑖 = 0, 1, … , 𝑘 and the tridiagonal matrix 𝐓 generated by
Lanczos is equal to the Jacobi matrix 𝐌(Ψ). △

The chapter title, matrix-free quadrature refers to the fact that our approach to
constructing quadrature approximations to Ψ involve matrix-free algorithms;
i.e. algorithmswhich access 𝐀 only throughmatrix-vector products. While the
quadrature rules we study are standard in approximation theory, it is worth
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noting several critical differences between classical quadrature methods and
the algorithm studied in this chapter. First, the costs of the algorithms in
this paper are determined primarily by the number of matrix-vector products.
This is because we typically only want to approximate ∫ 𝑓 dΨ for a single, or
perhaps a few, functions. On the other hand, the weight functions which clas-
sical quadrature rules approximate never change, so nodes and weights can
be precomputed and the dominant cost becomes the cost to evaluate 𝑓 at the
quadrature nodes. Second, while classical weight functions, such as theweight
functions for Jacobi or Hermite polynomials, are typically relativelyuniform in
the interior of the interval of integration, Ψ may varywildly from application
to application. In some cases Ψ might resemble the distribution function of
a classical weight function whereas in others it might have large gaps, jumps,
and other oddities. These distinctions are hinted at throughout the chapter and
illustrated explicitly in the numerical examples at the end of this chapter.

Moment based methods for estimating the weighted CESM1 have been used in
physics for at least half a century. Early approaches were based on monomial
moments [Cyr67; Cyr69; DC70; DC71; CD71], but the use of modifiedChebyshev
moments [WB72] and Lanczos-based approaches [Hay+72; HHK72; HHK75]
were soon introduced.

3.1 Extracting moments from a Krylov subspace

Bases for the Krylov subspace 𝒦𝑘+1 = span{𝐯, 𝐀𝐯, … , 𝐀𝑘𝐯} can be computed
using 𝑘 matrix-vector products with 𝐀 and contain a wealth of information
about the interaction of 𝐀 with 𝐯; in particular, they contain the information
necessary to compute the moments of Ψ through degree 2𝑘. Indeed, for all
𝑖, 𝑗 ≥ 0,

(𝐀𝑗𝐯)H(𝐀𝑗𝐯) = 𝐯H𝐀𝑖+𝑗𝐯 = ∫ 𝑥𝑖+𝑗 dΨ.

Note, however, that it is sometimes more straightforward to obtain the mo-
ments throughdegree 𝑠, for some 𝑠 ≤ 2𝑘. Thus,wewill use 𝑠 to denote thedegree
of the maximum moment we compute and 𝑘 to denote the number of matrix-
vector products used.

1In physics, the “density” dΨ/d𝑥 is often called the local density of states (local DOS).
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3.1.1 Computing modified moments directly

Perhaps themost obvious approach to computingmodifiedmoments is to con-
struct the basis [𝑝0(𝐀)𝐯, … , 𝑝𝑘(𝐀)𝐯] for 𝒦𝑘+1 and then compute

𝐯H[𝑝0(𝐀)𝐯, … , 𝑝𝑘(𝐀)𝐯].

This can be done using 𝑘 matrix-vector products and 𝑂(𝑛) storage using the
matrix recurrence version of (2.3). Indeed for all 𝑖 = 0, 1, … , 𝑘 − 1we have that

𝐀𝑝𝑖(𝐀)𝐯 = 𝛽𝑖−1𝑝𝑖−1(𝐀)𝐯 + 𝛼𝑖𝑝𝑖(𝐀)𝐯 + 𝛽𝑖𝑝𝑖+1(𝐀)𝐯

from which we can implement an efficient matrix-free algorithm to compute
themodifiedmoments {𝑚𝑖}𝑘

𝑖=0, as shown in Algorithm 3.1.

Algorithm 3.1Getmodifiedmoments of Ψwrt. 𝜇
1: procedureget-moments(𝐀, 𝐯, 𝑘, 𝜇)
2: 𝐪0 = 𝐯, 𝑚0 = 𝐯H𝐯, 𝐪−1 = 𝟎, 𝛽−1 = 0
3: for 𝑖 = 0, 1, … , 𝑘 − 1 do
4: 𝐪𝑖+1 = 1

𝛽𝑖
(𝐀𝐪𝑖 − 𝛼𝑖𝐪𝑖 − 𝛽𝑖−1𝐪𝑖−1)

5: 𝑚𝑖+1 = 𝐯H𝐪𝑖+1

6: return {𝑚𝑖}𝑘
𝑖=0

If we instead compute

[𝑝0(𝐀)𝐯, … , 𝑝𝑘(𝐀)𝐯]H[𝑝0(𝐀)𝐯, … , 𝑝𝑘(𝐀)𝐯],

then we have the information required to compute the modified moments
though degree 2𝑘. However, it is not immediately clear how to do this without
the 𝑂(𝑘𝑛) memory required to store a basis for 𝒦𝑘+1. It turns out it is indeed
generally possible to compute these moments without storing the entire basis,
andwe discuss a principled approach for doing so using connection coefficients
in Section 3.1.2.

One case where extracting the moments to degree 2𝑘, without storing a basis
for Krylov subspace, is straightforward iswhen 𝜇 = 𝜇𝑇

𝑎,𝑏. This is because, for all
𝑖 ≥ 0, the Chebyshev polynomials satisfy the identities

𝑇2𝑖 = 2(𝑇𝑖)2 − 1, 𝑇2𝑖+1 = 2𝑇𝑖𝑇𝑖+1 − 𝑥.
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Thus, using the recurrence for the Chebyshev polynomials and their relation
to the orthogonal polynomials with respect to 𝜇𝑇

𝑎,𝑏, we obtain Algorithm 3.2.
This algorithm is well-known in papers on the kernel polynomial method are
variants; see for instance [Ski89; SR94;Wei+06; Hal21].

Remark 3.3. The Chebyshev polynomials grow rapidly outside of the interval
[−1, 1]. Therefore, if the spectrum of 𝐀 extends beyond this interval, then
computing the Chebyshev polynomials in 𝐀 may suffer from numerical insta-
bilities. Instead, the distribution function 𝜇𝑇

𝑎,𝑏 and corresponding orthogonal
polynomials should be used for some choice of 𝑎 and 𝑏with ℐ ⊂ [𝑎, 𝑏].

△

Algorithm 3.2Getmodifiedmoments of Ψwrt. 𝜇𝑇
𝑎,𝑏

1: procedureget-Chebyshev-moments(𝐀, 𝐯, 𝑘, 𝑎, 𝑏)
2: 𝐪0 = 𝐯, 𝑚0 = 𝐪H

0𝐪0

3: 𝐪1 = 2
𝑏−𝑎 (𝐀𝐪0 − 𝑎+𝑏

2 𝐪0), 𝑚1 = √2𝐪H
0𝐪1

4: for 𝑖 = 1, 2, … , 𝑘 − 1 do
5: 𝑚2𝑖 = √2(2𝐪H

𝑖 𝐪𝑖 − 𝑚0)
6: 𝐪𝑖+1 = 2 2

𝑏−𝑎 (𝐀𝐪𝑖 − 𝑎+𝑏
2 𝐪𝑖) − 𝐪𝑖−1

7: 𝑚2𝑖+1 = √2(2𝐪H
𝑖 𝐪𝑖+1) − 𝑚1

8: 𝑚2𝑘 = √2(2𝐪H
𝑘 𝐪𝑘 − 𝑚0)

9: return {𝑚𝑖}2𝑘
𝑖=0

3.1.2 Connection coefficients to compute more modified moments

Wenowdiscusshowtouse connection coefficients to compute themodifiedmo-
mentsof Ψwith respect to𝜇givenknowledgeof either (i) themodifiedmoments
of Ψwith respect to some distribution 𝜈 or (ii) the tridiagonal matrix computed
using Algorithm 1.1. Much of our discussion on connection coefficients is based
on [WO21]; see also [FG91].

Definition 3.4. The connection coefficient matrix 𝐂 = 𝐂𝜇→𝜈 is the upper triangular

matrix representing a change of basis between the orthogonal polynomials {𝑝𝑖}∞
𝑖=0 with

respect to 𝜇 and the orthogonal polynomials {𝑞𝑖}∞
𝑖=0 with respect to 𝜈, whose entries satisfy,

𝑝𝑠 = [𝐂]0,𝑠𝑞0 + [𝐂]1,𝑠𝑞1 + ⋯ + [𝐂]𝑠,𝑠𝑞𝑠.
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Definition 3.4 implies that, for all 𝑖 = 0, 1, … , 𝑠,

𝑚𝑖 = ∫ 𝑝𝑖 dΨ =
𝑖

∑
𝑗=0

[𝐂]𝑗,𝑖 ∫ 𝑞𝑗 dΨ =
𝑖

∑
𝑗=0

[𝐂]𝑗,𝑖𝑛𝑗

where {𝑛𝑖}𝑠
𝑖=0 are the modified moments of Ψ with respect to 𝜈. Thus, we can

easily obtain the modified moments {𝑚𝑖}𝑠
𝑖=0 of Ψ with respect to 𝜇 from the

modified moments of Ψ with respect to 𝜈. In particular, if 𝐦 and 𝐧 denote the
vectors of modifiedmoments, then 𝐦 = 𝐂T𝐧.

Moreover, in the special case that 𝜈 has the samemoments as Ψ through degree
𝑠, so, for any 𝑗 ≥ 0,

𝑛𝑗 = ∫ 𝑞𝑗 dΨ = ∫ 𝑞𝑗 d𝜈 = ∫ 𝑞0𝑞𝑗 d𝜈 = 𝟙[𝑗 = 0].

Therefore, the modified moments of Ψ (with respect to 𝜇) through degree 𝑠 can
be computed by

𝑚𝑖 = ∫ 𝑝𝑖 dΨ = [𝐂]0,𝑖.

In order to use the above expressions, we must compute the connection co-
efficient matrix. Definition 3.4 implies that for all 𝑖 ≤ 𝑗, the entries of the
connection coefficient matrix are given by

[𝐂]𝑖,𝑗 = ∫ 𝑞𝑖𝑝𝑗 d𝜈.

Unsurprisingly, then, the entries of the connection coefficientmatrix 𝐂 = 𝐂𝜇→𝜈

can be obtained by a recurrence relation.

Proposition 3.5 ([WO21, Corollary 3.3]). Suppose the Jacobi matrices for 𝜇 and 𝜈 are
respectively given by

𝐌(𝜇) =

⎡
⎢
⎢
⎢
⎢
⎣

𝛼0 𝛽0

𝛽0 𝛼1 𝛽1

𝛽1 𝛼2 ⋱
⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎦

, 𝐌(𝜈) =

⎡
⎢
⎢
⎢
⎢
⎣

𝛾0 𝛿0

𝛿0 𝛾1 𝛿1

𝛿1 𝛾2 ⋱
⋱ ⋱

⎤
⎥
⎥
⎥
⎥
⎦

.

Then the entries of𝐂 = 𝐂𝜇→𝜈 satisfy, for 𝑖, 𝑗 ≥ 0, the following recurrence:

[𝐂]0,0 = 1



chapter 3 page 33

[𝐂]0,1 = (𝛾0 − 𝛼0)/𝛽0

[𝐂]1,1 = 𝛿0/𝛽0

[𝐂]0,𝑗 = ((𝛾0 − 𝛼𝑗−1)[𝐂]0,𝑗−1 + 𝛿0[𝐂]2,𝑗−1 − 𝛽𝑗−2[𝐂]0,𝑗−2)/𝛽𝑗−1

[𝐂]𝑖,𝑗 = (𝛿𝑖−1[𝐂]𝑖−1,𝑗−1 + (𝛾𝑖 − 𝛼𝑗−1)[𝐂]𝑖,𝑗−1 + 𝛿𝑖[𝐂]𝑖+1,𝑗−1 − 𝛽𝑗−2[𝐂]𝑖,𝑗−2)/𝛽𝑗−1.

Proposition 3.5 yields a natural algorithm for computing the connection coeffi-
cient matrix 𝐂𝜇→𝜈. This algorithm is shown as Algorithm 3.3. Note that 𝐂 is, by
definition, upper triangular, so [𝐂]𝑖,𝑗 = 0 whenever 𝑖 > 𝑗. We remark that for
certain cases, particularly transforms between the Jacobi matrices of classical
orthogonal polynomials, faster algorithmsareknown [TWO17]. Wedonot focus
on such details in this paper as the cost of productswith𝐀 is typically far larger
than the cost of computing 𝐂𝜇→𝜈.

Algorithm 3.3Get connection coefficients
1: procedureget-connection-coeffs(𝜇, 𝑘𝜇, 𝑘′

𝜇, 𝜈, 𝑘𝜈, 𝑘′
𝜈)

2: [𝐂]0,0 = 1, [𝐂]𝑖′,𝑗′ = 0 if 𝑖′ > 𝑗′ or 𝑗′ = −1
3: for 𝑗 = 1, 2, … , min(𝑘′

𝜇, 𝑘𝜈 + 𝑘′
𝜈) do

4: for 𝑖 = 0, 1, … , min(𝑗, 𝑘𝜈 + 𝑘′
𝜈 − 𝑗) do

5: [𝐂]𝑖,𝑗 = (𝛿𝑖−1[𝐂]𝑖−1,𝑗−1 + (𝛾𝑖 − 𝛼𝑗−1)[𝐂]𝑖,𝑗−1
+ 𝛿𝑖[𝐂]𝑖+1,𝑗−1 − 𝛽𝑗−2[𝐂]𝑖,𝑗−2)/𝛽𝑗−1

6: return 𝐂 = 𝐂𝜇→𝜈

Remark 3.6. From Proposition 3.5 it is not hard to see that [𝐂]∶𝑘,∶𝑘 can be
computed using [𝐌(𝜈)]∶𝑘,∶𝑘 and [𝐌(𝜇)]∶𝑘,∶𝑘. Moreover, [𝐂]0,∶2𝑘+1 can be computed
using [𝐌(𝜈)]∶𝑘+1,∶𝑘 and [𝐌(𝜇)]∶2𝑘,∶2𝑘. In general 𝐌(𝜇) will be known fully, and in
such cases, themodifiedmoments throughdegree2𝑘 canbe computedusing the
information generated by Lanczos run for 𝑘 iterations. △

We can use Algorithm 3.3 in conjunctionwith Algorithm 3.2 and Algorithm 1.1
to computemodifiedmomentswith respect to 𝜇. This is shown inAlgorithm3.4
and Algorithm 3.5 respectively.



chapter 3 page 34

Algorithm 3.4Getmodifiedmomentswrt. 𝜇 of weighed CESM (via Chebyshev
moments)
1: procedureget-moments-from-Cheb(𝐀, 𝐯, 𝑠, 𝜇, 𝑎, 𝑏)
2: 𝑘 = ⌈𝑠/2⌉
3: {𝑛𝑖}2𝑘

𝑖=0 = get-Chebyshev-moments(𝐀, 𝐯, 𝑘, 𝑎, 𝑏)
4: 𝐂 = get-connection-coeffs([𝐌(𝜇)]∶2𝑘,∶2𝑘, [𝐌(𝜇𝑇

𝑎,𝑏)]∶2𝑘,∶2𝑘)
5: for 𝑖 = 0, 1, … , 𝑠 do
6: 𝑚𝑖 = ∑𝑖

𝑗=0[𝐂]𝑗,𝑖𝑛𝑗

7: return {𝑚𝑖}𝑠
𝑖=0

Algorithm 3.5Getmodifiedmomentswrt. 𝜇 of weighed CESM (via Lanczos)
1: procedureget-moments-from-Lanczos(𝐀, 𝐯, 𝑠, 𝜇)
2: 𝑘 = ⌈𝑠/2⌉
3: [𝐓]𝑖∶𝑘+1,∶𝑘 = Lanczos(𝐀, 𝐯, 𝑘)
4: 𝐂 = get-connection-coeffs([𝐌(𝜇)]∶2𝑘,∶2𝑘, [𝐓]∶𝑘+1,∶𝑘)
5: for 𝑖 = 0, 1, … , 𝑠 do
6: 𝑚𝑖 = [𝐂]0,𝑖

7: return {𝑚𝑖}𝑠
𝑖=0

Remark 3.7. Given themodifiedmoments of Ψwith respect to 𝜇, the tridiago-
nal matrix produced byAlgorithm 1.1 can itself be obtained [SD71]. This is quite
similar to 𝑠-step Lanczos methods designed to reduce communication on dis-
tributed memory computers. However, if implemented naively, such methods
can be even more susceptible to the effects of finite precision arithmetic than
the regular Lanczos method [CD15; Car20], so special care must be takenwhen
implementing such an algorithm. △

3.2 Quadrature approximations for weighted spectral

measures

We now discuss how to use the information extracted by the algorithms in the
previous section to obtain quadrature rules for theweighted CESMΨ. We begin
with a discussion on quadrature by interpolation in Section 3.2.1 followed by a
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discussion onGuassian quadrature in Section 3.2.2 and quadrature by approxi-
mation in Section 3.2.3. Finally, in Section 3.2.4, we describe how damping can
be used to ensure the positivity of quadrature approximations.

3.2.1 Quadrature by interpolation

Ourfirst class of quadrature approximations forΨ is the degree 𝑠 quadrature by
interpolation [Ψ]iq𝑠 (i.e. ∘ = i) which is defined by the relation

∫ 𝑓 d[Ψ]iq𝑠 ∶= ∫[𝑓]ip𝑠 dΨ, (3.1)

where [𝑓]ip𝑠 is the degree 𝑠 polynomial interpolating a function 𝑓 at the zeros
{𝜃(𝑠+1)

𝑗 }𝑠
𝑗=0 of 𝑝𝑠+1, the degree 𝑠 + 1 orthogonal polynomial with respect to 𝜇. (3.1)

implies that

[Ψ]iq𝑠 =
𝑠

∑
𝑗=0

𝜔𝑗𝟙[𝜃(𝑠+1)
𝑗 ≤ 𝑥]

where theweights {𝜔𝑗}𝑠
𝑗=0 are chosen such that themoments of [Ψ]iq𝑠 agreewith

those of Ψ through degree 𝑠.

One approach to doing this is by solving theVandermonde-like linear systemof
equations

⎡
⎢⎢⎢⎢
⎣

𝑝0(𝜃(𝑠+1)
0 ) ⋯ 𝑝0(𝜃(𝑠+1)

𝑠 )

⋮ ⋮

𝑝𝑠(𝜃
(𝑠+1)
0 ) ⋯ 𝑝𝑠(𝜃

(𝑠+1)
𝑠 )

⎤
⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢
⎣

𝜔0

⋮

𝜔𝑠

⎤
⎥⎥⎥⎥
⎦

=
⎡
⎢⎢⎢⎢
⎣

∫ 𝑝0 dΨ

⋮

∫ 𝑝𝑠 dΨ

⎤
⎥⎥⎥⎥
⎦

. (3.2)

whichwe denote by𝐏𝛚 = 𝐦. Thiswill ensure that polynomials of degree up to
𝑠 are integrated exactly.

While it is not necessary to restrict the test polynomials to be the orthogonal
polynomials {𝑝𝑖}∞

𝑖=0 with respect to 𝜇 nor the interpolation nodes to be the zeros
{𝜃(𝑠+1)

𝑗 }𝑠
𝑗=0 of 𝑝𝑠+1, doing so has several advantages. If arbitrary polynomials

are used, the matrix 𝐏 may be exponentially ill-conditioned; i.e. the condition
number of the matrix could grow exponentially in 𝑠. This can cause numerical
issues with solving 𝐏𝛚 = 𝐦. If orthogonal polynomials are used, then as in
Theorem2.14we see that the columns of 𝐏 are eigenvectors of the Jacobimatrix
𝐌. Since 𝐌 is symmetric, this implies that 𝐏 has orthogonal columns; i.e. 𝐏H𝐏
is diagonal. Therefore, we can easily apply 𝐏−1 through a product with 𝐏H and
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an appropriately chosen diagonal matrix. In particular, if 𝐒 is the orthonormal
matrix of eigenvectors, then 𝐏 = 𝐒 diag([𝐒]0,∶)−1 so that 𝐏−1 = diag([𝐒]0,∶)𝐒H.
This yields Algorithm 3.6.

Algorithm 3.6Quadrature by interpolation
1: procedureget-IQ({𝑚𝑖}𝑠

𝑖=0, 𝜇)
2: 𝛉, 𝐒 = eig([𝐌(𝜇)]∶𝑠+1,∶𝑠+1) ▷ Eigenvectors normalized to unit length
3: 𝛚 = diag([𝐒]0,∶)𝐒H𝐦
4: return [Ψ]iq𝑠 = ∑𝑠

𝑗=0[𝛚]𝑗𝟙[[𝛉]𝑗 ≤ 𝑥]

Remark 3.8. In certain cases, such as 𝜇 = 𝜇𝑇
𝑎,𝑏, 𝐏−1 can be applied quickly and

stablyusing fast transforms, suchas thediscrete cosine transform,without ever
constructing 𝐏. △

3.2.2 Gaussian quadrature

While interpolation-based quadrature rules supported on 𝑘 nodes do not, in
general, integrate polynomials of degree higher than 𝑘 − 1 exactly, if we allow
the nodes to be chosen adaptivelywe can do better. The degree 2𝑘 − 1 Gaussian
quadrature rule [Ψ]gq2𝑘−1 for Ψ is obtained by constructing an quadrature by
interpolation rule at the roots {𝜃(𝑘)

𝑖 }𝑘
𝑖=1 of the degree 𝑘 orthogonal polynomial

𝑝𝑘 of Ψ (i.e. by taking 𝜇 = Ψ).

Theorem 3.9. If 𝑝 is any polynomial of degree at most 2𝑘 − 1, then

∫ 𝑝dΨ = ∫ 𝑝d[Ψ]gq2𝑘−1.

I.e. , the Gaussian quadrature rule integrates polynomials of degree 2𝑘 − 1 exactly.

Proof. We can decompose 𝑝 as

𝑝 = 𝑞𝑝𝑘 + 𝑟

where 𝑞 and 𝑟 are each polynomials of degree at most 𝑘 − 1. Since 𝑝𝑘 is the 𝑘-th
orthogonalpolynomialwith respect to𝜇 = Ψ, it is orthogonal to all polynomials
of lower degree, including 𝑞. Thus,

∫ 𝑝dΨ = ∫ 𝑞𝑝𝑘 dΨ + ∫ 𝑟 dΨ = ∫ 𝑟 dΨ.
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On the other hand, since the interpolation nodes {𝜃(𝑘)
𝑗 }𝑘−1

𝑗=0 are the roots of 𝑝𝑘,

∫ 𝑝d[Ψ]iq𝑘−1 =
𝑘−1

∑
𝑗=0

𝜔𝑗(𝑞(𝜃(𝑘)
𝑗 )𝑝𝑘(𝜃

(𝑘)
𝑗 ) + 𝑟(𝜃(𝑘)

𝑗 )) =
𝑘−1

∑
𝑗=0

𝜔𝑗𝑟(𝜃(𝑘)
𝑗 ) = ∫ 𝑟 d[Ψ]iq𝑘−1.

Since the quadrature rule [Ψ]iq𝑘 is interpolatory of degree 𝑘, this implies

∫ 𝑝dΨ = ∫ 𝑝d[Ψ]iq𝑘−1.

Because the polynomials {𝑝𝑖}∞
𝑖=0 are orthogonal with respect to the probability

distribution Ψ function,we have that, for all 𝑖 ≥ 0,

𝑚𝑖 = 𝐯H𝑝𝑖(𝐀)𝐯 = ∫ 𝑝𝑖𝑝0 dΨ(𝐀, 𝐯) = 𝟙[𝑖 = 0].

This means the right hand side 𝐦 of (3.2) is the first canonical unit vector
𝐞0 = [1, 0, … , 0]H. Thus, as in Algorithm 3.6, 𝛚 = diag([𝐒]0,∶)[𝐒]0,∶; that is, the
quadrature weights are the squares of the first components of the unit length
eigenvectors of [𝐓]∶𝑘,∶𝑘. We then arrive atAlgorithm3.7 for obtaining aGaussian
quadrature rule for Ψ(𝐀, 𝐯) from the tridiagonal matrix [𝐓]∶𝑘,∶𝑘 generated by
Algorithm 1.1.

Algorithm 3.7Gaussian quadrature
1: procedureget-GQ([𝐓]∶𝑘,∶𝑘)
2: 𝛉, 𝐒 = eig([𝐓]∶𝑘,∶𝑘) ▷ Eigenvectors normalized to unit length
3: 𝛚 = diag([𝐒]0,∶)[𝐒]0,∶

4: return [Ψ]gq2𝑘−1 = ∑𝑘−1
𝑗=0[𝛚]𝑗𝟙[[𝛉]𝑗 ≤ 𝑥]

Remark 3.10. To construct a Gaussian quadrature rule, the three term recur-
rence for the orthogonal polynomials of Ψ must be determined. Thus, themain
computational cost is computing the tridiagonal matrix giving this recurrence.
However, due to orthogonality, we know that all but the degree zero modified
moments are zero and do not need to compute themoments. This is in contrast
to other schemes where the polynomial recurrence is known but the modified
momentsmust be computed. △
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3.2.3 Quadrature by approximation

Rather than defining a quadrature approximation using an interpolating poly-
nomial, wemight instead define an approximation [Ψ]aq𝑠 by the relation

∫ 𝑓d[Ψ]aq𝑠 ∶= ∫[𝑓]ap𝑠 dΨ

where [𝑓]ap𝑠 is the projection of 𝑓 onto the orthogonal polynomialswith respect
to 𝜇 through degree 𝑠 in the inner product ⟨⋅, ⋅⟩𝜇 . That is,

[𝑓]ap𝑠 ∶=
𝑠

∑
𝑖=0

⟨𝑓, 𝑝𝑖⟩𝜇 𝑝𝑖 =
𝑠

∑
𝑖=0

(∫ 𝑓𝑝𝑖d𝜇) 𝑝𝑖.

Expanding the integral of [𝑓]ap𝑠 against Ψ,

∫[𝑓]ap𝑠 dΨ = ∫
𝑠

∑
𝑖=0

(∫ 𝑓𝑝𝑖 d𝜇) 𝑝𝑖 dΨ = ∫ 𝑓(
𝑠

∑
𝑖=0

(∫ 𝑝𝑖 dΨ) 𝑝𝑖)d𝜇.

This implies
d[Ψ]aq𝑠
d𝜇 =

𝑠

∑
𝑖=0

(∫ 𝑝𝑖 dΨ) 𝑝𝑖 =
𝑠

∑
𝑖=0

𝑚𝑖𝑝𝑖

where d[Ψ]aq𝑠 /d𝜇 is the Radon–Nikodym derivative of [Ψ]aq𝑠 with respect to 𝜇.

Supposing2 that the Radon–Nikodym derivative dΨ/d𝜇 exists, we observe

𝑚𝑖 = ∫ 𝑝𝑖 dΨ = ∫ 𝑝𝑖
dΨ
d𝜇 d𝜇

is the 𝜇-projection of dΨ/d𝜇 onto 𝑝𝑖 for 𝑖 = 0, 1, … , 𝑠. Thus dΨ/d𝜇 is approxi-
mated in a truncated orthogonal polynomial series as

𝑠

∑
𝑖=0

(∫ 𝑝𝑖
dΨ
d𝜇 d𝜇) 𝑝𝑖 =

𝑠

∑
𝑖=0

(∫ 𝑝𝑖 dΨ) 𝑝𝑖.

This means the density d[Ψ]aq𝑠 /d𝑥 is, at least formally, the polynomial approx-
imation to the Radon–Nikodym derivative dΨ/d𝜇 times the density d𝜇/d𝑥; i.e.
d[Ψ]aq𝑠 /d𝑥 = [dΨ/d𝜇]ap𝑠 .

2If Ψ = Ψ(𝐀, 𝐯) then Ψ is not absolutely continuous with respect to the Lebesgue measure
(or any equivalent measure) so the Radon–Nikodym derivative does not exist. However, there
are absolutely continuous distribution distributionswith the samemodifiedmoments as Ψ up to
arbitrary degree, so conceptually one can use such a distribution instead.
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Wecanobtainanapproximation to thedensitydΨ/d𝑥byusing thedensityd𝜇/d𝑥
and the definition of the Radon–Nikodym derivative:

d[Ψ]aq𝑠
d𝑥 = d[Ψ]aq𝑠

d𝜇
d𝜇
d𝑥 = d𝜇

d𝑥

𝑠

∑
𝑖=0

𝑚𝑖𝑝𝑖.

Converting this “density” to a distribution gives the approximation [Ψ]aq𝑠 shown
in Algorithm 3.8.

Algorithm 3.8Quadrature by approximation
1: procedureget-AQ({𝑚𝑖}𝑠

𝑖=0, 𝜇)
2: return [Ψ]aq𝑠 = (𝑥 ↦ ∑𝑠

𝑖=0 𝑚𝑖 ∫𝑥
−∞ 𝑝𝑖 d𝜇)

Remark 3.11. When 𝜇 = 𝜇𝑇
𝑎,𝑏, d[Ψ]aq𝑠 /d𝜇 can be evaluated quickly at Cheby-

shev nodes bymeans of the discrete cosine transform. This allows the density
d[Ψ]aq𝑠 /d𝑥 to be evaluated quickly at these points. △

Evaluating spectral sums and the relation to quadrature by interpolation

We have written the output of Algorithm 3.8 as a distribution function for
consistency. However, note that

∫ 𝑓 d[Ψ]aq𝑠 =
𝑠

∑
𝑖=0

𝑚𝑖 ∫ 𝑓𝑝𝑖 d𝜇.

Thus, if used for the task of spectral sum approximation, the distribution func-
tion [Ψ]aq𝑠 neednot be computed. Rather, the 𝜇-projections of 𝑓onto the orthog-
onalpolynomialswith respect to𝜇 canbeused instead. Inmanycases, thevalues
of these projections are known analytically, and even if they are unknown,
computing them is a scalar problem independent of thematrix size 𝑛.

A natural approach to computing the 𝜇-projections of 𝑓 numerically is to use a
quadrature approximation for 𝜇. Specifically, we might use the 𝑑-point Gaus-
sian quadrature rule [𝜇]gq2𝑑−1 for 𝜇 to approximate ∫ 𝑓𝑝𝑖 d𝜇. This gives us the
approximation

𝑠

∑
𝑖=0

𝑚𝑖 ∫ 𝑓𝑝𝑖 d𝜇 ≈
𝑠

∑
𝑖=0

𝑚𝑖 ∫ 𝑓𝑝𝑖 d[𝜇]gq2𝑠+1 =
𝑠

∑
𝑖=0

𝑚𝑖

𝑑−1

∑
𝑗=0

𝜔(𝑑)
𝑖 𝑓(𝜃(𝑑)

𝑗 )𝑝𝑖(𝜃
(𝑑)
𝑗 )
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where {𝜔(𝑑)
𝑖 }𝑑−1

𝑖=0 are the Gaussian quadratureweights for 𝜇.

Similar to above, denote by𝐏 the 𝑑 × 𝑑Vandermonde-likematrix of orthogonal
polynomialswith respect to 𝜇 evaluated at the zeros of 𝑝𝑑+1. If 𝐒 is the orthonor-
malmatrix of eigenvectors of the𝑑×𝑑 Jacobimatrix [𝐌]∶𝑑,∶𝑑 for𝜇, then recall that
the Gaussian quadrature weights 𝛚(𝑑) are given by diag([𝐒]0,∶𝑠+1)([𝐒]∶𝑠+1,∶)H. This
yields Algorithm 3.9.

Remark3.12. In the case 𝑑 = 𝑠+1, Algorithm3.9 is equivalent toAlgorithm3.6.
△

Algorithm 3.9Approximate quadrature by approximation
1: procedureget-aAQ({𝑚𝑖}𝑠

𝑖=0, 𝑑, 𝜇)
2: 𝛉, 𝐒 = eig([𝐌(𝜇)]∶𝑑,∶𝑑) ▷ Eigenvectors normalized to unit length
3: 𝛚 = diag([𝐒]0,∶𝑠+1)([𝐒]∶𝑠+1,∶)H𝐦
4: return [Ψ]iq𝑠 = ∑𝑘−1

𝑗=0[𝛚]𝑗𝟙[[𝛉]𝑗 ≤ 𝑥]

3.2.4 Positivity by damping and the kernel polynomial method

While it is clear that that the Gaussian quadrature [Ψ]gq𝑠 is a non-negative
probability distribution function, neither [Ψ]iq𝑠 nor [Ψ]aq𝑠 are guaranteed to be
weakly increasing. We nowdiscuss how to use damping to enforce positivity.

Towards this end, define the damping kernel,

𝑃𝑥(𝑦) =
𝑠

∑
𝑖=0

𝜌𝑖𝑝𝑖(𝑥)𝑝𝑖(𝑦)

where {𝜌𝑖}𝑠
𝑖=0 are damping coefficients as in Theorem 2.18. Then the damped inter-

polant [𝑓]d-ip𝑠 and approximant [𝑓]d-ap𝑠 can bewritten in terms of 𝑃𝑥 as

[𝑓]d-ip𝑠 (𝑥) = ∫ 𝑃𝑥𝑓 d[𝜇]gq2𝑠+1 and [𝑓]d-ap𝑠 (𝑥) = ∫ 𝑃𝑥𝑓 d𝜇.

Remark 3.13. If 𝜌𝑖 = 1 for all 𝑖, then [𝑓]d-ip𝑠 = [𝑓]ip𝑠 and [𝑓]d-ap𝑠 = [𝑓]ap𝑠 . △

These approximations induce [Ψ]d-iq𝑠 and [Ψ]d-aq𝑠 by

∫ 𝑓 d[Ψ]d-iq𝑠 ∶= ∫[𝑓]d-ip𝑠 dΨ and ∫ 𝑓 d[Ψ]d-aq𝑠 ∶= ∫[𝑓]d-ap𝑠 dΨ.
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Algorithmically, this is equivalent to replacing 𝑚𝑖 by 𝜌𝑖𝑚𝑖 in the expressions
for quadrature by interpolation and approximation described in Sections 3.2.1
and 3.2.3.

Lemma 3.14. If 𝜌0 = 1, then [Ψ]d-iq𝑠 and [Ψ]d-aq𝑠 have unit mass, and if 𝑃𝑥(𝑦) ≥ 0 for

all 𝑥, 𝑦, then [Ψ]d-iq𝑠 and [Ψ]d-aq𝑠 are weakly-increasing.

Proof. The first part of the theorem follows from the fact that

∫ 𝑃𝑥d𝜇 =
𝑠

∑
𝑖=0

𝜌𝑖𝑝𝑖(𝑥) ∫ 𝑝𝑖d𝜇 = 𝜌0.

To prove the remainder, suppose 𝑓 is non-negative. Then clearly

[𝑓]d-ap𝑠 (𝑥) = ∫ 𝑃𝑥𝑓 d𝜇 ≥ 0

so that ∫ 𝑓 d[Ψ]d-aq𝑠 ≥ 0. A similar argument implies ∫ 𝑓 d[Ψ]d-iq𝑠 ≥ 0 as well.
Therefore the approximations areweakly increasing.

Remark 3.15. While we have describe the damping procedure in terms of the
damped interpolant and approximant, an equilvalent perspective is that we
first smooth the distribution Ψwith the damping kernel 𝑃𝑡(𝑦) and subsequently
use quadrature by interpolation or approximation with this new distribution
function. △

One particularly important damping kernel for the case 𝜇 = 𝜇𝑇
𝑎,𝑏 is given by the

Jackson coefficients defined in Theorem 2.26. The associated damping kernel
was used in the original proof of Jackson’s theorem [Jac12] and leads to the
Jackson damped KPM approximation, which is the most popular KPM variant
[Wei+06; BKM22]. The rate of convergence of polynomial approximations
using these damping coefficients is estimated in Theorem 2.27 below. For a
discussion on other damping schemeswe refer readers to [Wei+06; LSY16].

3.3 A priori error bounds on an interval

Mostof thequadrature approximationsweconsiderhave thepropertythat they
integrate polynomials exactly. In this case, we can use this property to reduce
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error bounds to the quality of the best uniform polynomial approximations to
𝑓, whichwe discussed in Section 2.3.

Lemma 3.16. SupposeΥ1 andΥ2 are probability distribution functions whose moments

are equal through degree 𝑠, each constant on (−∞, 𝑎) and (𝑏, ∞). Then,

∣∫ 𝑓 dΥ2 − ∫ 𝑓 dΥ2∣ = (𝑑TV(Υ1) + 𝑑TV(Υ2)) min
deg(𝑝)≤𝑠

‖𝑓 − 𝑝‖[𝑎,𝑏].

Proof. Let 𝑝 be any polynomial of degree at most 𝑠 and note that ∫ 𝑝dΥ1 =
∫ 𝑝dΥ2. Then, applying the triangle inequality,

∣∫ 𝑓 dΥ1 − ∫ 𝑓 dΥ2∣ = ∣∫(𝑓 − 𝑝)dΥ1 − ∫(𝑓 − 𝑝)dΥ2∣

≤ ∫ |𝑓 − 𝑝||dΥ1| + ∫ |𝑓 − 𝑝||dΥ2|

≤ ∫ ‖𝑓 − 𝑝‖[𝑎,𝑏]|dΥ1| + ∫ ‖𝑓 − 𝑝‖[𝑎,𝑏]|dΥ2|

= (𝑑TV(Υ1) + 𝑑TV(Υ2))‖𝑓 − 𝑝‖[𝑎,𝑏].

The result follows by optimizing over 𝑝.

Lemma 3.16 shows that the Lanczos-based Gaussian quadrature approxima-
tions always performwithin a factor of two of the best polynomial approxima-
tion on ℐ. Intuitively, approaches based on explicit polynomial approximation
will have error roughly equal to ‖𝑓 − [𝑓]∘p

𝑠 ‖ℐ as a large portion of mass of Ψ is
likely in regionswhere |𝑓 − [𝑓]∘p

𝑠 | is large. Thus, Gaussian quadrature should not
be expected to perform significantly worse than explicit polynomial methods,
at least in exact arithmetic. In fact, aswewill discuss in Chapter 8, even in finite
preicsion arithmetic, Lemma 3.16 is still morally correct.

For some quadrature approximations we consider, polynomials are not inte-
grated exactly. In such cases, we turn to the following bound:

Lemma 3.17. Suppose Υ1 is a probability distribution function and Υ2 is defined by

∫ 𝑓 dΥ2 = ∫ 𝒪[𝑓]dΥ1 for some operator𝒪[ ⋅ ]. Then, for any 𝑓,

∣∫ 𝑓 dΥ1 − ∫ 𝑓 dΥ2∣ = ‖𝑓 − 𝒪[𝑓]‖[𝑎,𝑏]𝑑TV(Υ1)

Proof. The result follows by a simple application of the triangle inequality:

∣∫ 𝑓 dΥ1 − ∫ 𝑓 dΥ2∣ = ∣∫(𝑓 − 𝒪[𝑓])dΥ1∣ ≤ ∫ ‖𝑓 − 𝒪[𝑓]‖[𝑎,𝑏]|dΥ1|
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= ‖𝑓 − 𝒪[𝑓]‖[𝑎,𝑏]𝑑TV(Υ1).

The primary downside of this bound is that it requires being able to bound
‖𝑓 − 𝒪[𝑓]‖[𝑎,𝑏]. However, at least in the case that 𝒪 corresponds to undamped
or Jackson damped Chebyshev interpolation or approximation, we are able to
derive bounds for ‖𝑓 − 𝒪[𝑓]‖[𝑎,𝑏] directly.

3.4 Qualitative comparison of algorithms

In Sections 1.1 and 3.1 we described Algorithm 3.1 (get-moments), Algo-
rithm 3.2 (get-Chebyshev-moments), Algorithm 1.1 (Lanczos), Algo-
rithm3.4 (get-moments-from-Cheb), andAlgorithm3.5 (get-moments-
from-Lanczos) which are used to compute the information required for
the quadrature approximations described in Section 3.2 Since Algorithms 3.4
and 3.5 respectively call Algorithms 1.1 and 3.2, Algorithms 1.1, 3.1 and 3.2
constitute the bulk of the computational cost of all implementations of the
protoalgorithm discussed in this paper.

In each iteration, Algorithms 1.1, 3.1 and 3.2 each require one matrix vector
product with 𝐀 alongwith several scalar multiplications, vector additions, and
inner products. As such, the total computational cost of each algorithms is
𝑂(𝑘(𝑇mv + 𝑛))where 𝑘 is the number of iterations and 𝑇mv is the cost of amatrix-
vector product with 𝐀. Here we ignore terms depending only on 𝑘 (e.g. 𝑘2)
which are unimportant if we assume 𝑘 ≪ 𝑛. Each of the algorithms can also
be implemented using just 𝑂(𝑛) storage; i.e. without storing the entire basis for
the Krylov subspacewhichwould cost 𝑂(𝑘𝑛) storage.

While the algorithms are typically quite storage efficient, there are some sit-
uations in which it may be desirable to store the whole Krylov basis. First,
Algorithm 1.1 is sometimes runwith full reorthogonalization. This can improve
numerical stability, but increases the computation cost to 𝑂(𝑘(𝑇mv + 𝑘𝑛)). Next,
by delaying all inner products to a final iteration (or using a non-blocking
implementation), the number of global reductions required by Algorithm 3.1
and Algorithm 3.2 can be reduced. Since global communication can signifi-
cantly slow down Krylov subspace methods, this may speed up computation
on highly parallel machines [DHL15; Ber+08]. As mentioned earlier, there are
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implementations of the Lanczos algorithmwhich aim to decrease the number
of global communications [CD15; Car20]. Designing Krylov subspace methods
for avoiding or reducing communication costs is a large area study, but further
discussion is outside the scope of this paper.

3.5 Numerical experiments

In this section, we provide a range of numerical experiments to illustrate the
behavior of the algorithms described above aswell as the tradeoffs between al-
gorithms. Our focus isprimarilyonquadratureapproximationsof theweighted
CESM, as the approximation of the true CESM by the average of weighted
CESMs is straightforward andwell understood.

3.5.1 Comparison with classical quadrature

We begin with an example designed to illustrate some of the similarities and
differences between the behavior of classical quadrature rules for continuous
weight functions and the behavior of the matrix-free quadrature algorithms
presented in this paper.

Throughout this example, we use the Runge function 𝑓(𝑥) = 1/(1 + 16𝑥2) and
a vector 𝐯 with uniform weight on each eigencomponent. We will compare
the effectiveness of the Gaussian quadrature rule [Ψ]gq2𝑘−1, the quadrature by
interpolation rule [Ψ]iq2𝑘 and the quadrature by approximation rule [Ψ]aq2𝑘. For
the latter approximations, we set 𝜇 = 𝜇𝑇

−1,1, and for the quadrature by approx-
imation rule, we use Algorithm 3.9 with enough quadrature nodes so that the
involved integrals are computed to essentially machine precision. All three
approximations can be computing using 𝑘 matrix-vector products with 𝐀, and
since the approaches exactly integrate polynomials of degree 2𝑘 − 1 and 2𝑘
respectively,wemight expect that them to behave similarly. However, there are
a variety of factorswhich prevent this from being the case.

In our first experiment, shown in Figure 3.1, the spectrum of 𝐀 uniformly fills
out the interval [−1, 1]; i.e., 𝜆𝑖 = −1 + (2𝑖 + 1)/𝑛, 𝑖 = 0, 1, … , 𝑛 − 1. We take
𝑛 = 105 so that [Ψ]gq2𝑘−1 and [Ψ]iq2𝑘 respectivelyapproximate the 𝑘-pointGaussian
quadrature and (2𝑘 − 1)-point Fejér quadrature rules for a uniform weight on
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Figure 3.1: Errors for approximating ∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯 when 𝑓(𝑥) =
1/(1 + 16𝑥2) for a spectrum uniformly filling [−1, 1]. Legend: Gaus-
sian quadrature with ( ) andwithout ( ) reorthogonalization,
quadrature by interpolation ( ), and approximate quadrature by
approximation ( ). Takeaway: Intuition about classical approxi-
mation theory informs our understanding of algorithms for matrix-
free quadrature. In fact, in some cases, quadrature by interpolation or
approximation can provably outperformGaussian quadrature.

[−1, 1]. Formanyfunctions, certain quadrature by interpolation rules on [−1, 1],
including the Fejér rule, behave similarly to theGaussian quadrature rulewhen
the same number of nodes are used [Tre08]. For 𝑓(𝑥) = 1/(1 + 16𝑥2), this
phenomenon is observed for some time until the convergence rate is abruptly
cut in half [WT07]. In our setting, a fair comparison means that the number of
matrix-vector products are equal, sowe see that the quadrature by interpolation
approximation initially converges twice as quickly as the Gaussian quadrature
approximation! The rate of the quadrature by interpolation approximation is
eventually cut in half tomatch the rate of the Gaussian quadrature approxima-
tion.

In our second experiment, shown in Figure 3.2, the spectrum of 𝐀 uniformly
fills out the disjoint intervals [−1, −0.75] ∪ [0.75, 1] with the same inter-point
spacing as the first example; i.e. we remove the eigenvalues in the previous
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Figure 3.2: Errors for approximating ∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯 when 𝑓(𝑥) =
1/(1 + 16𝑥2) for a spectrum uniformly filling [−1, 1] except for a gap
around zero. Legend: Gaussian quadrature with ( ) and without
( ) reorthogonalization, quadrature by interpolation ( ), and
approximate quadrature by approximation ( ). Takeaway: The be-
havior of the algorithms are highly dependent on the eigenvalue distri-
bution of 𝐀, and Gaussian quadrature may perform significantly better
that explicit methods when the spectrum of 𝐀 has additional structure
such as gaps.

examplewhich fall between −0.75 and 0.75. Herewe observe that the Gaussian
quadrature rule converges significantly faster than in the previous experiment.
This to be expected. Indeed, the Gaussian quadrature rule has its nodes near
[−1, −0.75] ∪ [0.75, 1], so the union of the support of Ψ and [Ψ]iq2𝑘 is further
from the poles of 𝑓 located at ±𝒊/4. We also note that the conditions which
enabled accelerated convergence in the first experiment are no longer present,
so the quadrature by interpolation approximation converges at its limiting rate
[Tre08].

In the both experiments, the Lanczos based Gaussian quadrature approach be-
haves similarwith andwithout reorthogonalization. In fact, it is easilyverified
that the Lanczos algorithm does not lose orthogonality and behaves nearly the
same regardless of whether or not reorthogonalization is used. To the best of
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Figure 3.3: Errors for approximating ∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯 when 𝑓(𝑥) =
1/𝑥 for model problem. Legend: Gaussian quadrature with ( )
and without ( ) reorthogonalization, quadrature by interpolation
( ), and approximate quadrature by approximation ( ). Take-

away: Without reorthogonaliztion the convergence of Gaussianquadra-
ture is slowed. However, the method still converges and can even out-
perform the othermethods.

our knowledge, such a result has not been proved rigorously.

3.5.2 Finite precision convergence

In this example, we consider several experiments where orthogonality is lost
and the effects of finite precision arithmetic are easily observed. In both exper-
iments we use diagonal matrices scaled so ‖𝐀‖2 = 1 and set 𝐯 to have uniform
entries. Weset𝑎, 𝑏as the largestandsmallest eigenvalues respectivelyandagain
use 𝜇 = 𝜇𝑇

𝑎,𝑏 for the interpolatory and quadrature by approximations.

In thefirst experiment, shown inFigure 3.3, the eigenvalues of 𝐀 aredistributed
according to themodel problem (10.1) and 𝑓(𝑥) = 1/𝑥. Specifically, the eigenval-
ues are given by themodel problemwith selected parameters 𝑛 = 300, 𝜅 = 103,
and 𝜌 = 0.85. In the second experiment, shown in the right panel Figure 3.4,we
use the 𝑛 = 9664 eigenvalues of the California matrix from the sparse matrix
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Figure 3.4: Errors for approximating ∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯 when 𝑓(𝑥) =
𝟙[𝑥 > 𝑐] for MNIST covariance matrix. Legend: Gaussian quadrature
with ( ) and without ( ) reorthogonalization, quadrature by
interpolation ( ), and approximate quadrature by approximation
( ). Takeaway: Without reorthogonaliztion the convergence of
Gaussian quadrature is slowed. However, the method still converges
and can even outperform the othermethods.

suite [DH11] and the function 𝑓(𝑥) = |𝑥|.

In both cases, the Jacobi matrices produced by Lanczos, with or without re-
orthogonalization, differ greatly; i.e. the difference of the matrices is on the
order of ‖𝐀‖2. Even so, the modified moments for 𝜇 = 𝜇𝑇

𝑎,𝑏 obtained by Algo-
rithms 3.4 and 3.5 differ only in the 12th digit and 14th digits respectively. Using
one approach in place of the other does not noticeably impact the convergence
of the quadrature by interpolation approximations.
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Chapter 4

Spectrum and spectral sum
approximation

Wenowturn to the tasks of spectrumand spectral sumapproximation. Specifi-
cally,wewill showhowthe algorithms from the previous chapter can be used to
produce approximations to the CESM Φ, the probability distribution function
with unitmass at each eigenvalue of 𝐀whichwe defined in Theorem 1.2. This in
turn induces approximations to tr(𝑓(𝐀)).

Towards this end, suppose 𝐯 is a randomvector satisfying 𝔼[𝐯𝐯H] = 𝑛−1𝐈; i.e., 𝐯
is isotropicwith appropriate scale. Then, using basic properties of the trace and
expectation for any 𝑥 ∈ ℝ, we have

𝔼[Ψ(𝑥)] = 𝔼[𝐯H𝟙[𝐀 ≤ 𝑥]𝐯] = 𝔼[tr(𝐯H𝟙[𝐀 ≤ 𝑥]𝐯)]

= 𝔼[tr(𝟙[𝐀 ≤ 𝑥]𝐯𝐯H)] = tr(𝔼[𝟙[𝐀 ≤ 𝑥]𝐯𝐯H])

= tr(𝟙[𝐀 ≤ 𝑥]𝔼[𝐯𝐯H]) = 𝑛−1 tr(𝟙[𝐀 ≤ 𝑥]) = Φ(𝑥).

That Ψ is an unbiased estimator for Φ at every point 𝑥 ∈ ℝ is illustrated in
Figure 4.1. Further, almost by definition, we see that ∫ 𝑓 dΨ = 𝐯H𝑓(𝐀)𝐯 is an
unbiased estimator for 𝑛−1 tr(𝑓(𝐀)).

Let {Ψℓ}
𝑛v−1
ℓ=0 be independent and identically distributed (iid) copies of the

weighted CESM Ψ corresponding to vectors {𝐯ℓ}
𝑛v−1
ℓ=0 which are iid copies of 𝐯.

Then the averagedweighted CESM

⟨Ψℓ⟩ ∶= 𝑛−1
v

𝑛v−1

∑
ℓ=0

Ψℓ
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Figure 4.1: CESM Φ ( ) and 10 independent samples of weighted
CESM Ψ corresponding to random 𝐯 ( ). Each copy of Ψ is an
unbiased estimator for Φ at each point 𝑥 ∈ ℝ.

is also an unbiased estimator for the CESM at every point 𝑥. This implies

⟨𝐯H
ℓ 𝑓(𝐀)𝐯ℓ⟩ ∶= 𝑛−1

v

𝑛v−1

∑
ℓ=0

𝐯H
ℓ 𝑓(𝐀)𝐯ℓ = ∫ 𝑓 d⟨Ψℓ⟩,

is an unbiased estimator for 𝑛−1 tr(𝑓(𝐀)). In both cases, the standard deviation
of the averaged estimator decreases proportional to 1/√𝑛v, so the averaged
estimators concentrate more sharply about themean as 𝑛v increases.

We refer to estimators of the form 𝐯H𝐁𝐯,where 𝐯 is an isotropic randomvector,
as quadratic trace estimators. Thus, we see that the quadratic trace estimator
for the spectral sum tr(𝑓(𝐀)) is an integral against the weighted CESM, which
is itself a quadratic trace estimator for the CESM at every point 𝑥. Moreover,
since the quadratic form 𝐯H𝑓(𝐀)𝐯 can be written as an integral of 𝑓 against the
weighted CESM, classical results about the convergence of quadrature rules for
approximating this integral can be leveraged to obtain error estimates for the
convergence of our Krylov subspace approximations of 𝐯H𝑓(𝐀)𝐯.

In order to approximate a sample of Ψ, and therefore integrals against such
samples, we can simply use the algorithms from the previous chapter. Thus,
we arrive at a prototypical algorithm for spectrum and spectral sum approx-
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imation,Algorithm 4.1. The output ⟨[Ψℓ]∘q
𝑠 ⟩ of Algorithm 4.1 is a distribution

function which approximates the CESM Φ. For any function 𝑓 ∶ ℝ → ℝ, this
approximation naturally yields an approximation to the spectral sum tr(𝑓(𝐀))
by integration.

Algorithm 4.1 Prototypical randomized spectrum and spectral sum approxi-
mation
1: procedure spec-approx(𝐀, 𝑛v, 𝑘, ∘)
2: for ℓ = 0, 1, … , 𝑛v − 1 do
3: define (implicitly) Ψℓ

iid∼ Ψ by sampling 𝐯ℓ
iid∼ 𝐯, 𝔼[𝐯𝐯H] = 𝑛−1𝐈

4: computemoments of Ψℓ through degree 𝑠 by constructing 𝒦𝑘+1(𝐀, 𝐯ℓ)
5: approximate Ψℓ by [Ψℓ]

∘q
𝑠 induced by a polynomial operator [ ⋅ ]∘p

𝑠

6: return ⟨[Ψℓ]
∘q
𝑠 ⟩ ∶= 𝑛−1

v ∑𝑛v−1
ℓ=0 [Ψℓ]

∘q
𝑠

4.1 Related work and context

Specific implementations of theprototypical algorithm, given inAlgorithm4.1,
are by far themost common algorithms for spectral sum and spectrum approx-
imation, and they have found widespread use in a range of disciplines [LSY16;
UCS17]. Aswehavealluded to, the twokeyingredients for suchalgorithmsare (i)
polynomial approximation and quadrature and (ii) quadratic trace estimation.
Thefirst of these ingredientshasbeen studied for centuries [Tre19], so thepopu-
larization of the latter [Gir87; Hut89; Ski89] quickly lead to avariety algorithms
fitting this framework. In this section we focus primarily on conceptual and
theoretical advancements relating to the protoalgorithm. We hope our brief
review of prior work will help tie together several clusters of literature which
have remained largely disjoint.

Both [Gir87; Hut89] focus on estimating the trace of a large implicit matrix 𝐁 =
𝐀−1 for somematrix 𝐀. While [Gir87] suggests the use of the conjugate gradient
algorithm, neither paper discusses in detail how to approximate products with
𝐁. Therefore, to the best of our knowledge, [Ski89] contains the first example of
an algorithmwhich truly fits into the form considered in this paper. In [Ski89],
an approximation to Φ based on an expansion in Chebyshevpolynomials is de-
scribed. This approximation is then used to approximate tr(ln(𝐀)) = ln det(𝐀).
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The Chebyshev based approach of [Ski89] was improved in [SR94] where a
damping Kernel was introduced to avoid Gibbs oscillations. The connection to
Jackson’s damping and other classical ideas from approximation theory were
subsequently considered in [Sil+96]. The resulting algorithm is now typically
called the kernel polynomialmethod (KPM) and iswidely used in the computa-
tional physical sciences; see [Wei+06] for a review.

Essentially in parallel, stochastic trace estimation was combined with quadra-
ture explicitly. Typically, such approaches are based on the Lanczos algorithm
which can be used in a straightforward way to compute certain quadrature
rules for Ψ [GM09, Chapter 6], [Gau06]. In [BFG96], Gauss, Gauss-Lobatto, and
Gauss-Radau quadrature rules are used to derive upper and lower bounds for
∫ 𝑓 dΨwhen 𝑓(𝑥) = 1/𝑥 or 𝑓 = ln(𝑥). These boundswere in turn combinedwith
stochastic trace estimation to provide probabilistic upper and lower bounds on
the traces of the corresponding matrix functions. The Gaussian quadrature
based approach is now typically referred to as stochastic Lanczos quadrature
(SLQ).

Bounds on the number of samples 𝑛v required so that the average of iid
quadratic trace estimators is within 𝜖 of the true trace with at least probability
1 − 𝜂 were derived in [AT11] and subsequently improved on in [RA14]. These
bounds enabled a range of analyses which explicitly balanced the number
of samples 𝑛v with the approximation degree 𝑠. For instance, [Han+17] and
[UCS17] respectively consider approximation of spectral sums corresponding
to analytic functions by a Chebyshev based approach and SLQ. Later, [CK21]
gives stronger bounds for quadratic trace estimators, and as in [UCS17], these
bounds are used to analyze SLQ.

Around this time, spectrum approximation in Wasserstein distance was ana-
lyzed forKPM [BKM22] andSLQ [CTU21]. We remark that [BKM22; CTU21] both
arrive at the conclusion that the number of samples required to approximate
Φ in Wasserstein distance to accuracy 𝜖 actually decreases as the matrix size 𝑛
increases, provided 𝜖 ≫ 𝑛−1/2 as 𝑛 → ∞. While not stated explicitly, the analysis
in [CK21] implies this same fact for the number of samples required to approx-
imate ∫ 𝑓 dΦ = 𝑛−1 tr(𝑓(𝐀)) to additive error ±𝜖. This factwas already known to
the physics community [Wei+06], although, to the best of our knowledge, was
not proved rigorously in the literature.
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4.1.1 Note on history of stochastic quadratic trace estimators and

their analysis

What we are calling a quadratic trace estimator is often called the Hutchinson’s

trace estimator, especially when 𝐯 is chosen uniformly from the set of vectors
with entries ±𝑛−1/2. However, [Hut89] was not the first use of quadratic trace
estimators for the taskof approximating the trace of an implicitmatrix; [Hut89]
itself cites [Gir87] which addresses the same task by using samples of 𝐯 drawn
uniformly from the unit hypersphere. Algorithms based on the use of random
vectors back at least to themid 1970s [Alb+75;WW76;WW77; RV89].

In fact, such estimators are a special case of the concept of typicality in quantum
physics. Typicality has its origins in work of Schrödinger [Sch27] and von
Neumann [Neu29] from the late 1920s butwas dismissed and/or forgotten until
a resurgence in the mid 2000s [GMM09; Gol+06; PSW06; Rei07]; see [Gol+10]
for a historical overview and discussion in a modern context and [Jin+21] for a
reviewof algorithms based on typicality.

Likewise,while the first tail bounds for quadratic trace estimators are typically
attributed to [AT11; RA14], quadratic trace estimators were analyzed before ei-
ther of these papers. For instance, [Rei07] provides tail bounds based onCheby-
shev’s inequality for quadratic trace estimators used for the specific purpose
of estimating the trace of a symmetric matrix. Sub-Gaussian concentration
inequalities for quadratic trace estimators, similar to those in [AT11; RA14] are
derived in [PSW06] using Levy’s Lemma, a general result about concentration
of measure [Led01]; see also [Gog10, Theorem 2.2.2].

There are also many earlier analyses of quadratic trace estimators outside of
the specific context of trace estimation. For instance, [HW71] provides con-
centration bounds for quadratic trace estimators when the entries of 𝐯 are
independent symmetric sub-Gaussian random variables. In fact, some of the
strongest bounds for quadratic trace estimators [Mey+21; PCK22] make use of
so called Hanson–Wright inequalities [RV13] introduced in [HW71]. Earlier still,
[GPS59] states as fact that the expectation of such estimators, when 𝐯 has iid
Gaussian entries, is the sum of the eigenvalues of thematrix in question, citing
a book [Cra46] from the 1940s.
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4.1.2 Other randomized trace estimation algorithms

As a consequence of the central limit theorem, the average of iid samples of
quadratic trace estimators requires 𝑂(𝜖−2) samples to reach accuracy 𝜖. In fact,
any algorithmwhich returns a linear combination of estimators depending on
vectors drawn independently of 𝐀 requires𝑂(𝜖−2) samples to obtain an approx-
imation of the trace accurate towithin amultiplicative factor 1 ± 𝜖 [WWZ14]. A
number of papers aim to avoid this dependence on the number of samples by
incorporating low-rank approximation to 𝑓(𝐀) [Lin16; GSO17; SAI17; Ada+18;
LZ21; Mey+21; PCK22; CH22].

In [Mey+21] algorithm called Hutch++ in introduced and proved to output an
estimate the trace of a positive definite matrix to relative error 1 ± 𝜖 using just
𝑂(𝜖−1) matrix-vector products. It is also shown that this 𝜖 dependence is nearly
optimal in certain matrix-vector query models. The practicality of Hutch++
was improved in [PCK22] which describes a variant which outputs an (𝜖, 𝛿)
approximation to the trace. Such methods can be used to compute the trace of
matrix functions by computing productswith 𝑓(𝐀) (e.g. using black-box Krylov
subspacemethods).

A so-called Krylov-aware approach to estimating the trace of matrix functions
was introduced in [CH22]. Rather than treating products with 𝑓(𝐀) as a black-
box, [CH22] advocates a more careful approach in which products with 𝐀 are
viewed as the natural computational primative. This allows several efficincies
not present in black-box versions of Hutch++ for matrix functions by produc-
ing better low-rank approximations. At least in terms of the total number of
matrix-vector products used, the Krylov-aware approach always outperforms
Hutch++ and related variants.

Finally, we note several more specialized techniques which may be of interest.
Variance reduction techniques based on multi-level Monte Carlo methods are
studied in [HT21; FKR21]. In [DM21], the problem of estimating the traces of a
sequence of slowly-varying implicit matrices is studied. Such a setting occurs
naturally in machine learning and physics. In physics, in order to compute
important quantities for open quantum systems interacting stronglywith their
environment, [CC22] studieshowtoapproximate the partial trace of matrix func-
tions.
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4.2 Analysis

A simple approach to analyzing the protoalgorithm is to separately analyze
the errors due to randomness in quadratic trace estimators from the error in
approximating quadratic forms. Specifically, we have

∣ ∫ 𝑓 d(Φ − ⟨[Ψℓ]∘q
𝑠 ⟩)∣ ≤ ∣ ∫ 𝑓 d(Φ − ⟨Ψℓ⟩)∣ + ∣ ∫ 𝑓 d(⟨Ψℓ⟩ − ⟨[Ψℓ]∘q

𝑠 ⟩)∣

= ∣ ∫ 𝑓 d(Φ − ⟨Ψℓ⟩)∣ + ∣ ∫ 𝑓 d⟨Ψℓ − [Ψℓ]∘q
𝑠 ⟩∣

≤ ∣ ∫ 𝑓 d(Φ − ⟨Ψℓ⟩)∣ + ⟨∣ ∫ 𝑓 d(Ψℓ − [Ψℓ]∘q
𝑠 )∣⟩. (4.1)

The first term in (4.1) is controlled by the convergence of ⟨Ψℓ⟩ to Φ (as 𝑛v → ∞).
Since

∣ ∫ 𝑓 d(Φ − ⟨Ψℓ⟩)∣ = ∣𝑛−1 tr(𝑓(𝐀)) − ⟨𝐯H
ℓ 𝑓(𝐀)𝐯ℓ⟩∣ ,

it can be analyzed in terms of bounds for quadratic trace estimators. Next, for
each ℓ, the second term is controlled by the quality of the approximation of Ψℓ

by [Ψℓ]∘
𝑠 (as 𝑠 → ∞). Since

∣ ∫ 𝑓 d(Ψℓ − [Ψℓ]∘q
𝑠 )∣ = ∣ ∫(𝑓 − [𝑓]∘p

𝑠 )dΨℓ∣,

we can analyze this term bounds for Krylov subspace methods for quadratic
forms.

4.2.1 Uniform unit test vectors

Definition 4.1. The complex unit hypersphere𝕊𝑛−1 is the set of unit vectors; i.e.

𝕊𝑛−1 ∶= {𝐮 ∶ ‖𝐰‖2 = 1}.

In this section, we analyze the weighted CESM when 𝐯 is drawn from the
uniform distribution on 𝕊𝑛−1. In the case that 𝐀 is symmetric, similar results
hold for uniformvectors drawn from the real unit hypersphere; see [CTU22].

Lemma 4.2. Suppose 𝐯 ∼ Unif(𝕊𝑛−1) and, for any 𝑡 ∈ ℝ, define𝑚(𝑥) = 𝑛Φ(𝑥). Then,

Ψ(𝑥) ∼ Beta (𝑚(𝑥), 𝑛 − 𝑚(𝑥)).



chapter 4 page 56

Proof. Let 𝐔 = [𝐮1, … , 𝐮𝑛], where 𝐮𝑖 is the 𝑖-th normalized eigenvector of 𝐀.
Since𝐔 is unitary, by the invariance of Unif(𝕊𝑛−1)under orthogonal transforms,
we have that 𝐔H𝐯 ∼ Unif(𝕊𝑛−1).

We may therefore assume 𝐔H𝐯 dist.= 𝐱/‖𝐱‖2, where 𝐱 ∼ ComplexNormal(𝟎, 𝐈).
Recall that the 𝑖-thweight of Ψ is given by 𝑤𝑖 = |𝐯H𝐮𝑖|2. Thus, the 𝑤𝑖 have joint
distribution given by,

𝑤𝑖
dist.= ∣ [𝐱]𝑖

‖𝐱‖2
∣
2

= |[𝐱]𝑖|2

∑𝑛−1
𝑖=0 |[𝐱]𝑖|2

,

for 𝑖 = 0, 1, … , 𝑛 − 1.

Write, for notational convenience, 𝑚 = 𝑚(𝑥) = 𝑛Φ(𝑥). Then,

Ψ(𝑥) =
𝑚−1

∑
𝑗=0

𝑤𝑗
dist.=

∑𝑚−1
𝑖=0 |[𝐱]𝑖|2

∑𝑛−1
𝑖=0 |[𝐱]𝑖|2

.

It is well known that for independent chi-square random variables 𝑌 ∼ 𝜒2
𝛼 and

𝑍 ∼ 𝜒2
𝛽 (see, for example, [JKB94, Section 25.2]),

𝑌
𝑌 + 𝑍 ∼ Beta (𝛼

2, 𝛽
2) .

Thus, since ∑𝑚−1
𝑖=0 |[𝐱]𝑖|2 and ∑𝑛−1

𝑖=𝑚 |[𝐱]𝑖|2 are independent chi-square random
variableswith2𝑚and2(𝑛−𝑚)degreesof freedom(becauseweareusingcomplex
normal random variables) respectively, Ψ(𝑥) is a beta random variable with
parameters 𝑚 and 𝑛 − 𝑚.

Definition 4.3. A random variable𝑋 is 𝜎2-sub-Gaussian if

𝔼[ exp(𝜆(𝑋 − 𝔼[𝑋]))] ≤ exp (𝜆2𝜎2

2 ) , ∀𝜆 ∈ ℝ.

Lemma 4.4. Suppose 𝑋 is 𝜎2-sub-Gaussian. Let 𝑋0, … , 𝑋𝑛v−1 be iid samples of 𝑋. Then
for all 𝜖 ≥ 0,

ℙ[|⟨𝑋𝑖⟩ − 𝔼[𝑋]| > 𝜖] ≤ 2 exp (− 𝑛v
2𝜎2 𝜖2) .

Proof. We follow a standard argument; see for instance [Ver18]. WLOG assume
𝔼[𝑋] = 0. Then,

ℙ[𝑛v⟨𝑋𝑖⟩ ≥ 𝑛v𝜖] = ℙ[exp(𝜆𝑛v⟨𝑋𝑖⟩) ≥ exp(𝜆𝑛v𝜖)]
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≤ exp(−𝑛v𝜆𝜖)𝔼[exp(𝜆𝑛v⟨𝑋𝑖⟩)] (Markov)

= exp(−𝑛v𝜆𝜖)𝔼[exp(𝜆𝑋)]𝑛v (iid)

≤ exp(−𝑛v𝜆𝜖) exp(𝑛v𝜆2𝜎2/2) (sub-Gaussian)

= exp(−𝑛v𝜆𝜖 + 𝑛v𝜆2𝜎2/2).

This expression is minimizedwhen 𝜆 = 𝑡/𝜎2 fromwhichwe obtain,

ℙ[⟨𝑋𝑖⟩ ≥ 𝑡] ≤ exp (− 𝑛v
2𝜎2 𝑡2) .

Theorem4.5. [MA17, Theorem 1] Suppose𝑋 ∼ Beta(𝛼, 𝛽). Then,𝔼[𝑋] = 𝛼/(𝛼 + 𝛽),
and 𝑋 is (4(𝛼 + 𝛽 + 1))−1-sub-Gaussian. If 𝛼 = 𝛽, then there is no smaller 𝜎2 such that 𝑋
is 𝜎2-sub-Gaussian.

With these results in place, the following theorem for spectrum approximation
is straightforward.

Theorem 4.6. Given a positive integer 𝑛v, suppose {𝐯ℓ}
𝑛v−1
ℓ=0

iid∼ Unif(𝕊𝑛−1). Then, for all
𝜀 > 0,

max
𝑥∈ℝ

ℙ [|Φ(𝑥) − ⟨Ψℓ(𝑥)⟩| > 𝜀] ≤ 2 exp (−2𝑛v(𝑛 + 1)𝜀2) .

ℙ [max
𝑥∈ℝ

|Φ(𝑥) − ⟨Ψℓ(𝑥)⟩| > 𝜀] ≤ 2𝑛 exp (−2𝑛v(𝑛 + 1)𝜀2) .

Proof. First note that themaximums exist because Φ and ⟨Ψ𝑖⟩ are right continu-
ous and piecewise constant except at {𝜆𝑖[𝐀]}𝑛

𝑖=1.

For any 𝑡, let 𝑚 = 𝑚(𝑥) = 𝑛Φ(𝑥). Using Theorems 4.2, 4.4 and 4.5 we have that
for any 𝑡,

ℙ[ |Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| > 𝜖] ≤ 2 exp (− 𝑛v
2(4(𝑚 + (𝑛 − 𝑚) + 1))−1 𝜖2) .

We also have

sup
𝑥∈ℝ

|Φ(𝑥) − ⟨Ψ𝑖(𝑥)⟩| = max
0≤𝑖<𝑛−1

|Φ(𝜆𝑖[𝐀]) − ⟨Ψ𝑖(𝜆𝑖[𝐀])⟩|.

The second result follows by applying a union bound to the events that the
maximum is attained at 𝜆𝑖 for each 𝑖 = 0, 1, … , 𝑛 − 2 (note since ‖𝐯‖2 = 1, Φ
and Ψℓ agree at 𝜆𝑛−1).
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This result can be used to obtain a bound for quadratic trace estimation.

Theorem4.7. Set 𝑛v ≥ 1 and sample {𝐯ℓ}
𝑛v−1
ℓ=0

iid∼ Unif(𝕊𝑛−1). Then

ℙ [∣𝑛−1 tr(𝐀) − ⟨𝐯H
ℓ 𝐀𝐯ℓ⟩∣ > 𝜀(𝜆max − 𝜆min)] ≤ 2𝑛 exp(−2(𝑛 + 1)𝑛v𝜀2).

Proof. Since ⟨Ψℓ⟩ and Φ are both constant on each of (−∞, 𝜆min) and (𝜆max, ∞),

𝑑W(Φ, ⟨Ψℓ⟩) = ∫ |Ψ − ⟨Ψℓ⟩|d𝑥 ≤ (𝜆max − 𝜆min)‖Ψ − ⟨Ψℓ⟩‖ℝ.

Using Theorem 4.6,we find that

ℙ[𝑑W(Φ, ⟨Ψℓ⟩) > 𝜀(𝜆max − 𝜆min)] ≤ 2𝑛 exp(−2(𝑛 + 1)𝑛v𝜀2).

Thus, using Lemma 2.9 and the fact that 𝑥 is 1-Lipshitz,

ℙ [∣∫ 𝑥 dΦ − ∫ 𝑥 d⟨Ψℓ⟩)∣ > 𝜀(𝜆max − 𝜆min)] ≤ 2𝑛 exp(−2(𝑛 + 1)𝑛v𝜀2).

Next, recall that ∫ 𝑥 dΦ = 𝑛−1 tr(𝐀) and ∫ 𝑥 d⟨Ψℓ⟩ = ⟨𝐯H
ℓ 𝐀𝐯ℓ⟩. Thus, we obtain a

bound for the quadratic trace estimator:

ℙ [∣𝑛−1 tr(𝐀) − ⟨𝐯H
ℓ 𝐀𝐯ℓ⟩∣ > 𝜀(𝜆max − 𝜆min)] ≤ 2𝑛 exp(−2(𝑛 + 1)𝑛v𝜀2).

This can be restated in terms of matrix functions.

Corollary 4.8. Suppose 𝑓 is bounded between 𝑓min and 𝑓max on the spectrum of 𝐀. Set

𝑛v ≥ 1
2 (𝑓max − 𝑓min)2(𝑛 + 1)−1𝜀−2 ln(2𝑛𝜂−1) and sample {𝐯ℓ}

𝑛v−1
ℓ=0

iid∼ Unif(𝕊𝑛−1). Then

ℙ [∣𝑛−1 tr(𝑓(𝐀)) − ∫ 𝑓 d⟨Ψℓ⟩)∣ > 𝜀] ≤ 𝜂.

Aswe remarked in Section 4.1, bounds similar to Theorem4.7 have been studied
for other distributions for 𝐯. The best bounds are forGaussian andRademacher
vectors, which have independent entries. For such distributions, the best bounds
depend on ‖𝐀‖2

F rather than 𝑛‖𝐀‖2
2 and are therefore significantly stronger than

Theorem4.7when the stable rank ‖𝐀‖2
F/‖𝐀‖2

2 is small. It is likely that the bounds
in Theorem 4.7 can be improved by a more careful analysis of Beta random
variables. In particular, while the sub-Gaussian constant from Theorem 4.5 is
sharpwhen 𝛼 = 𝛽, it can be improvedwhen 𝛼 ≈ 0 or 𝛽 ≈ 0 [ZZ20].
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4.3 Numerical experiments

4.3.1 Approximating sparse spectra

If the spectrum of 𝐀 is 𝑆-sparse; i.e., there are only 𝑆 distinct eigenvalues, then
the 𝑠-pointGaussianquadrature rulewill be exactlyequal to theweightedCESM
for all 𝑠 ≥ 𝑆, at least in exact arithmetic. Thus, the runtime required by SLQ
is determined by 𝑆 and the number of samples of the weighted CESM which
are required to get a good approximation to the true CESM. The interpolation
and approximation based approaches,which are based on the orthogonal poly-
nomials of some fixed distribution function 𝜇, are unable to take advantage of
such sparsity. Indeed, unless the eigenvalues of 𝐀 are known a priori, such
methods have fixed resolution ∼ 𝑠−1 due to the fixed locations of the zeros
of the orthogonal polynomials with respect to 𝜇. Moreover, quadrature by
approximationmethods suffer fromGibbs oscillations unless a damping kernel
is used, inwhich case the resolution is further decreased.

−11 −9 −7 −5 −3 −1 2 4 6 8 10 12
0

10−8

10−7
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10−3

10−2

10−1

100

101

Figure 4.2: Approximations to a sparse spectrum with just 12 eigen-
values. Legend: true spectrum ( ). Gaussian quadrature approxima-
tion: 𝑘 = 12 ( ). damped quadrature by approximation: 𝑠 = 500
( ). Takeaway: The Gaussian quadrature produces an extremely
good approximation using just 12 matrix-vector products. Even with
manymorematrix-vector products, quadrature by approximation does
not have the same resolution.



chapter 4 page 60

In this example,we approximate the CESMof the adjacencymatrix of a Kneser
graph. The (𝑁, 𝐾)-Kneser graph is the graph whose vertices correspond to size
𝐾 subsets of {1, 2, … , 𝑁} and whose edges connect vertices corresponding to
disjoint sets. It is not hard to see that the number of vertices is (𝑁

𝐾) and the
number of edges is 1

2 (𝑁
𝐾)(𝑁−𝐾

𝐾 ). The spectrum of Kneser graphs is known as well.
Specifically, there are𝐾 + 1 distinct eigenvalueswhosevalues andmultiplicities
are:

𝜆𝑖 = (−1)𝑖(
𝑁 − 𝐾 − 𝑖

𝐾 − 𝑖 ), 𝑚𝑖 = (
𝑁
𝑖 ) − (

𝑁
𝑖 − 1), 𝑖 = 0, 1, … , 𝐾.

We conduct a numerical experimentwith 𝑁 = 23 and 𝐾 = 11, the same values
used in [Ada+18]. This results in a graph with 1,352,078 vertices and 8,112,468
edges. Thus, the adjacency matrix is highly sparse. We compare the Gaussian
quadrature approximation with the damped quadrature by approximation. In
both cases we use a single random test vector 𝐯. For the Gaussian quadrature,
we set 𝑘 = 12. For the damped quadrature by approximation we set 𝑠 = 500
and use Jackson damping with 𝜇 = 𝜇𝑇

𝑎,𝑏, where 𝑎 = −11.1 and 𝑏 = 12.1. The
results are shown in Figure 4.2. Note that the Gaussian quadrature matches
almost exactly despite having used only 𝑘 = 12 matrix-vector products. On the
other hand, even after 𝑘 = 250matrix-vector products, the damped quadrature
by approximation has amuch lower resolution.

Remark 4.9. There are sublinear time algorithms for approximate matrix-
vector productswith the (normalized) adjacencymatrix. Specifically, in a com-
putational model where it is possible to (i) uniformly sample a random vertex
in constant time, (ii) uniformly sample a neighbor of a vertex in constant time,
and (iii) read off all neighbors of a vertex in linear time, then an 𝜖mv-accurate
approximate to the a matrix-vector product with the adjacency matrix can be
computed, with probability 1 − 𝜂, in time 𝑂(𝑛(𝜖mv)−2 ln(𝜂−1)). For dense graphs,
this is sublinear in the input size𝑂(𝑛2) of the adjacencymatrix. See [BKM22] for
an analysis in the context of spectrum approximation. △

4.3.2 Approximating “smooth” densities

There are a range of settings in which the spectral density of 𝐀 is close to a
smooth slowly varying density. In such cases, we may hope that our approxi-
mation satisfies certain known criteria. For instance, that the approximation
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is also a slowly varying density, that the behavior of the approximation at the
endpoints of the support satisfies the right growth or decay conditions, etc. In
this example,we considerhowparameters inAlgorithm4.1 canbevaried so that
the resulting approximation enjoys certain desired properties.

One setting in which 𝐀 may have a slowly varying density is when 𝐀 is a large
random matrix. We begin this example by considering a sample covariance
matrix

𝐀𝑛 = 1
𝑚𝚺1/2𝐗𝐗H𝚺1/2

where 𝐗 is random and 𝚺 is deterministic. Specifically, we fix constants 𝜎 > 1
and 𝑑 ∈ (0, 1), define 𝑚 = 𝑛/𝑑, and take 𝐗 to be a 𝑛 × 𝑚 matrixwith iid standard
normal entries and𝚺 a diagonalmatrixwith1/𝑚 as thefirst 𝑛/2 entries and𝜎/𝑚
as the last 𝑛/2 entries.

In the limit, as 𝑛 → ∞, the spectral density dΦ𝑛/d𝑥 of 𝐀𝑛 is convergent to a
density dΨ∞/d𝑥 supportedon twodisjoint intervals [𝑎1, 𝑏1]∪[𝑎2, 𝑏2],where𝑎1 <
𝑏1 < 𝑎2 < 𝑏2, with equalmass on each [BS98]. The spectral edges are equal to the
values atwhich

𝑡 ↦ −1
𝑡 + 𝑑

2 ( 1
𝑡 + 1 + 1

𝑡 + 𝜎−1 )

attains at its local extrema. Moreover, it is known that dΨ∞/d𝑥 has square root
behavior at the spectral edges.

Because we know the support of the desired density, and because we know
the behavior at the spectral edges, a natural choice is to use quadrature by
approximationwith

𝜇 = 1
2𝜇𝑈

𝑎1,𝑏1
+ 1

2𝜇𝑈
𝑎2,𝑏2

where 𝜇𝑈
𝑎,𝑏 is the weight function for the Chebyshev polynomials of the second

kind given by
d𝜇𝑈

𝑎,𝑏
d𝑥 = 4

𝜋(𝑏 − 𝑎)
√1 − ( 2

𝑏 − 𝑎𝑥 − 𝑏 + 𝑎
𝑏 − 𝑎).

This will ensure that the Radon–Nikodym derivative dΨ∞/d𝜇 is of order 1 at
the spectral edgeswhich seems to result in better numerical behavior than if we
were to use a KPMapproximation corresponding to a densitywhich explodes at
the spectral edges.

To compute the Jacobi matrix for 𝜇, we apply the Stieltjes procedure using
a slight modification of the Vandermonde with Arnoldi approach [BNT21]. In
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order to apply the Stieltjes procedure,wemust be able to integrate polynomials
against 𝜇. Observe that the product

∫ 𝑝d𝜇 = 1
2 ∫ 𝑝d𝜇𝑈

𝑎1,𝑏1
+ 1

2 ∫ 𝑝d𝜇𝑈
𝑎2,𝑏2

canbecomputed exactlybyapplyinga sufficientlyhighdegreequadrature rule to
each of the right hand side integrals. If we aim to compute the 𝑠×𝑠 Jacobimatrix
associated with 𝜇 the maximum degree polynomial we will integrate will be of
degree 2𝑠 − 1 whenwe orthogonalize 𝑥𝑝𝑠−1 against 𝑝𝑠−1. Therefore, it suffices to
use the degree 𝑠 Gaussian quadrature rules for 𝜇𝑈

𝑎1,𝑏1
and 𝜇𝑈

𝑎2,𝑏2
for all of the first 𝑠

iterations of the Stieltjes procedure.

One simple approach to running the Stieltjes procedure in this manner is to
place thequadraturenodes on thediagonal of amatrix𝐍 and the corresponding
weights on a vector 𝐰. Then the weighted CESM corresponding to 𝐍 and 𝐰 is
a quadrature rule which integrate polynomials of degree up to 2𝑠 − 1 against
𝜇 exactly. The tridiagonal matrix obtained by the Lanczos algorithm run for 𝑠
iterations will be exactly the upper 𝑠 × 𝑠 block of the Jacobi matrix 𝐌(𝜇). Some
potentiallymore computationally efficient approaches are outlined in [FG91].
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Figure 4.3: Approximations to a “smooth” spectrum using quadrature
by approximation with various choices of 𝜇. Legend: 𝜇 = 𝜇𝑈

𝑎1,𝑏2
( ).

𝜇 = 1
2𝜇𝑈

𝑎1,𝑏1
+ 1

2𝜇𝑈
𝑎2,𝑏2

( ). Takeaway: A priori knowledge about the
spectrum allows for better choices of parameters such as 𝜇.
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We conduct a numerical experiment with 𝑛 = 104 and 𝑑 = 0.3. We use
𝑠 = 60 and average over 10 trials, resampling 𝐀𝑛 in each trial. To generate an
approximation to the densitywe expand the support of the limiting density by
0.001 on endpoint to avoid eigenvalues of 𝐀𝑛 lying outside the support of 𝜇. In
Figure4.3we showtheapproximationswith𝜇 = 𝜇𝑈

𝑎1,𝑏2
and𝜇 = 1

2𝜇𝑈
𝑎1,𝑏1

+ 1
2𝜇𝑈

𝑎2,𝑏2
. As

shown in the inset image of Figure 4.3,we observe that the approximationwith
𝜇 = 1

2𝜇𝑈
𝑎1,𝑏1

+ 1
2𝜇𝑈

𝑎2,𝑏2
exhibits the correct square root behavior at the endpoints as

well as fewer oscillations throughout the interior of the support of the density.

Remark 4.10. In recent work [DT21] it was shown how Lanczos performs on
such a sample covariance matrix. In particular, one sample from stochastic
Lanczos quadrature will converge almost surely, as 𝑛 → ∞, to the desired
distribution. In this same work another density approximation scheme was
proposed based on Stieltjes transform inversion. Analysis and comparison for
this method is an interesting open problem. △

Smoothing by convolution

The Gaussian quadrature approximation is the sum of weighted Dirac delta
functions. A simple approach to obtain a density function from a distribution
function involving pointmasses is to approximate eachpointmasseswith some
concentrated probability density function; e.g. Gaussianswith a small variance
[LSY16; GKX19]. This is simply convolution with this distribution, and if the
smoothing distribution has small enough variance, the Wasserstein distance
between the original and smoothed distributionswill be small. Specifically, we
have the following standard lemma:

Lemma 4.11. Given a smooth positive probability distribution function 𝐺𝜎, define the

smoothed approximationΥ𝜎 toΥ by the convolution

Υ𝜎(𝑥) ∶= ∫
∞

−∞
𝐺𝜎(𝑡 − 𝑦)dΥ(𝑦).

Then, 𝑑W(Υ, Υ𝜎) ≤ 𝑑W(𝟙[𝑥 < 0], 𝐺𝜎)𝑑TV(Υ). Moreover, if 𝐺𝜎 has median zero and

standard deviation 𝜎, then 𝑑W(Υ, Υ𝜎) ≤ 𝜎𝑑TV(Υ).

It is well known that if 𝐺𝜎 is differentiable then the smoothed distribution
function Υ𝜎 will also be differentiable. Thus,we can obtained a density function
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Figure 4.4: Approximations to a “smooth” spectrum using smoothed
Gaussian quadrature for various smoothing parameters 𝜎. Legend: 𝜎 =
3/𝑘 ( ). 𝜎 = 8/𝑘 ( ). 𝜎 = 15/𝑘 ( ). Takeaway: Gaussian
quadrature is not always the best choice of algorithm. Herewe observe
that it is difficult to produce a densityapproximationusing the specified
smoothing scheme.

dΥ𝜎/d𝑥 even if Υ has discontinuities. Moreover, the bounds obtained earlier
can easily be extended to smoothed spectral density approximations obtained
by convolution using the triangle inequality.

While the smoothing based approach has a simple theoretical guarantee in
Wasserstein distance, it does not need to provide a good approximation to the
density. Indeed, if the variance of the smoothing kernel is too small, then the
smoothed distribution will still look somewhat discrete. On the other hand, if
the variance of the smoothing kernel is too large, then the smooth distribution
will become blurred out and lose resolution. As shown in Figure 4.4, this
is particularly problematic if different parts of the spectrum would naturally
require different amounts of smoothing.

There are of course many different smoothing schemes that could be used.
These include adaptively choosing the variance parameter based on the posi-
tion in the spectrum, using a piecewise constant approximation to the density,
interpolating the distribution functionwith a lowdegree polynomial or splines,
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etc. Further exploration of these approaches is beyond the scope of this thesis
since theywould likely be context dependent. For instance, in random matrix
theory, itmaybedesirable to enforce square root behavior at endpointswhereas
in other applications it may be desirable to have smooth tails.

We conclude with the remark that alternate metrics of closeness, such as the
total variation distance, are likely better suited formeasuring the quality of ap-
proximations to “smooth” densities. However, since the actual spectral density
dΨ/d𝑥 is itself the sumof Diracdeltas, some sort of regularization is required to
obtainaproperdensity [LSY16]whichof course relates closelytowhat it actually
means to be “close to a smooth slowly varying density”. A rigorous exploration
of this topicwould be of interest.

Handling isolated spikes

In some situations onemayencounter spectrawhich arenearly“smooth” except
at a few points at which there are large jumps in the CESM (for instance, low
rankmatrices mayhavemany repeated zero eigenvalues).

Tomodel such a situation,we consider amatrix

𝐀𝑛 ∶= ⎡⎢
⎣

𝑚−1𝐗𝐗H 𝟎
𝟎 𝑧𝐈 + 𝜎𝐃

⎤⎥
⎦

where 𝐗 is a 𝑛′ × 𝑚 matrix standard normal entries and 𝐃 is a (𝑛 − 𝑛′) × (𝑛 − 𝑛′)
diagonal matrix with standard normal entries. In both cases, 𝑚 = 𝑛′/𝑑 for
some fixed 𝑑 ∈ (0, 1). While this particular matrix is block diagonal, the
protoalgorithm is mostly oblivious to this structure and would work similarly
well if the matrix were conjugated by an arbitrary unitary matrix so that the
block diagonal structure is lost.

When 𝑛 → ∞ and 𝜎 → 0, the spectral density dΦ𝑛/d𝑥 is convergent to a
density dΦ∞/d𝑥 equal to the sum of a scaled Marchenko–Pastur distribution
and a weighted Dirac delta distribution. Thus, a natural approach would be to
use quadrature by approximationwith

𝜇 = (1 − 𝑝)𝜇𝑈
𝑎,𝑏 + 𝑝 𝛿(𝑥 − 𝑧).

As above, we can use a modified version of the Vandermondewith Arnoldi ap-
proach to compute the orthogonal polynomialswith respect to 𝜇. The resulting
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approximation to the “smooth”part of thedensity dΦ/d𝑥 is shown inFigure4.5.
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estimated spikemass: 0.1035

Figure 4.5: Approximations to a “smooth” spectrumwith a spike using
quadrature by approximation with various choices of 𝜇. Legend: ab-
solutely continuous part of true limiting density ( ). quadrature
by approximation: 𝜇 = (1 − 𝑝)𝜇𝑈

𝑎,𝑏 + 𝑝 𝛿(𝑥 − 𝑧) ( ). quadrature by
approximation: 𝜇 = 𝜇𝑈

𝑎,𝑏 ( ). Takeaway: A priori knowledge of
the location of a singularity allows for a better approximation to the
absolutely continuous part of the spectrum.

We set 𝑛 = 106, 𝑛′ = 𝑛/10, 𝑑 = 0.3, 𝑧 = 1.5, and 𝜎 = 10−10. As before, we
average of 10 trials where 𝐀𝑛 is resampled in each trial. For each sample, we
compute the quadrature by approximation with 𝑠 = 200 for 𝜇 = (1 − 𝑝)𝜇𝑈

𝑎,𝑏 +
𝑝 𝛿(𝑥 − 𝑧)with 𝑝 = 0.2 and 𝜇 = 𝜇𝑈

𝑎,𝑏. The results are show in Figure 4.5.

Clearly, accounting for the spike explicitly results in a far better approximation
to the density. Note that this approach does not require that the mass of the
spike is accuratelymatched. For instance, in our example,we estimate the spike
mass to be 0.2 while the actual mass is 0.1. On the other hand, if the location
of the spike is misestimated, then the approximation to the density may have
massive oscillations. In our example the spike has width roughly 10−10 which
does not cause issues for the value of 𝑠 used. However, if 𝑠 is increased, the
width of the spike is increased, or the location of the estimate of the spike is
offset significantly, then the existing oscillations become large. Approaches for
adaptively finding the location of spikes would an interesting area of further
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study.

4.3.3 Energy spectra of small spin systems

The quantum Heisenberg model can be used to study observables of magnetic
systems [Wei+06; SS10; SRS20; Sch+21; SRS22]. For a system with 𝑁 spins of
spin number 𝑆, the Heisenberg spin Hamiltonian is an operator on a Hilbert
space of dimension (2𝑆 + 1)𝑁 given by

𝐇 =
𝑁−1

∑
𝑖=0

𝑁−1

∑
𝑗=0

([𝐉x]𝑖,𝑗𝐬x𝑖 𝐬x𝑗 + [𝐉y]𝑖,𝑗𝐬
y
𝑖 𝐬

y
𝑗 + [𝐉z]𝑖,𝑗𝐬z𝑖 𝐬z𝑗 ) .

Here 𝐬𝜎
𝑖 gives the component spinoperator for the 𝑖-th spin site andacts trivially

on theHilbert spaces associatedwith other spin sites but as the (2𝑆 + 1) × (2𝑆 + 1)
component spin matrix 𝐬𝜎 on the 𝑖-th spin site. Thus, 𝐬𝜎

𝑖 can be represented in
matrix form as

𝐬𝜎
𝑖 = 𝐈 ⊗ ⋯ ⊗ 𝐈⏟⏟⏟⏟⏟

𝑖 terms
⊗ 𝐬𝜎 ⊗ 𝐈 ⊗ ⋯ ⊗ 𝐈⏟⏟⏟⏟⏟

𝑁−𝑖−1 terms
.

The CESM of 𝐇 gives the energy spectrum of the system and can be used to
compute many important quantities. For instance, given an observable 𝐎 (i.e.
a Hermitian matrix), the corresponding thermodynamic expectation of the
observable in thermal equilibrium at inverse temperature 𝛽 is given by

tr(𝐎 exp(−𝛽𝐇))
tr(exp(−𝛽𝐇)) .

Quantities depending on observableswhich arematrix functions𝐇 can bewrit-
ten entirely in terms of matrix functions of 𝐇. For instance, the system heat
capacity is given by

𝐶(𝑇)
𝑘𝐵

=
tr ((𝛽𝐇)2 exp(−𝛽𝐇))

tr (exp(−𝛽𝐇)) − [tr (𝛽𝐇 exp(−𝛽𝐇))
tr (exp(−𝛽𝐇)) ]

2

.

Thus, for fixed finite temperature, evaluating the heat capacity amounts to
evaluating several matrix functions.

In somecases, symmetriesof the systemcanbeexploited todiagonalizeorblock
diagonalize 𝐇 [SS10]. Numerical diagonalization can be applied to blocks to
obtain a full diagonalization. Even so, the exponential dependence of the size of
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Figure 4.6: Heat capacity as a function of temperature for a small spin
system. Legend: exact diagonalization ( ), Gaussian quadrature
( ), quadrature by approximation ( ), and damped quadrature
by approximation ( ). Takeaway: While damping produces a phys-
ical result, the resulting ghost bump may be more difficult to identify
than the nonphysical ghost dip obtainedwithout damping.

𝐇 on the number of spin sites 𝑁 limits the size of systemswhich can be treated
in this way. Moreover, such techniques are not applicable to all systems. Thus,
approaches based on Algorithm 4.1 are widely used; see [SRS20] for examples
using a Lanczos based approach and [Sch+21] for examples using a Chebyshev
based approach.

In this example, we consider a Heisenberg ring ([𝐉x]𝑖,𝑗 = [𝐉y]𝑖,𝑗 = [𝐉z]𝑖,𝑗 =
𝟙[|𝑖 − 𝑗| = 1 (mod 𝑁)]) with 𝑁 = 12 and 𝑆 = 1/2. Similar examples, with
further discussion in the context of the underlying physics, are considered in
[SRS20; Sch+21]. We take 𝑘 = 50 and 𝑛v = 300 and compute approximations to
the heat capacityatmany temperatures usingGaussian quadrature, quadrature
by interpolation, and damped quadrature by interpolation. For the latter two
approximationswe use 𝜇 = 𝜇𝑇

𝑎,𝑏 where 𝑎 and 𝑏 are chosen based on the nodes of
theGaussianquadrature. Note that averagesover randomvectors are computed
for each trace rather than for 𝐶(𝛽), and thatwe use the same vectors for all four
traces. The results are shown in Figure 4.6.
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We note the presence of an nonphysical “ghost dip” in the quadrature by inter-
polation approximation. If the approximation to the CESM is non-decreasing,
theCauchy–Schwarz inequalityguarantees apositiveheat capacity. Thus,when
we use Jackson’s damping, the heat capacity remains positive for all temper-
atures. However, as noted in [Sch+21], this is not necessarily desirable as the
ghost dip is easily identifiablewhile the ghost peakmay be harder to identify.

We concludewith the remark that itwould be interesting to provide bounds for
theaccuracyof theapproximations to thequantitytr(𝐎 exp(−𝛽𝐇))/ tr(exp(−𝛽𝐇))
for all 𝛽 > 0.
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Chapter 5

Optimal rational matrix function
approximation

We now shift gears a bit and consider methods for approximating 𝑓(𝐀)𝐯 from
Krylov subspace 𝒦𝑘 = span{𝐯, 𝐀𝐯, … , 𝐀𝑘−1𝐯}. The most ideal Krylov subspace
method for this taskwould output iterates alg𝑘 satisfying

alg𝑘 = argmin
𝐱∈𝒦𝑘

‖𝑓(𝐀)𝐯 − 𝐱‖.

The above condition guarantees the algorithm produces approximations with
smaller error (in the given norm) than any other Krylov subspace method.
Moreover, under the assumption ‖ ⋅ ‖ is induced by a positive definite matrix
with the same eigenvectors as𝐀, Lemma 10.1 implies the iterates satisfya bound

‖𝑓(𝐀)𝐯 − alg𝑘‖ ≤ min
deg(𝑝)<𝑘

‖𝑓(𝐀)𝐯 − 𝑝(𝐀)𝐯‖ ≤ min
deg(𝑝)<𝑘

‖𝑓 − 𝑝‖Λ‖𝐯‖.

In other words, the iterates satisfy a minimax bound on the eigenvalues of 𝐀. As
we saw in the introduction, a bound on the eigenvalues can be substantially
stronger than a bound on an interval containing the eigenvalues.

A number of well-known algorithms, including the conjugate gradient (CG),
minimumresidual (MINRES), andquasi-minimumresidual (QMR) algorithms,
are standard methods for solving linear systems of equations 𝐀𝐱 = 𝐯; i.e. for
approximating 𝐀−1𝐯. Each of these methods is optimal for a certain norm and
for certain classes of matrix𝐀. Moreover, suchmethods can be implemented in
such away that the amount of storage they use does not growwith the number
of iterations 𝑘.
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In this chapter, we describe the Lanczos method for optimal rational matrix
function approximation (Lanczos-OR).When 𝑓 is a rational function, Lanczos-
OR outputs the optimal (in a certain norm) approximation to 𝑓(𝐀)𝐯 from 𝒦𝑘+1

using slightly more than 𝑘 matrix-vector products. We provide a practical im-
plementation of Lanczos-OR that only requires storing a number of vectors of
length 𝑛proportional to the degree of the denominator in the rational function.
Therefore, for a fixed rational function, the storage costs do not grow with
the iteration 𝑘. The approach used to derive this implementation of Lanczos-
OR can also be used for computing the Lanczos-FA approximations to rational
matrix functions, avoiding storage costs growing with 𝑘 in that widely used
method.

Lanczos-OR is closely related to existing methods for linear systems. In par-
ticular, if 𝑓 = 1/(𝑥 − 𝑧), then, depending on the choice of 𝑧, the CG, MIN-
RES, and QMR iterates can all be obtained as special cases of Lanczos-OR. The
Lanczos-ORiterate ismathematicallyequivalent toanoptimalGalerkinprojec-
tionmethod as described in [LS06, Section4], provided thedenominatormatrix
is positive definite. However, this method was mostly viewed as of theoretical
interest since it could be used to help explain the behavior of Lanczos-FA. On
the other hand,we show that such approximations can be computed efficiently.
Our approach is also somewhat more general in that it works with any rational
function.

5.1 A bit of notation

To simplify analysis, it will be useful to consider the recurrence that would
obtained if the Lanczos algorithmwere run to completion. In exact arithmetic,
for some 𝐾 ≤ 𝑛, 𝛽𝐾−1 = 0 in which case the algorithm terminates. Then,
the final basis �̂� ∶= [𝐪0, … , 𝐪𝐾−1] and symmetric tridiagonal �̂� with diagonals
[𝛼0, … , 𝛼𝐾−1] and off diagonals [𝛽0, … , 𝛽𝐾−2] satisfy a three-term recurrence

𝐀�̂� = �̂��̂�. (5.1)

We emphasize that the algorithmswediscuss donot require Lanczos to be run to
completion; the introduction of �̂� and �̂� is for analysis purposes only. We note
that𝐐 = [�̂�]∶,∶𝑘 and𝐓 = [�̂�]∶𝑘,∶𝑘. Since the columns of �̂� are orthogonal,we have
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that
�̂� = �̂�H𝐀�̂�,

from which we easily see that, after any number of iterations 𝑘, 𝐓 = 𝐐H𝐀𝐐.
Note also that, for any shift 𝑧 ∈ ℂ,

(𝐀 − 𝑧𝐈)�̂� = �̂�(�̂� − 𝑧𝐈).

In otherwords, theKrylovsubspaces generated by (𝐀, 𝐯) and (𝐀−𝑧𝐈, 𝐯) coincide,
and the associated tridiagonal matrices are easily related by a diagonal shift.
This shift invariance of Krylov subspaces is critical in a number of Krylov
subspacemethods.

5.2 Existing algorithms

It is well known that when 𝐀 is positive definite, CGminimizes the 𝐀-norm of
the error over the Krylov subspace; i.e., the CG approximation cg𝑘 is given by

cg𝑘 ∶= argmin
𝐱∈𝒦𝑘

‖𝐀−1𝐯 − 𝐱‖𝐀.

Since 𝐐 is a basis for 𝒦𝑘, we can equivalentlywrite

cg𝑘 = 𝐐 argmin
𝐜∈ℝ𝑘

‖𝐀1/2(𝐀−1𝐯 − 𝐐𝐜)‖2 = 𝐐 argmin
𝐜∈ℝ𝑘

‖𝐀−1/2𝐯 − 𝐀1/2𝐐𝐜‖2.

The solution to this least squares problem is

cg𝑘 = 𝐐(𝐐H𝐀1/2𝐀1/2𝐐)−1𝐐H𝐀1/2𝐀−1/2𝐯 = 𝐐𝐓−1𝐞0.

Here we have used that 𝐐H𝐀𝐐 = 𝐓 and that 𝐐H𝐯 = ‖𝐯‖2𝐞0 = 𝐞0 (since we are
assuming ‖𝐯‖2 = 1).

If 𝐀 is indefinite, then the 𝐀-norm of the error is not well defined and the
CG iterates need not be optimal. A common alternative to CG for indefinite
systems isMINRES,whichminimizes the 𝐀2-norm of the error (the 2-norm of
the residual) over the Krylov subspace; i.e., the MINRES approximationmr𝑘 is
given by

mr𝑘 ∶= argmin
𝐱∈𝒦𝑘

‖𝐀−1𝐯 − 𝐱‖𝐀2 = argmin
𝐱∈𝒦𝑘

‖𝐯 − 𝐀𝐱‖2
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Nownote that

𝐀𝐐 = [𝐀�̂�]∶,∶𝑘 = [�̂��̂�]∶,∶𝑘 = [�̂�]∶,∶𝑘+1[�̂�]∶𝑘+1,∶𝑘.

Therefore, since �̂� is symmetric and �̂� has orthonormal columns,

mr𝑘 = 𝐐(𝐐H𝐀𝐀𝐐)−1𝐐H𝐀𝐯 = 𝐐([�̂�]∶𝑘,∶𝑘+1[�̂�]∶𝑘+1,∶𝑘)−1𝐓𝐞0.

More generally, suppose 𝑧 is an arbitrary complex number. Then a special
case of the quasi-minimum residual method (QMR) [Fre92] can be used to
compute the optimal (𝐀2 + |𝑧|2𝐈)-norm approximation to (𝐀 − 𝑧𝐈)−1𝐯; i.e., the
QMR approximation qmr𝑘(𝑧) is given by

qmr𝑘(𝑧) ∶= argmin
𝐱∈𝒦𝑘

‖(𝐀 − 𝑧𝐈)−1𝐯 − 𝐱‖(𝐀2+|𝑧|2𝐈)

= argmin
𝐱∈𝒦𝑘

‖(𝐀 − 𝑧𝐈)1/2(𝐀 − 𝑧𝐈)−1/2𝐯 − (𝐀 − 𝑧𝐈)1/2(𝐀 − 𝑧𝐈)1/2𝐱‖2. (5.2)

Herewehaveused that𝐀2+|𝑧|2𝐈 = (𝐀−𝑧𝐈)(𝐀−𝑧𝐈). Next, using theshift invariance
of Krylov subspace,we see that

qmr𝑘(𝑧) ∶= 𝐐(𝐐H(𝐀 − 𝑧𝐈)(𝐀 − 𝑧𝐈)𝐐)−1𝐐H(𝐀 − 𝑧𝐈)𝐯.

= 𝐐(𝐐(𝐀2 + |𝑧|2𝐈)𝐐H)−1𝐐H(𝐀 − 𝑧𝐈)𝐯

= 𝐐([�̂�]∶𝑘,∶𝑘+1[�̂�]∶𝑘+1,∶𝑘 + |𝑧|2𝐈)−1(𝐓 − 𝑧𝐈)𝐞0.

At first glance, CG, MINRES, and QMR all require the matrix 𝐐 which is of
size 𝑛𝑘. However, by taking advantage of the tridiagonal structure of �̂�, each
of these algorithms can be implemented in a way which require storing just
a few vectors of length 𝑛. In particular, the algorithms work by implicitly
forming 𝐋𝐃𝐋H factorization of �̂� [PS75; Fre92; LS13b; ŠT21]. The low-memory
implementations for Lanczos-OR and Lanczos-FA thatwe derive in Section 5.5
are based on this idea.

5.3 Optimal rational function approximation

We nowdescribe an optimal iterate for approximating 𝑟(𝐀)𝐛 when 𝑟 is an arbi-
trary fixed rational function. We will describe a low-memory implementation
of this algorithm in Section 5.5. Our low-memory implementation can also be
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used to compute the Lanczos-FA approximations to 𝑟(𝐀)𝐛without doubling the
number of matrix-vector products.

Definition 5.1. Let 𝑟 ∶ ℝ → ℝ be a rational function decomposed as 𝑟 = 𝑀/𝑁, where
𝑁 ∶ ℝ → ℝ is a polynomial with leading coefficient one and 𝑀 ∶ ℝ → ℝ is a polynomial

which does not divide 𝑁. For any polynomial 𝑅 ∶ ℝ → ℝ, define �̃� = 𝑀𝑅 and ̃𝑁 = 𝑁𝑅.
Then the Lanczos-OR iterate is defined as

lan-OR𝑘(𝑟, 𝑅) ∶= 𝐐([ ̃𝑁(�̂�)]∶𝑘,∶𝑘)−1[�̃�(�̂�)]∶𝑘,∶𝑘𝐞0.

Those familiarwithCG,MINRES, and theversionof QMRfor shiftedHermitian
systems will note that these optimal algorithms are each obtained as special
cases of Lanczos-OR. Specifically, when 𝐀 is positive definite, CG is obtained
with 𝑟(𝑥) = 1/𝑥and𝑅(𝑥) = 1,MINRES isobtainedwith 𝑟(𝑥) = 1/𝑥and𝑅(𝑥) = 𝑥,
and QMR is obtained if 𝑟(𝑥) = 1/(𝑥 − 𝑧) and 𝑅(𝑥) = (𝑥 − 𝑧). In fact, we have a
more general optimality result for Lanczos-OR:

Theorem 5.2. Given a rational function 𝑟(𝑥) = 𝑀(𝑥)/𝑁(𝑥) as in Theorem 5.1, choose a

polynomial 𝑅 so that𝐇 = ̃𝑁(𝐀) = 𝑁(𝐀)𝑅(𝐀) is positive definite. Then lan-OR𝑘(𝑟, 𝑅) is
the𝐇-norm optimal approximation to 𝑟(𝐀)𝐯 from𝒦𝑘.

A simpleway to ensure 𝐇 is positive definite is to take 𝑅(𝑥) = 𝑁(𝑥) so that 𝐇 =
𝑁(𝐀)2. However, in some situations, we may be able to get away with a lower
degree choice for𝑅. For instance, in the case of symmetric linear systems,while
onecanalwaysuseMINRES (𝑟(𝑥) = 1/𝑥𝑖,𝑅(𝑥) = 𝑥), if 𝐀 ispositivedefinite, then
one may hope to use CG (𝑟(𝑥) = 1/𝑥, 𝑅(𝑥) = 1). A simple way to obtain a lower
degree choice of 𝑅 is to only take the terms in 𝑁which are indefinite.

Definition 5.3. Given a rational function 𝑟 = 𝑀/𝑁 as in Theorem 5.1, factor

𝑁(𝑥) = (
𝑑1−1

∏
𝑖=0

(𝑥 − 𝑧𝑖))(
𝑑2−1

∏
𝑖=0

(𝑥 − 𝑧′
𝑖)(𝑥 − 𝑧′

𝑖))

where 𝑧𝑖 ≠ 𝑧𝑗 for all 𝑖, 𝑗 = 0, 1, … , 𝑑1 − 1with 𝑗 ≠ 𝑖. Then𝑅∗ is defined by

𝑅∗(𝑥) = 𝜉
𝑑1−1

∏
𝑖=0

(𝑥 − 𝑧𝑖)𝛼𝑖

where, for 𝑖 = 0, 1, … , 𝑞 − 1, 𝛼𝑖 = 0 if 𝑧𝑖 ∈ ℝ ∖ ℐ and 𝛼𝑖 = 1 otherwise and 𝜉 ∈ {±1} is
chosen so that𝑅∗(𝜆min)𝑁(𝜆min) ≥ 0.
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Lemma 5.4. Given a rational function 𝑟 = 𝑀/𝑁 as in Theorem 5.1, choose 𝑅∗ as in

Theorem 5.3. Then𝐇 = 𝑁(𝐀)𝑅∗(𝐀) is positive definite.

Proof. Clearly ∏𝑞′−1
𝑖=0 (𝑥 − 𝑧′

𝑖)(𝑥 − 𝑧′𝑖) ≥ 0 for all 𝑥 ∈ ℝ, and for 𝑧𝑖 ∈ ℝ ∖ ℐ, (𝑥 − 𝑧𝑖)
does not change signs over ℐ. The choice of 𝜉 ensures that ̃𝑁(𝜆min) > 0, and by
assumption 𝑁(𝜆) ≠ 0 for all 𝜆 ∈ Λ so that that ̃𝑁(𝜆) ≠ 0 for all 𝜆 ∈ Λ. It follows
that ̃𝑁(𝜆) > 0 for all 𝜆 ∈ Λ; i.e. that 𝐇 = ̃𝑁(𝐀) is positive definite.

Proof of Theorem 5.2. Since 𝐲 ∈ 𝒦𝑘, we have 𝐲 = 𝐐𝐜 for some vector 𝐜. Thus, we
can consider the problem

argmin
𝐜∈ℝ𝑘

‖𝑟(𝐀)𝐯 − 𝐐𝐜‖𝐇 = argmin
𝐜∈ℝ𝑘

‖𝐇1/2𝑟(𝐀)𝐯 − 𝐇1/2𝐐𝐜‖2.

But this is just a standard least squares problemwhich has solution

𝐜 = ((𝐇1/2𝐐)H(𝐇1/2𝐐))−1(𝐇1/2𝐐)H(𝐇1/2𝑟(𝐀)𝐯).

Thus,we see that the optimal iterate has the form

𝐐(𝐐H𝐇𝐐)−1𝐐H𝐇𝑟(𝐀)𝐯.

Bydefinition, 𝐇 = 𝑁(𝐀)𝑅(𝐀) so 𝐇𝑟(𝐀) = 𝑀(𝐀)𝑅(𝐀) = �̃�(𝐀). Thus,

𝐐H𝐇𝑟(𝐀)𝐯 = 𝐐H𝑀(𝐀)𝐯 = 𝐐H�̂��̃�(�̂�)�̂�H𝐯 = [�̃�(�̂�)]∶𝑘,∶𝑘𝐞0.

Next, since 𝐐 consists of the first 𝑘 columns �̂�,

𝐐H𝐀𝑞𝐐 = [�̂�H𝐀𝑞�̂�]∶𝑘,∶𝑘 = [�̂�𝑞]∶𝑘,∶𝑘

so since 𝐇 is a linear combination of powers of 𝐀we obtain

𝐐H𝐇𝐐 = 𝐐H ̃𝑁(𝐀)𝐐 = [ ̃𝑁(�̂�)]∶𝑘,∶𝑘.

The result follows by combining and rearranging the above expressions.

As we noted at the beginning of this chapter, the optimality of Lanczos-OR
implies an a priori scalar polynomial error bound on the eigenvalues of 𝐀
analogous to the well known minimax bounds for CG, MINRES, and QMR
[Gre97].
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Theorem 5.5. Given a rational function 𝑟 = 𝑀/𝑁 as in Theorem 5.1 and a polynomial

𝑅 so that𝐇 = ̃𝑁(𝐀) = 𝑁(𝐀)𝑅(𝐀) is positive definite,

‖𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅)‖𝐇
‖𝐯‖𝐇

≤ min
deg(𝑝)<𝑘

max
𝜆∈Λ

|𝑟(𝜆) − 𝑝(𝜆)|.

Proof. Since lan-OR𝑘(𝑟, 𝑅) is the𝐇-normoptimal approximationover theKrylov
subspace,we have

‖𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅)‖𝐇 = min
𝐱∈𝒦𝑘

‖𝑟(𝐀)𝐯 − 𝐱‖𝐇 = min
deg(𝑝)<𝑘

‖𝑟(𝐀)𝐯 − 𝑝(𝐀)𝐯‖𝐇

Next, using the fact that 𝐀 and 𝐇1/2 commute,we note that,

‖𝑟(𝐀)𝐯 − 𝑝(𝐀)𝐯‖𝐇 = ‖(𝑟(𝐀) − 𝑝(𝐀))𝐇1/2𝐯‖ ≤ ‖𝑟(𝐀) − 𝑝(𝐀)‖‖𝐯‖𝐇.

Finally, using the definition of the spectral norm,

‖𝑟(𝐀) − 𝑝(𝐀)‖ = ‖(𝑟 − 𝑝)(𝐀)‖ = max
𝜆∈Λ

|𝑟(𝜆) − 𝑝(𝜆)|.

The result follows.

It is notyet apparent that the iterate can be computed efficiently. Indeed the ex-
pression involves the terms [ ̃𝑁(�̂�)]∶𝑘,∶𝑘 and [�̃�(�̂�)]∶𝑘,∶𝑘, and computing �̂� requires
running Lanczos to completion. However, since ̂𝑇 is tridiagonal, these terms
can be computedwithoutmuchmore information than is in𝐓 and the Lanczos-
OR iterate can be computed with only a fewmore matrix vector products than
required to compute the Lanczos-FA iterate.

Lemma 5.6. Suppose 𝑝 is a polynomial with 𝑞 ∶= deg(𝑝) > 0. Then [𝑝(�̂�)]∶𝑘,∶𝑘 can be

computedusing the coefficients generated by𝑘+⌊(𝑞−1)/2⌋ iterations of Lanczos. Moreover,

if 𝑘′ ∶= 𝑘 + ⌊𝑞/2⌋, then
[𝑝(�̂�)]∶𝑘,∶𝑘 = [𝑝([�̂�]∶𝑘′,∶𝑘′)]∶𝑘,∶𝑘.

Proof. Note that after 𝑘 + 𝑑 iterations of Lanczos, one obtains [�̂�]∶𝑘+𝑑+1,∶𝑘+𝑑. The
result then follows immediately as a special case of Corollary 10.4.
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5.3.1 Relation of Lanczos-OR to QMR on inverse quadratics

The Lanczos-OR approximation to 𝑟(𝑥) = 1/(𝑥2 + |𝑧|2) is closely related to the
approximation of two linear systems byQMR.

Lemma 5.7. Suppose 𝑧 ∈ ℝ and define 𝑟 = 1/(𝑥2 + |𝑧|2), 𝑅± = 𝑥 ± 𝒊𝑧, and 𝑟± = 1/𝑅±.

Then, for all 𝑘 ≥ 1,

lan-OR𝑘(𝑟, 1) = 1
2𝒊𝑧 (qmr𝑘(−𝒊𝑧) − qmr𝑘(𝒊𝑧)) .

Proof. Observe that

lan-OR𝑘(𝑟±, 𝑅∓) = 𝐐([�̂�2 + |𝑧|2𝐈]∶𝑘,∶𝑘)−1[𝐓 ∓ 𝒊𝑧𝐈]∶𝑘,∶𝑘𝐞0

so that

qmr𝑘(−𝒊𝑧) − qmr𝑘(𝒊𝑧) = 2𝒊𝑧𝐐([�̂�2 + |𝑧|2𝐈]∶𝑘,∶𝑘)−1𝐞0 = 2𝒊𝑧lan-OR𝑘(𝑟, 1).

The result is then obtained by rearranging the above expression.

Whether it is better to use Lanczos-ORwith 𝑟 and 𝑅 = 1 or with 𝑟± and 𝑅± (i.e.
QMR) is somewhat unclear. The Lanczos-OR based approach avoids the need
for complex arithmetic, which simplifies implementation slightly. However,
since QMR has been studied longer, it is likely to have more practical low-
memory implementations.

5.4 Error estimates for Lanczos-OR

We now describe an approach for estimating the Lanczos-OR error. This ap-
proach has been widely studied for estimating the 𝐀-norm of the error in CG,
andwe refer to [ST02;MT18; EOS19;MPT21] and the referenceswithin formore
details. Note that several of theseworks also studywhether such estimates are
still reasonable in finite precision arithmetic aswell as how to derive estimates
for other norms such as the 2-norm.

Theorem5.8. Let 𝑟 be a rational function and𝑅 a polynomial. Write 𝑟(𝑥) = 𝑀/𝑁where

𝑁 has leading coefficient one and 𝑀 does not divide 𝑁 and define �̃� = 𝑀𝑅 and ̃𝑁 = 𝑁𝑅.
Suppose𝐇 = ̃𝑁(𝐀) is positive definite. Then the Lanczos-OR iterates satisfy,

‖𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅)‖2
𝐇 =

𝑛−1

∑
𝑖=𝑘

‖lan-OR𝑖(𝑟, 𝑅) − lan-OR𝑖+1(𝑟, 𝑅)‖2
𝐇.
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Proof. Let {𝐩𝑖}𝑛−1
𝑖=0 be an 𝐇-orthonormal set satisfying

span{𝐩0, … , 𝐩𝑖} = 𝒦𝑖+1

for all 𝑖 = 0, 1, … , 𝑛 − 1, and decompose 𝑟(𝐀)𝐯 as

𝑟(𝐀)𝐯 =
𝑛−1

∑
𝑖=0

𝑐𝑖𝐩𝑖.

Theorem 5.2 asserts that lan-OR𝑘(𝑟, 𝑅) is the 𝐇-norm optimal approximation to
𝑟(𝐀)𝐯 from 𝒦𝑘. Thus, for all 𝑗 = 0, 1, … , 𝑛 − 1,

lan-OR𝑗(𝑟, 𝑅) =
𝑗−1

∑
𝑖=0

𝑐𝑖𝐩𝑖.

This implies that

𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅) = 𝑟(𝐀)𝐯 −
𝑘−1

∑
𝑖=0

𝑐𝑖𝐩𝑖 =
𝑛−1

∑
𝑖=𝑘

𝑐𝑖𝐩𝑖.

so that, by the 𝐇-orthonormality of the {𝐩𝑖}𝑛−1
𝑖=0,

‖𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅)‖2
𝐇 =

𝑛−1

∑
𝑖=𝑘

𝑐2
𝑖 .

Butwe also have

lan-OR𝑖(𝑟, 𝑅) − lan-OR𝑖+1(𝑟, 𝑅) = −𝑐𝑖𝐩𝑖

so that
‖lan-OR𝑖(𝑟, 𝑅) − lan-OR𝑖+1(𝑟, 𝑅)‖2

𝐇 = 𝑐2
𝑖 .

Note that Theorem 5.8 implies that

‖𝑟(𝐀)𝐯 − lan-OR𝑘(𝑟, 𝑅)‖2
𝐇 ≥

𝑘+𝑑−1

∑
𝑖=𝑘

‖lan-OR𝑖(𝑟, 𝑅) − lan-OR𝑖+1(𝑟, 𝑅)‖2
𝐇. (5.3)

While this is a lower bound, if we assume that

‖𝑟(𝐀)𝐯 − lan-OR𝑘+𝑑(𝑟, 𝑅)‖2
𝐇 =

𝑛−1

∑
𝑖=𝑘+𝑑

‖lan-OR𝑖(𝑟, 𝑅) − lan-OR𝑖+1(𝑟, 𝑅)‖2
𝐇

is negligible compared to ‖𝑟(𝐀)𝐯−lan-OR𝑘(𝑟, 𝑅)‖2
𝐇, then (5.3) becomesanapprox-

imate equality.

Typically 𝑑 can be taken as a small constant, say 𝑑 = 5, so the extra work
required to obtain these estimate is not too large.
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Remark 5.9. As shown in [ER21], a similar approach can be used for general
matrix functions. In particular,

‖𝑟(𝐀)𝐯 − alg𝑘‖ ≤ ‖𝑟(𝐀)𝐯 − alg𝑘+𝑑‖ + ‖alg𝑘+𝑑 − alg𝑘‖ ≈ ‖alg𝑘+𝑑 − alg𝑘‖

provided that ‖𝑟(𝐀)𝐯−alg𝑘+𝑑‖ ≪ ‖𝑟(𝐀)𝐯−alg𝑘‖. Note, however, that in situations
where the convergence of alg𝑘 is oscillatory, itmaybehard to guarantee ‖𝑟(𝐀)𝐯−
alg𝑘+𝑑‖ ≪ ‖𝑟(𝐀)𝐯 − alg𝑘‖, even if 𝑑 is large. △

5.4.1 Numerical experiment

We choose 𝐀 with eigenvalues from the model problem (10.1) with 𝑛 = 300,
𝜌 = 0.8, and 𝜅 = 1000 and 𝐛with equal projection onto each eigencomponent.
We set 𝑟(𝑥) = 1/(𝑥2 + 1), and run Lanczos-OR using 𝑅 = 1 with and without
reorthgonalization. In each case,we compute (5.3) with 𝑑 = 4.

The resulting estimates, shown in Figure 5.1, are accurate for most iterations,
with larger error in initial iterationswhere the true Lanczos-OR error is not de-
creasing as quicklyas in later iterations. Interestingly, the bound seems towork
well in finite precision arithmetic. Understanding this further is of interest. In
particular, a unified analysis of Lanczos-OR could provide more information
about MINRES, for which existing bounds in finite precision arithmetic are
somewhatweaker than CG.

5.5 Implementing Lanczos-OR using low memory

We nowdescribe a low-memory implementation of Lanczos-ORwhich is sim-
ilar in spirit to CG,MINRES, and QMR.

For convenience,wewill denote 𝐌 ∶= [�̃�(�̂�)]∶𝑘,∶𝑘 and 𝐍 ∶= [ ̃𝑁(�̂�)]∶𝑘,∶𝑘 so that the
Lanczos-OR output is given by𝐐𝐍−1𝐌𝐞0. Then, at a high level, our approach is
to:

– Take one iteration of Lanczos to generate onemore column of �̂� and �̂�

– Compute onemore column of each of 𝐌 and 𝐍
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Figure 5.1: Error estimates for Lanczos-OR for 𝑟(𝑥) = 1/(𝑥2 + 1) and
𝑅(𝑥) = 1. Legend: Lanczos-OR error with reorthogonalization ( )
and corresponding estimate (5.3) with 𝑑 = 4 ( ). Lanczos-OR error
without reorthogonalization ( ) and corresponding estimate (5.3)
with 𝑑 = 4 ( ). Takeaway: The error estimates are remarkably
accurate, even in finite precision arithmetic.

– Compute one more factor of 𝐋−1 = 𝐋𝑘−1 ⋯ 𝐋1𝐋0 and one more entry of 𝐃
where 𝐋 and 𝐃 are defined by the LDL factorization 𝐍 = 𝐋𝐃𝐋H

– Compute onemore term of the sum:

𝐐𝐍−1𝐌𝐞0 = 𝐐𝐋−1𝐃−1𝐋−H𝐌𝐞0 =
𝑘−1

∑
𝑖=0

[𝐋−H𝐌𝐞0]𝑖
[𝐃]𝑖,𝑖

[𝐐𝐋−1]∶,𝑖

There are two critical observationswhichmust bemade in order to see that this
gives a memory-efficient implementation. The first is that, since �̂� is tridiago-
nal, 𝐌, 𝐍, and therefore 𝐋 are all of half-bandwidth 𝑞 ∶= max(deg(�̃�), deg( ̃𝑁)).
This means that it is possible to compute the entries of 𝐃 and the factors of
𝐋−1 = 𝐋𝑘−1 ⋯ 𝐋1𝐋0 one by one as we get the entries of �̂�. The second is that
because 𝐋 is of bandwidth 𝑞, we can compute [𝐐𝐋−1]∶,𝑖 without saving all of 𝐐.
More specifically, [𝐋−1𝐌𝐞0]𝑖 and [𝐐𝐋−1]∶,𝑖 can respectively be computed from
𝐋𝑗−1 ⋯ 𝐋1𝐋0𝐌𝐞0 and 𝐐𝐋H

0 𝐋H
1 ⋯ 𝐋H

𝑘−1 and can therefore be maintained iteratively
as the factors of 𝐋−1 are computed. Moreover, because of the banded structure
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of the factors 𝐋𝑖, we need only maintain a sliding window of the columns of
𝐐𝐋−1whichwill allowus to access the relevant columnswhenweneed themand
discard them afterwards.

For clarity of exposition, we only describe how to compute 𝐌 and 𝐍 in the case
that �̃� and ̃𝑁 are degree at most two. The rest of the subroutines are fully
described for any degree. The syntax we use follows Python and other object
oriented languages closely.

5.5.1 Computing LDL factorization

For the time being, we will assume that we can sequentially access the rows of
𝐌 and 𝐍. Our first step is to compute an LDL factorization of 𝐍. A LDL fac-
torization can be computedvia a symmetrizedversion of Gaussian elimination
and is guaranteed to exist if 𝐍 is positive definite [Hig02]. Gaussian elimination
can be viewed as transforming the startingmatrix 𝐍0 = 𝐍 to a diagonal matrix
𝐍𝑘−1 = 𝐃 via a sequence of row and column operations

𝐍𝑖+1 = 𝐋𝑖𝐍𝑖𝐋H
𝑖

where

𝐋𝑖 ∶= 𝐈𝑘 + 𝐥𝑖𝐞H𝑖 , 𝐥𝑖 ∶= [ 0, ⋯ , 0
⏟
𝑖+1 zeros

, −
[𝐍𝑖]𝑖+1,𝑖
[𝐍𝑖]𝑖,𝑖

, ⋯ , −
[𝐍𝑖]𝑘−1,𝑖
[𝐍𝑖]𝑖,𝑖

]
H

.

Note that the entries of 𝐋𝑖 are chosen to introduce zeros to the 𝑖-th row and
column of 𝐍𝑖 such that [𝐍𝑖+1]∶𝑖+1,∶𝑖+1 is diagonal. Therefore, if the algorithm
terminates successfully, wewill have obtained a factorization

𝐃 = (𝐋𝑘−1 ⋯ 𝐋1𝐋0)𝐍(𝐋H
0 𝐋H

1 ⋯ 𝐋H
𝑛−1)

where𝐃 is diagonal and each𝐋𝑖 is unit lower triangular. To obtain the factoriza-
tion 𝐍 = 𝐋𝐃𝐋H, simply define 𝐋 ∶= (𝐋𝑘−1 ⋯ 𝐋1𝐋0)−1 and note that

𝐋 = 𝐈𝑘 −
𝑘−1

∑
𝑖=0

𝐥𝑖𝐞H𝑖 .

Weremark that that 𝐥𝑘−1 is the zerosvector and is only included in sums for ease
of indexing later on. For further details on LDL factorizations,we refer readers
to [Hig02].
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To implement a LDL factorization, observe that the procedure above defines a
recurrence

[𝐃]𝑗,𝑗 = [𝐍]𝑗,𝑗 −
𝑗−1

∑
ℓ=0

[𝐋𝑗,ℓ]2[𝐃]ℓ,ℓ

[𝐋]𝑖,𝑗 = 1
[𝐃]𝑗,𝑗

⎛⎜⎜
⎝

[𝐍]𝑖,𝑗 −
𝑗−1

∑
ℓ=0

[𝐋]𝑗,ℓ[𝐋]𝑖,ℓ[𝐃]ℓ,ℓ
⎞⎟⎟
⎠

, 𝑖 > 𝑗.

We therefore have Algorithm 5.1.

Algorithm 5.1 LDL factorization
1: procedure LDL(𝐍)
2: for 𝑗 = 0, 1, … , 𝑘 − 1 do
3: [𝐃]𝑗,𝑗 = [𝐍]𝑗,𝑗 − ∑𝑗−1

ℓ=0[𝐋𝑗,ℓ]2[𝐃]ℓ,ℓ

4: [𝐋]𝑗,𝑗 = 1
5: for 𝑖 = 𝑗 + 1, 𝑗 + 2, … , 𝑘 − 1 do
6: [𝐋]𝑖,𝑗 = (1/[𝐃]𝑗,𝑗)([𝐍]𝑖,𝑗 − ∑𝑗−1

ℓ=0[𝐋]𝑗,ℓ[𝐋]𝑖,ℓ[𝐃]ℓ,ℓ)

7: return 𝐋, 𝐃

Streaming version

The fact that 𝐋 has the same half bandwidth as 𝐍 allows a more efficient im-
plementation of Algorithm 5.1where termswhich are known to be zero are not
computed and only the important diagonals of 𝐋 are stored. Moreover, Algo-
rithm 5.1 already only accesses 𝐍 one column at a time so it is easily converted
to a streaming algorithm. Making these changes gives the implementation
Algorithm 5.2 which is fed a stream of the columns of 𝐍 in order, as shown in
Figure 5.2a. Here the diagonal of 𝐃 is stored as d and the (𝑗 + 1)-st diagonal of 𝐋
is stored as [L]𝑗,∶. Thus, 𝐋𝑖,𝑗 = [L]𝑖−𝑗−1,𝑗 as long as 𝑖 − 𝑗 ∈ 0 ∶ 𝑞 + 1.

5.5.2 Inverting the LDL factorization

Once we have computed a a factorization 𝐍 = 𝐋𝐃𝐋H, we can easily evaluate
𝐐𝐋−1𝐃−1𝐋−H𝐌𝐞1 using the fact that 𝐋−1 = 𝐋𝑘−1 ⋯ 𝐋1𝐋0. Moreover, because the
𝐋𝑗 can be computed one at a time, there is hope that we can derive a memory
efficient implementation.
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(a) Pattern for 𝐍 in Algorithm 5.2.
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(b) Pattern for 𝐓 in Algorithm 5.5.
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(c) Pattern for 𝐐, 𝐋, 𝐝, 𝐌 in Algorithm 5.3.

Figure 5.2: Access patterns for inputs to streaming functions used in
low-memory implementations of Lanczos-OR and Lanczos-FA. Indices
indicatewhat information should be streamed into the algorithm at the
given iteration.
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Algorithm 5.2 Streaming LDL factorization
1: class streaming-LDL(𝑞, 𝑘)
2: stream: [𝐍]0,0∶𝑞+1, [𝐍]1,1∶𝑞+2, … , [𝐍]𝑘−1,𝑘−1∶𝑞+𝑘−1

3: L = zeros(𝑞, 𝑘)
4: d = zeros(𝑘)
5: j ← 0
6: procedure read-stream(𝐧)
7: [d]j ← [𝐧]0 − ∑j−1

ℓ=max(0,j−𝑞)[L]2
j−ℓ−1,ℓ[d]ℓ

8: for 𝑖 = j + 1, j + 2, … , min(j − 𝑞, 𝑛 − 1) do
9: [L]𝑖−j−1,j ← (1/[d]j)([𝐧]𝑖−j − ∑𝑖−1

ℓ=max(0,𝑖−𝑞)[L]𝑖−ℓ−1,ℓ[L]j−ℓ−1,ℓ[d]ℓ)

10: j ← j + 1

Towards this end, define 𝐲𝑗 ∶= 𝐋𝑗−1 ⋯ 𝐋1𝐋0𝐌𝐞0 and 𝐗𝑗 ∶= 𝐐𝐋H
0 𝐋H

1 ⋯ 𝐋H
𝑗−1. Then,

setting 𝐲0 = 𝐌𝐞1 we have that

𝐲𝑗+1 = 𝐋𝑗𝐲𝑗 = (𝐈 + 𝐥𝑗𝐞H𝑗 )𝐲𝑗 = 𝐲𝑗 + (𝐞H𝑗 𝐲𝑗)𝐥𝑗.

Similarly, setting 𝐗0 = 𝐐we have that

𝐗𝑗+1 = 𝐗𝑗𝐋H
𝑗 = 𝐗𝑗(𝐈 + 𝐞𝑗𝐥H𝑗 ) = 𝐗𝑗 + 𝐗𝑗𝐞𝑗𝐥H𝑗 .

Then 𝐐𝐋−1𝐃−1𝐋−H𝐌𝐞1 = 𝐗𝑘𝐃−1𝐲𝑘 can be computed accessing 𝐋, and therefore
𝐍, column by column.

Streaming version

Recall that [𝐥𝑖]∶,ℓ is zero if ℓ ≤ 𝑖 or ℓ > 𝑖 + 𝑞. Since [𝐥𝑖]∶𝑖 is zero,we have

[𝐲𝑗]𝑗 = [𝐲𝑗 + (𝐞H𝑗 𝐲𝑗)𝐥𝑗]𝑗 = [𝐲𝑗+1]𝑗 = ⋯ = [𝐲𝑘]𝑗

and
[𝐗𝑗]∶,𝑗 = [𝐗𝑗 + 𝐗𝑗𝐞𝑗𝐥H𝑗 ]∶,𝑗 = [𝐗𝑗+1]∶,𝑗 = ⋯ = [𝐗𝑘]∶,𝑗.

We therefore have that

𝐗𝑘𝐃−1𝐲𝑘 =
𝑘−1

∑
𝑗=0

[𝐲𝑘]𝑗

[𝐃]𝑗,𝑗
[𝐗𝑘]∶,𝑗 =

𝑘−1

∑
𝑗=0

[𝐲𝑗]𝑗

[𝐃]𝑗,𝑗
[𝐗𝑗]∶,𝑗.
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Algorithm 5.3 Streaming banded product
1: class streaming-banded-prod(𝑛, 𝑘, 𝑞)
2: stream:
3: X_ ← zeros(𝑛, 𝑞 + 1)
4: y_ ← zeros(𝑞 + 1)
5: out ← zeros(𝑛)
6: j ← −1
7: procedure read-stream(𝐯, 𝐥, 𝑑, 𝐲0)
8: if j = −1 then
9: [X_]∶,∶𝑞 = 𝐯
10: else
11: if i = −1 then
12: y_ ← 𝐲0

13: out ← out + ([y_]0/𝑑)[X_]∶,0

14: [y_]∶𝑞 ← [y_]1∶ − [y_]0𝐥
15: [y_]−1 ← 0
16: [X_]∶,−1 ← 𝐯
17: [X_]∶,∶𝑞 ← [X_]∶,1∶ + [X_]∶,0𝐥H

18: j ← j + 1

Similarly, since [𝐥𝑖]𝑖+𝑞+1∶ is zero,

[𝐲𝑗]𝑗+𝑞∶ = [𝐲𝑗−1 + (𝐞H𝑗−1𝐲𝑗−1)𝐥𝑗−1]𝑗+𝑞∶ = [𝐲𝑗−1]𝑗+𝑞∶ = ⋯ = [𝐲0]𝑗+𝑞∶

and

[𝐗𝑗]∶,𝑗+𝑞∶ = [𝐗𝑗−1 + 𝐗𝑗−1𝐞𝑗−1𝐥H𝑗−1]∶,𝑗+𝑞∶ = [𝐗𝑗−1]∶,𝑗+𝑞∶ = ⋯ = [𝐗0]∶,𝑗+𝑞∶.

By definition, 𝐲0 = 𝐌𝐞0 and 𝐗0 = 𝐐. Thus, we see that it is not necessary to
know the later columns of 𝐗𝑗 immediately.

We can define a streaming algorithmbymaintaining only the relevant portions
of the 𝐗𝑖 and 𝐲𝑖. Towards this end, define the length 𝑞 + 1 vector �̄�𝑗 ∶= [𝐲𝑗]𝑗∶𝑗+𝑞+1

the 𝑛 × (𝑞 + 1) matrix �̄�𝑗 = [𝐗𝑗]∶,𝑗∶𝑗+𝑞+1. Using the above observations,we see that
these quantities can bemaintained by the recurrences

�̄�𝑗 = ⎡⎢
⎣

[�̄�𝑗−1]1∶

0
⎤⎥
⎦

+ [�̄�𝑗−1]0[𝐥𝑗]𝑗+1∶𝑗+𝑞+1
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and
[�̄�𝑗]∶,∶𝑞 = [�̄�𝑗−1]∶,1∶ + ([�̄�𝑗−1]∶,1)([𝐥𝑗]𝑗+1∶𝑗+𝑞+1)H, [�̄�𝑗]∶,𝑞 = [𝐐]𝑗+𝑞.

Note then that,

𝐗𝑘−1𝐃−1𝐲𝑘−1 =
𝑘−1

∑
𝑗=0

[�̄�𝑗]1

[𝐃]𝑗+1,𝑗+1
[�̄�𝑗]∶,1.

This results inAlgorithm5.3whose streaming pattern is outlined in Figure 5.2c.

Algorithm 5.4 Streaming banded inverse
1: class streaming-banded-inv(𝑛, 𝑘, 𝑞)
2: stream:
3: LDL ← streaming-LDL(𝑘, 𝑞)
4: Q0 ← zeros(𝑛, 𝑞)
5: j ← 0
6: procedure read-stream(𝐪, 𝐧, 𝐲0)
7: if j < 𝑞 then
8: [Q0]∶,𝑗 ← 𝐯
9: if j = 𝑞 − 1 then
10: b-prod ← streaming-banded-prod(𝑛, 𝑘, 𝑞)
11: b-prod.read-stream(V0, none, none, none)

12: else
13: LDL.read-stream(𝐧)
14: b-inv.read-stream(𝐪, −[LDL.L]∶,𝑗−𝑞, [LDL.d]𝑗−𝑞, 𝐲0)

15: j ← j + 1

5.5.3 Computing polynomials in 𝐓

The last major remaining piece is to construct 𝐌 = �̃�(𝐓) and 𝐍 = [ ̃𝑁(�̂�)]∶𝑘,∶𝑘.
Recall thatwehave assumed �̃� and ̃𝑁 are of degree atmost two for convenience.
In iteration ℓ of Lanczos,we obtain 𝛼ℓ and 𝛽ℓ. Observe that 𝐓2 is symmetric and
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that, defining 𝛽−1 = 𝛽𝑘 = 0, the lower triangle is given by

[𝐓2]𝑖,𝑗 =

⎧{{{{
⎨{{{{⎩

𝛽2
𝑗−1 + 𝛼2

𝑗 + 𝛽2
𝑗 𝑗 = 𝑖

(𝛼𝑗 + 𝛼𝑗+1)𝛽𝑖 𝑗 = 𝑖 − 1

𝛽𝑗𝛽𝑗+1 𝑗 = 𝑖 − 2

0 o.w.

We can use this to implement the streaming algorithm, Algorithm 5.5, for
computing the entries of 𝐓2. Rather thanbeing fed the entire tridiagonalmatrix
𝐓, Algorithm 5.5 is fed a stream of the columns of 𝐓 in order, as shown in
Figure 5.2b. The algorithm respectively stores the 𝑗-th diagonals of 𝐓 and 𝐓2

as [T]𝑗,∶ and [Tp2]𝑗,∶.

Algorithm 5.5 Streaming tridiagonal square
1: class streaming-tridiag-square(𝑘)
2: stream: (𝛼0, 𝛽0), … , (𝛼𝑘−1, 𝛽𝑘−1)
3: T ← zeros(2, 𝑘)
4: Tp2 ← zeros(3, 𝑘)
5: j ← 0
6: procedure read-stream(𝛼, 𝛽)
7: [T]0,j = 𝛼
8: [T]1,j = 𝛽
9: if i = 0 then
10: [Tp2]0,j ← [T]2

0,j + [T]2
1,j

11: else
12: [Tp2]0,j ← [T]2

0,j + [T]2
1,j + [T]2

1,j−1

13: [Tp2]1,j ← ([T]0,j + [T]0,j−1)[T]1,j−1

14: [Tp2]2,j ← [T]1,j[T]1,j−1

15: j ← j + 1

Sincewemaintain the columns of 𝐓2withAlgorithm5.5,we can easily compute
𝐌 and 𝐍 using Algorithm 5.6.
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Algorithm 5.6Get polynomial of tridiagonal matrix
1: procedureget-poly(𝑃, STp2, 𝑘, 𝑗)
2: 𝑎, 𝑏, 𝑐 = 𝑃(0), 𝑃′(0), 𝑃″(0)
3: 𝐩 ← zeros(3)
4: [𝐩]∶3 ← 𝑎[STp2.Tp2]∶,𝑗

5: [𝐩]∶2 ← 𝑏[STp2.T]∶,𝑗

6: [𝐩]∶1 ← 𝑐

5.5.4 Putting it all together

With this algorithm in place, putting everything together is straightforward,
and the full implementation is shown in Algorithm 5.7.

This canbe incorporated into anyLanczos implementationandused to compute
the Lanczoz-OR iterates. For concreteness, we show this with the implemen-
tation of Lanczos from Algorithm 1.1. We call the resulting implementation
Lanczos-OR-lm.

We can easilyobtain an implementation of Lanczos-FA,whichwe call Lanczos-
FA-lm, by replacing 𝛽𝑘−1 with 0 in the final iteration of the loop.

5.5.5 Some comments on implementation

Our main goal is to describe how to implement Lanczos-FA and Lanczos-OR
in a way that requires 𝑘 matrix-vector products and 𝑂(𝑛) storage, when 𝑀 and
𝑁 are each at most degree two. As mentioned, the approach can be extended to
anyconstant degree. There are a range of improvements to our implementation
whichmay be useful in practice.

First, the amount of storage used can be reduced somewhat. Indeed, the im-
plementation described above saves 𝐓, 𝐓2, 𝐋, and 𝐝, but only accesses a sliding
windowof these quantities. We have chosen to save them for convenience since
they require only𝑂(𝑘) storage. However, storing only the relevant information
from these quantities would result in an implementation with storage costs
independent of the number of iterations 𝑘. In this vein, a practical implemen-
tation would likely determine 𝑘 adaptively bymonitoring the residual or other
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Algorithm 5.7 Streaming banded rational inverse

1: class banded-rational(𝑛, 𝑘, �̃�, ̃𝑁)
2: b-inv ← banded-inv(𝑛, 𝑘, 2)
3: STp2 ← streaming-tridiag-square(𝑘)
4: j ← 0
5: procedure read-stream(𝐪, 𝛼, 𝛽)
6: if j < 𝑘 then
7: STp2.read-stream(𝛼, 𝛽)
8: b-inv.read-stream(
9: 𝐪,
10: getpoly( ̃𝑁, STp2, 𝑘, j − 1) if j ≥ 2 else none,
11: getpoly(�̃�, STp2, 𝑘, j − 1) if j = 2 else none,
12: )

13: LDL.read-stream(𝐧)
14: j ← j + 1

15: procedure finish-up()
16: for 𝑖 = 𝑘, 𝑘 + 1 do
17: b-inv.read-stream(none,getpoly( ̃𝑁, STp2, 𝑘, j − 1), none)

18: procedureget-output()
19: return b-inv.b-prod.out

measures of the error. Improvements to the number of vectors of length 𝑛 may
be possible as well. For example, storage could possibly be reduced somewhat
by incorporating the Lanczos iterationmore explicitlywith the inversion of the
LDL facorization, much like the classical Hestenes and Stiefel implementation
of CG [HS52].

As with other short-recurrence based Krylov subspace methods, the behavior
of Lanczos-FA-lm and Lanzos-OR-lm in finite precision arithmetic may be
different than in exact arithmetic. However, with the exception of the Lanczos
algorithm, the other aspects of our algorithm are essentially backwards stable.
It is therefore more or less clear that Lanczos-FA-lm and Lanczos-OR-lm will
accurately compute the expressions 𝐐𝑁(𝐓)−1𝑀(𝐓)𝐞0 and 𝐐([ ̃𝑁(�̂�)]∶𝑘,∶𝑘)−1�̃�(𝐓)𝐞0

provided that 𝑀(𝐓) 𝑁(𝐓), [ ̃𝑁(�̂�)]∶𝑘,∶𝑘 are reasonablywell conditioned. Indeed, in
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Algorithm 5.8 Lanczos-OR (lowmemory)
1: procedure Lanczos-OR-lm(𝐀, 𝐯, 𝑘, 𝑀, 𝑁)
2: 𝐪−1 = 𝟎, 𝛽−1 = 0, 𝐪0 = 𝐯
3: Set �̃� and ̃𝑁 as in Theorem 5.1
4: lam-lm ← banded-rational(𝑛, 𝑘, �̃�, ̃𝑁)
5: for 𝑗 = 0, 1, … , 𝑘 − 1 do
6: �̃�𝑗+1 = 𝐀𝐪𝑗 − 𝛽𝑗−1𝐪𝑗−1

7: 𝛼𝑗 = ⟨�̃�𝑗+1, 𝐪𝑗⟩
8: �̃�𝑗+1 = �̃�𝑗+1 − 𝛼𝑗𝐪𝑗

9: optionally, reorthogonalize �̃�𝑗+1 against {𝐪𝑖}
𝑗−1
𝑖=0

10: 𝛽𝑗 = ‖�̃�𝑗+1‖
11: 𝐪𝑗+1 = �̃�𝑗+1/𝛽𝑗

12: lam-lm.read-stream(𝐪𝑗, 𝛼𝑗, 𝛽𝑗)

13: lam-lm.finish-up()

practice solving linear systems by symmetric Gaussian elimination is accurate;
see for instance [Hig02, Chapter 10]. Thus, such bounds and techniques can be
applied to Lanczos-FA-lm and Lanczos-OR-lm.
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Chapter 6

Generalmatrix function approximation

We now consider Krylov subspace methods for approximating 𝑓(𝐀)𝐯 for more
general 𝑓. In Section 6.2 we discuss the Lanczos method for matrix function
approximation (Lanczos-FA),which is probablythemostwidelyused algorithm
for this task. Then, in Section 6.3, we discuss how Lanczos-OR iterates can be
used to generate approximations to awide range of functions.

6.1 Explicit polynomial methods

A simple approach to approximating 𝑓(𝐀)𝐯 is to compute

[𝑓]∘p
𝑘−1(𝐀)𝐯 ∈ 𝒦𝑘

where [𝑓]∘p
𝑘−1 is some polynomial chosen to approximate 𝑓. For instance, the

Chebyshev semi-iterative method mentioned in the example from Chapter 1
falls into this category of algorithms.

If |𝑓−[𝑓]∘p
𝑘−1| isnot stronglycorrelatedwith theeigenvaluesof 𝐀,wemight expect

‖𝑓(𝐀)𝐯 − [𝑓]∘p
𝑘−1(𝐀)𝐯‖ > 𝑐‖𝑓 − [𝑓]∘p

𝑘−1‖ℐ‖𝐯‖

for some reasonable constant 𝑐.

Like mentioned in our discussion of algorithms for quadratic forms in Sec-
tion 3.4, one nice property of explicit polynomial methods is the lack of inner
products, which can be expensive on supercomputers. In addition, explicit
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polynomial methods for 𝑓(𝐀)𝐯 do not require storing a basis for Krylov sub-
space.

6.2 Lanczos-FA

Early uses of Lanczos-FA were focused primarily on computing matrix expo-
nentials applied to a vector; i.e. 𝑓 = exp(𝑡𝑥). As far as we can tell, Lanczos-
FAwas introduced in [NW83] and first used for general 𝑓 in [Vor87]. Soon after
Lanczos-FA was first used, a number of papers studying the algorithm and
its convergence properties were published [PL86; DK88; DK89; GS92; Saa92].
These earlyworks were followed by a number of papers demonstrating the ef-
fectiveness of Lanczos-FA in finite precision arithmetic [DK91; DK95; DGK98],
a topicwe discuss further in Chapter 8.

Definition 6.1. The 𝑘-th Lanczos-FA approximation to 𝑓(𝐀)𝐯 is

lan-FA𝑘(𝑓) ∶= 𝐐𝑓(𝐓)𝐞0.

Remark 6.2. If 𝐀 is positive definite, then the Lanczos-FA approximation to
𝑓 = 1/𝑥 coincides with the CG iterate defined in Section 5.2. Even when 𝐀
is indefinite, we can use the Lanczos-FA iterate as an approximation to 𝐀−1𝐯.
However, the resulting algorithm is not guaranteed to be optimal, and if 𝐓 has
an eigenvalue near to or at zero then 𝐓−1 will be poorly conditioned or even
undefined. Even so, the overall convergence of the Lanczos-FA iterate is closely
related to the convergence of MINRES.Wedescribed this phenomenon indetail
in Section 7.4. △

A basic property of the Lanczos-FA iterate is that polynomials are applied
exactly. More precisely,we have the following,well known, theorem.

Theorem 6.3. Suppose deg(𝑝) < 𝑘. Then,

lan-FA𝑘(𝑝) = 𝑝(𝐀)𝐯.

Proof. Using Corollary 10.3we have

𝐀𝑞𝐯 = 𝐀𝑞�̂�𝐞0 = �̂��̂�𝑞𝐞0 = 𝐐𝐓𝑞𝐞0.
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This theorem implies that, when 𝜇 = Ψ,

lan-FA𝑘(𝑓) = [𝑓]ip𝑘−1(𝐀)𝐯.

In other words, the Lanczos-FA iterate is obtained by interpolating 𝑓 at the
eigenvalues of 𝐓with a degree 𝑘 − 1 polynomial.

6.2.1 A priori error bounds on an interval

Akin to the bounds we saw in Section 3.3, we can derive a bound based on best
approximation on an interval.

Theorem 6.4. The Lanczos-FA iterate satisfies

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖
‖𝐯‖ ≤ 2 min

deg(𝑝)<𝑘
‖𝑓 − 𝑝‖ℐ.

Proof. For any polynomial 𝑝with deg(𝑝) < 𝑘,

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ ‖𝑓(𝐀)𝐯 − 𝑝(𝐀)𝐯‖ + ‖lan-FA𝑘(𝑝) − lan-FA𝑘(𝑓)‖

= ‖(𝑓(𝐀) − 𝑝(𝐀))𝐯‖ + ‖𝐐(𝑝(𝐓) − 𝑓(𝐓))𝐐H𝐯‖

≤ ‖𝑓(𝐀) − 𝑝(𝐀)‖2‖𝐯‖ + ‖𝐐(𝑝(𝐓) − 𝑓(𝐓))𝐐H‖2‖𝐯‖

≤ (‖𝑓(𝐀) − 𝑝(𝐀)‖2 + ‖𝑝(𝐓) − 𝑓(𝐓)‖2)‖𝐯‖.

= (‖𝑓 − 𝑝‖Λ + ‖𝑓 − 𝑝‖Λ(𝐓))‖𝐯‖.

Then, optimizing over polynomials of degree less than 𝑘,

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ min
deg(𝑝)<𝑘

(‖𝑓 − 𝑝‖Λ + ‖𝑓 − 𝑝‖Λ(𝐓)) ‖𝐯‖. (6.1)

Finally, using that Λ, Λ(𝐓) ⊂ ℐ, we obtain the result.

As we will discuss in Chapter 8, bounds for Lanczos-FA based on polynomial
approximation on ℐ still hold, to close approximation, in finite precision arith-
metic.

6.2.2 Two-pass Lanczos-FA

A major downside of Lanczos-FA compared with explicit polynomial ap-
proaches is that a simple implementation requires that𝐐be stored. Fortunately,
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this storage cost can be avoided by incurring additional computational cost. In
particular, we can use an implementation called two pass Lanczos-FA [Bor00;
FS08a]. On the first pass, the tridiagonal matrix 𝐓 is computed using the
short-recurrence version of Lanczos; i.e., without storing all of 𝐐. Once 𝐓 has
been computed, 𝑓(𝐓)𝐞0 can be evaluated using 𝑂(𝑘2) storage. Lanczos is then
run again and the product 𝐐𝑓(𝐓)𝐞0 is computed as the columns of 𝐐 become
available. Note that on the second run, the exact same Lanczos vectors (even
in finite precision arithmetic) can be computed without any inner products by
using the values computed in the first run and stored in 𝐓.

Such an approach can be generalized by re-generating the Lanczos recurrence
frommultiple points simultaneously on the second pass [Li22]. Specifically, on
the first pass, vectors 𝐪𝑗 and 𝐪𝑗−1 can be saved for 𝑗 = 0, 𝑑, 2𝑑, …. Then, on the
second pass, the rest of the Lanczos vectors can be constructed by continuing
the three-termLanczos recurrence (1.3) fromeachof theroughly𝑛/𝑑 startpoints
in parallel. Thus, the number of matrix-loads is reduced by a factor of roughly
𝑑 at the cost of storing roughly 2𝑛/𝑑 vectors. The case 𝑑 = 𝑛 gives the original
two-pass approach.

6.3 Lanczos-OR based methods

We can use integral representations of functions to derive algorithms based on
Lanczos-OR iterates. For concreteness,we consider the case of thematrix-sign
function and rational functions in partial fraction form. It’s clear that a similar
approach can be applied to other functions, and further study of the resulting
algorithmswould be interesting.

6.3.1 The matrix sign function

We begin by noting that, for any 𝑎 > 0,

1
√𝑎

= 2
𝜋 ∫

∞

0

1
𝑎 + 𝑧2d𝑧.

Thus, if 𝑓 = sign = 𝑥/|𝑥| = 𝑥/√𝑥2, we have

𝑓(𝐀)𝐯 = 2
𝜋 ∫

∞

0
𝐀(𝐀2 + 𝑧2𝐈)−1𝐯 d𝑧.
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The Lanczos-ORapproximation to𝐀(𝐀2 +𝑧2𝐈)−1𝐯 is𝐐([�̂�2]∶𝑘,∶𝑘 +𝑧2𝐈)−1𝐓𝐞0,which
is optimal over Krylov subspace in the (𝐀2 + 𝑧2𝐈)-norm. This yields the approx-
imation

2
𝜋 ∫

∞

0
𝐐([�̂�2]∶𝑘,∶𝑘 + 𝑧2𝐈)−1𝐓𝐞0 d𝑧 = 𝐐 ([�̂�2]∶𝑘,∶𝑘)

−1/2
𝐓𝐞0.

Thus,we can define the induced iterate as

sign − OR𝑘 ∶= 𝐐 ([�̂�2]∶𝑘,∶𝑘)
−1/2

𝐓𝐞0 = 𝐐 ([�̂�]∶𝑘,∶𝑘+1[�̂�]∶𝑘+1,∶𝑘)
−1/2

𝐓𝐞0. (6.2)

Relation to Lanczos-FA

The Lanczos-OR and Lanczos-FA iterates for a given rational matrix function
are clearly related. In particular, ̃𝑁(𝐓) and [ ̃𝑁(�̂�)]∶𝑘,∶𝑘 differ only in the bottom
rightmost (𝑞−1)×(𝑞−1)principle submatrix,where 𝑞 = deg( ̃𝑁). Using this fact,
it can be shown that the Lanczos-OR and Lanczos-FA iterates “tend to coalesce
as convergence takes place” [LS06, Proposition 5.1]. We nowshow that a similar
phenomenon occurs with the induced Lanczos-OR approximation to the sign
function and the Lanczos-FA approximation.

Theorem 6.5. The Lanczos-FA and induced Lanczos-OR approximations to the matrix

sign function satisfy

‖lan-FA𝑘(sign) − sign − OR𝑘‖2 ≤ 𝛽2
𝑘−1

√𝛼2
0 + 𝛽2

0
2𝜎min(𝐓)3 .

where 𝜎max(𝐓) and 𝜎min(𝐓) are the largest and smallest singular values of𝐓 respectively.

Proof. Let 𝑁 = 𝑥2 + 𝑧2 and 𝑀 = 𝑥. Note that 𝑁(𝐓) = [𝑁(�̂�)]∶𝑘,∶𝑘 − 𝛽2
𝑘−1𝐞𝑘−1𝐞H𝑘−1 so,

𝑀(𝐓)𝐞0 = ([𝑁(�̂�)]∶𝑘,∶𝑘 − 𝛽2
𝑘−1𝐞𝑘−1𝐞H𝑘−1)𝑁(𝐓)−1𝑀(𝐓)𝐞0.

Thus, rearranging terms andmultiplying by ([𝑁(�̂�)]∶𝑘,∶𝑘)−1 we find that

𝑁(𝐓)−1𝑀(𝐓)𝐞0 − ([𝑁(�̂�)]∶𝑘,∶𝑘)−1𝑀(𝐓)𝐞0

= 𝛽2
𝑘−1([𝑁(�̂�)]∶𝑘,∶𝑘)−1𝐞𝑘−1𝐞H𝑘−1𝑁(𝐓)−1𝑀(𝐓)𝐞0

After leftmultiplyingwith 𝐐, this implies that

lan-FA𝑘(𝑟) − lan-OR𝑘(𝑟, 1) = 𝛽2
𝑘−1𝐐([𝑁(�̂�)]∶𝑘,∶𝑘)−1𝐞𝑘−1𝐞H𝑘−1𝑁(𝐓)−1𝑀(𝐓)𝐞0.
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Now, suppose that 𝑓 = sign and set diff𝑘 ∶= lan-FA𝑘(sign) − sign − OR𝑘 as above.
Then, since the Lanczos-FA approximation can also be induced by an integral
over 𝑧 ∈ [0, ∞), we have that,

diff𝑘 = 𝛽2
𝑘−1

2
𝜋 ∫

∞

0
𝐐([�̂�2]∶𝑘,∶𝑘 + 𝑧2𝐈)−1𝐞𝑘−1𝐞H𝑘−1(𝐓2 + 𝑧2𝐈)−1𝐓𝐞0d𝑧.

Note that [�̂�2]∶𝑘,∶𝑘 − 𝐓2 = 𝛽2
𝑘−1𝐞𝑘−1𝐞H𝑘−1 is positive semidefinite. Therefore, using

that 𝜎min([�̂�2]∶𝑘,∶𝑘) ≥ 𝜎min(𝐓2) = 𝜎min(𝐓)2,

‖diff𝑘‖2 = 𝛽2
𝑘−1∥𝐐(2

𝜋 ∫
∞

0
([�̂�2]∶𝑘,∶𝑘 + 𝑧2𝐈)−1𝐞𝑘−1𝐞H𝑘−1(𝐓2 + 𝑧2𝐈)−1d𝑧)𝐓𝐞0∥

2

≤ 𝛽2
𝑘−1(2

𝜋 ∫
∞

0
‖([�̂�2]∶𝑘,∶𝑘 + 𝑧2𝐈)−1‖2‖(𝐓2 + 𝑧2𝐈)−1‖2d𝑧)‖𝐓𝐞0‖2

≤ 𝛽2
𝑘−1(2

𝜋 ∫
∞

0
|(𝜎min(𝐓)2 + 𝑧2)−1| |(𝜎min(𝐓)2 + 𝑧2)−1|d𝑧)√𝛼2

0 + 𝛽2
0

= 𝛽2
𝑘−1

√𝛼2
0 + 𝛽2

0
2𝜎min(𝐓)3 .

Since |𝛽𝑘−1| tends to decrease as the Lanczos method converges, this seemingly
implies that the induced Lanczos-OR iterate and the Lanczos-FA iterate tend to
converge in this limit. However, recall that𝐓 = [�̂�]∶𝑘,∶𝑘 changes at each iteration
𝑘. In particular, there is the difficulty that 𝐓 may have an eigenvalue near zero,
inwhich case the preceding bound could be useless.

It is known that 𝐓 cannot have small eigenvalues in two consecutive iterations,
provided the eigenvalues of 𝐀 are not small [GDK99], a result we will recall in
Theorem 7.16. Since 𝛽𝑘−1 has little to do with the minimum magnitude eigen-
value of 𝐓 (recall that the Lanczos recurrence is shift invariant), we expect that
the “overall” convergence of the induced Lanczos-OR iterate and the Lanczos-
FA iteratewill be similar as Lanczos converges.

6.3.2 Rational function approximation

We can use a similar approach to derive (non-optimal) approximations to ra-
tional matrix functions 𝑟(𝐀)𝐛. In many settings, particularlywhen the rational
function 𝑟 is used as a proxy for a function 𝑓, this approach ismore natural than
computing theLanczos-ORapproximation to the rational functiondirectly. The
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convergence of such methods is closely related to the quality of the (scalar)
rational function approximation as well as the quality of the approximation
to the rational matrix function. Specifically, for any output alg(𝑟) meant to
approximate 𝑟(𝐀)𝐛, we have the following bound:

‖𝑓(𝐀)𝐛 − alg(𝑟)‖ ≤ ‖𝑓(𝐀)𝐛 − 𝑟(𝐀)𝐛‖ + ‖𝑟(𝐀)𝐛 − alg(𝑟)‖

≤ ‖𝑓(𝐀) − 𝑟(𝐀)‖2‖𝐛‖ + ‖𝑟(𝐀)𝐛 − alg(𝑟)‖

≤ ‖𝐛‖ max
𝜆∈Λ

|𝑓(𝜆) − 𝑟(𝜆)| + ‖𝑟(𝐀)𝐛 − alg(𝑟)‖

≤ ‖𝐛‖ max
𝜆∈ℐ

|𝑓(𝜆) − 𝑟(𝜆)|⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
approximation error

+ ‖𝑟(𝐀)𝐛 − alg(𝑟)‖⏟⏟⏟⏟⏟⏟⏟
application error

. (6.3)

In many cases, very good or even optimal scalar rational function approxi-
mations to a given function on a single interval are known or can be easily
computed. Thus, theapproximationerror termcantypicallybemadesmallwith
a rational function of relatively lowdegree [Tre19; NST18].

Of course, this bound is only meaningful if the approximation error term is
small relative to the application error. Indeed,we also have

‖𝑓(𝐀)𝐛 − alg(𝑟)‖ ≥ ∣‖𝑓(𝐀)𝐛 − 𝑟(𝐀)𝐛‖ − ‖𝑟(𝐀)𝐛 − alg(𝑟)‖∣. (6.4)

This shows that the size of ‖𝑓(𝐀)𝐛−alg(𝑟)‖ is rouhgly the size of ‖𝑓(𝐀)𝐛−𝑟(𝐀)𝐛‖
when alg(𝑟) is a good approximation to 𝑟(𝐀)𝐛.

As we noted, rational function approximations commonly are obtained by dis-
cretizing an integral representation using a numerical quadrature approxima-
tion. For instance, thematrix sign functionmay be approximated as

𝑟𝑞(𝐀)𝐯 =
𝑞−1

∑
𝑖=0

𝜔𝑖𝐀(𝐀2 + 𝑧2
𝑖 𝐈)−1𝐯 (6.5)

where 𝑧𝑖 and 𝜔𝑖 are appropriately chosen quadrature nodes and weights
[HHT08].

We canof coursewrite 𝑟𝑞 = 𝑀𝑞/𝑁𝑞, so it’s tempting to set𝑅𝑞 = 1 and𝐇𝑞 = 𝑁𝑞(𝐀)
and then use Lanczos-OR to compute the 𝐇𝑞-norm optimal approximation.
However, while 𝑟𝑞 is convergent to 𝑓 as 𝑞 → ∞, 𝑁𝑞 ∶= ∏𝑞−1

𝑖=0(𝑥2 + 𝑧2
𝑖 ) is not

convergent to any fixed function. In fact 𝑁𝑞 will increase in degree and 𝐇𝑞

will be increasingly poorly conditioned. This presents a numerical difficulty in



chapter 6 page 98

computing theLanczos-OR iterate in this limit. More importantly, it is not clear
that it is meaningful to approximate a function in this way. Indeed, it seems
reasonable to expect that, for fixed 𝑘, as 𝑞 → ∞, our approximation should
be convergent to something. However, we cannot guarantee lan-OR𝑘(𝑀𝑞, 𝑁𝑞) is
convergent in this limit.

On the other hand, akin to our approach for approximating the integral de-
scribed in theprevious subsection,wecancompute the term-wise optimal approx-
imations to each term in the sum representation of 𝑟𝑞 and output

𝑞−1

∑
𝑖=0

𝜔𝑖𝐐([�̂�2]∶𝑘,∶𝑘 + 𝑧2
𝑖 𝐈)−1𝐓𝐞0.

In this case, as 𝑞 → ∞, the approximation is convergent to the integral output.
Itwould be interesting to understandwhen a term-wise optimal approximation
behaves nearly optimally.

6.4 Numerical experiments

6.4.1 The matrix sign function

We now provide several examples which illustrate various aspects of the con-
vergence properties of Lanczos-OR and Lanczos-OR based algorithms, and
showwhen these newmethods can outperformmore standard techniques like
the classic Lanczos-FA.

As we noted in Section 6.3.1, Lanczos-OR can be used to obtain an approxima-
tion to thematrix sign function. A related approach,which interpolates the sign
function at the so called “harmonicRitzvalues”, is described in [Esh+02, Section
4.3]. The harmonic Ritz values are characterized by the generalized eigenvalue
problem

[�̂�2]∶𝑘,∶𝑘𝐲 = 𝜃𝐓𝐲

and are closely related to MINRES in the sense that MINRES produces a poly-
nomial interpolating 1/𝑥 at the harmonic Ritz values [PPV95]. Finally, a stan-
dard approach is using Lanczos-FA (or equivalently, Gaussian quadrature) as
described in Chapters 3 and 4.
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Spectrum approximation

In this example, we show the spectrum approximations induced by the al-
gorithms described above. We now set 𝐀 to be a diagonal matrix with 1000
eigenvalues set to the quantiles of a Chi-squared distributionwith parameters
𝛼 = 1 and 𝛽 = 10. We set 𝑘 = 10 and consider approximations to the function
𝑐 ↦ 𝐯H𝟙[𝐀 ≤ 𝑐]𝐯 for a range of values 𝑐. Here 𝟙[𝑥 ≤ 𝑐] = (1 − sign(𝑥 − 𝑐))/2 is
one if 𝑥 ≤ 𝑐 and zero otherwise. We pick 𝐯 as a unit vectorwith equal projection
onto eacheigencomponent so that𝐯H𝟙[𝐀 ≤ 𝑐]𝐯gives the fractionof eigenvalues
of 𝐀 below 𝑐. In the 𝑛 → ∞ limit, this function will converge pointwise to the
cumulative distribution of aChi-squared randomdistributionwith parameters
𝛼 = 1 and 𝛽 = 10. The results are shown in Figure 6.1.

Note that the Lanczos-FA based approach is piecewise constant with jumps at
each eigenvalue of 𝐓. On the other hand, the harmonic Ritz value and Lanczos-
OR based approaches produce continuous approximations to the spectrum. In
this particular example, the spectrum of 𝐀 is near to a smooth limiting density,
so the harmonic Ritz value and Lanczos-OR based approaches seem to produce
better approximations. Note that these approximations differ from the KPM
approximations in Chapter 4 in that, like Gaussian quadrature, they adapt
automatically to the spectrum of 𝐀.

We note that it is not typically possible to pick 𝐯 with equal projection onto
each eigencomponent since the eigenvectors of 𝐀 are unknown. However, by
choosing 𝐯 from a suitable distribution, it can be guaranteed that 𝐯 has roughly
equal projection onto each eigencomponent. This is discussed thoroughly in
Chapter 4.

Quality of approximation

We now study how the number of matrix vector products impact the quality of
approximation for a fixed sign function.

We construct a matrix with 400 eigenvalues, 100 of which are the negatives of
the values of a model problem (10.1) with parameters 𝜅 = 102, 𝜌 = 0.9, and
𝑛 = 100 and 300 of which are the values of a model problemwith parameters
𝜅 = 103, 𝜌 = 0.8, 𝑛 = 300. We then compute the Lanczos-OR induced
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Figure 6.1: Comparison of Lanczos-based spectrum approximation
algorithms. Legend: Lanczos-OR induced approximation ( ),
Lanczos-FA (GQ) ( ), harmonic Ritz values based approximation
( ), and limiting density ( ). Takeaway: The Lancos-OR and
harmonic Ritz value based approximations produce smooth approxi-
mations to the spectral density.

approximation, the Lanczos-FA approximation, the harmonic Ritz value based
approximation from [Esh+02], and the optimal 𝐀2-norm approximation to the
matrix sign function. The results are shown in Figure 6.2. In all cases, we
use the Lanczos algorithmwith full reorthogonalization. Because eigenvalues
of 𝐓 may be near to zero, Lanczos-FA exhibits oscillatory behavior On the
other hand, the Lanczos-ORbased approach and theharmonicRitzvalue based
approachhavemuchsmoother convergence. Note that theLanczos-OR induced
approximation is not optimal, although it seems to perform close to optimally
after a few iterations.

6.4.2 Rational matrix functions

We now illustrate the effectiveness of the Lanczos-OR based approach to ap-
proximating rational matrix functions described in Section 6.3.2.
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Figure 6.2: Optimality ratio for 𝐀2-norm errors for approximat-
ing sign(𝐀)𝐯. Legend: Lanczos-OR induced approximation ( ),
Lanczos-FA (GQ) ( ), harmonic Ritz values based approximation
( ) optimal ( ). Takeaway: The Lanczos-OR induced approxi-
mation to thematrix sign function performswell.

Sign function

In this example, we use the same spectrum as in the first example. However,
rather than approximating the sign function directly, we instead use Lanczos-
OR to approximate each term of a proxy rational function of the form (6.6).
In particular, we consider the best uniform approximation1 of degree (39, 40)
to the sign function on [−103, 1] ∪ [1, 103]. Such an approximation is due
to Zolotarev [Zol77], an can be derived from the more well known Zolotarev
approximation to the inverse square root functionon [1, 106]. Our implementa-
tion follows thepartial fractions implementation in theRationalKrylovToolbox
[BEG20] and involves computing the sum of 20 terms of degree (1, 2). The/
results are shown in Figure 6.3.

1Note that the eigenvalues of 𝐀 live in [−102, −1] ∪ [1, 103], so we could have used an asym-
metric approximation to the sign function. Thiswould reduce the degree of the rational function
required to obtain an approximation of given accuracy, but the qualitative behavior of Lanczos-
OR-lmwould not change substantially.
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Figure 6.3: 𝐀2-norm error in Lanczos-OR-lm based rational approx-
imation to matrix sign function. Legend: Lanczos-OR-lm based ap-
proximation of matrix sign function with ( ) and without ( ),
reorthogonalization. Lanczos-OR-lm based approximation of proxy
rational matrix function with ( ) and without ( ) reorthogo-
nalization Takeaway: Lanczos-OR-lm can be applied to each term of a
proxy rational function approximation of the sign function.

At least while while the application error for the Lanczos-OR approximation
to the proxy rational matrix function is large relative to the approximation
error, then as seen in (6.3), the error in approximating thematrix sign function
is similar to the error in approximating the proxy rational matrix function.
However, as seen in (6.4), the final accuracy of approximating the matrix sign
function is limited by the quality of the scalar approximation.

We also note that it reallyonlymakes sense to use Lanczos-OR-lmwith a short-
recurrence version of Lanczos, inwhich case the effects of a perturbed Lanczos
recurrence are prevalent. In particular, as we noted in Chapter 1 and discuss
in detail in Chapter 8, the algorithm encounters a delay of convergence as
compared towhatwould happenwith reorthogonalization.
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6.4.3 Lanczos-FA vs Lanczos-OR vs CG

We now illustrate the effectiveness of the Lanczos-OR based approach to ap-
proximating rationalmatrix functions described in Section 6.3.2. Thenwe com-
pare an existing low-memory approach, called multishift CG, to the analogous
approaches based on Lanczos-OR-lm and Lanczos-FA-lm.

Throughout this example,wewill assumethat 𝑟 is a rational functionof the form

𝑟 =
𝑚

∑
𝑖=1

𝐴𝑖𝑥2 + 𝐵𝑖𝑥 + 𝐶𝑖
𝑎𝑖𝑥2 + 𝑏𝑖𝑥 + 𝑐𝑖

. (6.6)

so that 𝑟(𝐀)𝐛 has the form

𝑟(𝐀)𝐛 =
𝑚

∑
𝑖=1

(𝐴𝑖𝐀2 + 𝐵𝑖𝐀 + 𝐶𝑖𝐈)𝐱𝑖,

where 𝐱𝑖 is obtained by solving the linear system of equations (𝑎𝑖𝐀2 + 𝑏𝑖𝐀 +
𝑐𝑖𝐈)𝐱𝑖 = 𝐛. This is relatively general since any real valued rational function
𝑟 ∶ ℝ → ℝ with numerator degree smaller than denominator degree and only
simple poles can be written in this form (in fact, this would be true even if
𝐴𝑖 = 0). A rangeof rational functionsof this formappearnaturally; for instance
by a quadrature approximation to a Cauchy integral formula representation of
𝑓 [HHT08]. Similar rational functions are seen in [Esh+02; FS09] and in the
rational approximation tot the sign function given described in (6.5).

In certain cases, the shift invariance of Krylov subspace can be used to si-
multaneously compute all of the 𝐱𝑖 using the same number of matrix-vector
products as would be required to approximate a single 𝐱𝑖. Specifically, suppose
(𝑎𝑖𝐀2+𝑏𝑖𝐀+𝑐𝑖𝐈)−1𝐯 canbewrittenas𝐁+𝑧𝑖𝐈 forall 𝑖 = 1, … , 𝑚. Then𝒦𝑘(𝐁−𝑧𝑖𝐈, 𝐯)) =
𝒦𝑘(𝐁, 𝐯), so by constructing a single Krylov subspace 𝒦𝑘(𝐁, 𝐯), one can compute
all of the 𝐱𝑖 and therefore 𝑟(𝐀)𝐯. The resulting algorithms are typically called
multishift-CG or multishift-MINRES [Esh+02; FS08a; FS08a; GS21; Ple+20].
However, such an approach only works when 𝑎𝑖 = 0 or 𝑎𝑖 = 𝑎 and 𝑏𝑖 = 𝑏,
and in the latter case, matrix-vector productswith 𝐁 require twomatrix-vector
products with 𝐀 and convergence depends only on the properties of 𝐀2 rather
than 𝐀.

Instead, we might apply Lanczos-FA-lm to compute individual terms of 𝑟(𝐀)𝐯.
However, if (𝑎𝑖𝐀2 + 𝑏𝑖𝐀 + 𝑐𝑖𝐈) is indefinite, then Lanczos-FA may exhibit os-
cillatory behavior due to eigenvalues of (𝑎𝑖𝐓2 + 𝑏𝑖𝐓 + 𝑐𝑖𝐈) near zero. This may
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result inabreakdownof Lanczos-FA-lmsimilar to thebreakdownwhichmaybe
encountered by standard implementations of CG on indefinite linear systems.
Lanczos-OR-lm avoids such issues.

To highlight some of the tradeoffs between the algorithms, we construct sev-
eral test problems by placing eigenvalues uniformly throughout the specified
intervals. In all cases, 𝐯 has uniform weight onto each eigencomponent. The
outputs are computed using standard Lanczos, but we note that the spectrum
and number of iterations are such that the behavior is quite similar to if full
reorthgonalization were used. In particular, orthogonality is not lost since no
Ritz value converges. The results of our experiments are shown in Figure 6.4.

0 25 50
number of matvecs: 𝑘

10−14

10−12
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0 25 50
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Figure 6.4: Comparison of (𝐀2 + 𝑐𝐈)-norm errors for CG and Lanczos-
FA for computing (𝐀2 + 𝑐𝐈)−1𝐯 with 𝑐 = 0.05. Here CG works with
𝐀2 + 𝑐𝐈 and requires two matrix-vector products per iteration whereas
Lanczos-FA works with 𝐀 and requires just one. Legend: Lanczos-OR
( ), Lanczos-FA ( ), and CG on squared system ( ). Left:
eigenvalues on [1, 10]. Middle: eigenvalues on [−1.5, −1] ∪ [1, 10]. Right:
eigenvalues on [−10, −1] ∪ [1, 10]. Legend: Optimal algorithms have
manynice convegence properties.

We consider approximations to 𝑟 = 1/(𝑥2 + 0.05) with eigenvalues spacedwith
increments of 0.005 throughout [1, 10], [−1.5, −1] ∪ [1, 10], and [−10, −1] ∪
[1, 10] respectively. For each example, the condition number of 𝐀2 + 0.05𝐈 is
roughly 100 and the eigenvalues of 𝐀2 + 0.05𝐈 fill out the interval [1, 100.05].
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As such we observe that multishift CG converges at a rate (in terms of matrix
products with 𝐀) of roughly exp(−𝑘/√𝜅(𝐀2)) = exp(−𝑘/√100) on all of the
examples.

In the first example, 𝐀 is positive definite. Here Lanczos-FA and Lanczos-OR
converge similarly to CG on 𝐀 at a rate of roughly exp(−2𝑘/√10), where 𝑘 is the
number of matrix-vector productswith 𝐀.

In the next example 𝐀 is indefinite. The convergence of CG is unchanged,
becauseCGacts on𝐀2 +𝑐𝐈, it is unable to “see” the asymmetry in the eigenvalues
of 𝐀. While the convergence of Lanczos-FA and Lanczos-OR is slowed consid-
erably, both methods converges more quickly than CG due to the asymmetry
in the intervals to the left and the right of the origin. The convergence of
these methods is at a rate of roughly exp(−𝑘/√15), although the exact rate is
more complicated to compute [Fis96; Sch11]. We also note the the emergence
of oscillations in the error curve of Lanczos-FA.

In the third example, the asymmetry in the eigenvalue distribution about the
origin is removed, andLanczos-FAandLanczos-ORconverge at a rateverysim-
ilar to that of multishift CG. Note that Lanczos-FA displays larger oscillations,
since the symmetry of the eigenvalue distribution of 𝐀 ensures that 𝐓 has an
eigenvalue at zero whenever 𝑘 is odd. However, the size of the oscillations is
regularized by the fact that 𝑐 > 0.
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Chapter 7

Spectrum dependent bounds and
a posteriori error estimates

Thus far, we have not rigorously justified why Lanczos-FA and other non-
optimal Lanczos-based methods typically outperform explicit polynomial
methods. In Sections 7.1 to 7.3, we describe a general technique for bounding
the error of Lanczos-basedmethods for matrix functions via a reduction to the
error of Lanczos-FAused to solve a certain linear systemof equations. Since the
error of Lanazos-FAon linear systems iswell studied, this approach canbeused
toderive apriori error bounds aswell as a posteriori error bounds and estimates
for general functions. The effectiveness of our approach is demonstrated by a
range of numerical experiments. Finally, in Section 7.4, we discuss the error of
Lanczos-FA on indefinite linear systemswhere Lanczos-FA is not optimal. These
bounds explainwhyLanczos-FA performswell in theory.

7.1 An integral representation of the Lanczos-FA error

Assuming 𝑓 ∶ ℂ → ℂ is analytic in a neighborhood of the eigenvalues of
𝐀 and Γ is a simple closed curve or union of simple closed curves inside that
neighborhood and enclosing the eigenvalues of 𝐀, the Cauchy integral formula
states that

𝑓(𝐀)𝐯 = − 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧)(𝐀 − 𝑧𝐈)−1𝐯 d𝑧. (7.1)
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If Γ also encloses the eigenvalues of 𝐓 we can similarly write the Lanczos-FA
approximation as

lan-FA𝑘(𝑓) = − 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧)𝐐(𝐓 − 𝑧𝐈)−1𝐐H𝐯 d𝑧. (7.2)

Observing that the integrand of (7.1) contains the solution to the shifted linear
system (𝐀 − 𝑧𝐈)𝐱 = 𝐯while (7.2) contains the Lanczos-FA approximation to the
solution,wemake the following definition.

Definition 7.1. For 𝑧 ∈ ℂ, define the 𝑘-th Lanczos-FA error and residual for the linear

system (𝐀 − 𝑧𝐈)𝐱 = 𝐯 as,

err𝑘(𝑧, 𝐀, 𝐯) ∶= (𝐀 − 𝑧𝐈)−1𝐯 − 𝐐(𝐓 − 𝑧𝐈)−1𝐐H𝐯,

res𝑘(𝑧, 𝐀, 𝐯) ∶= 𝐯 − (𝐀 − 𝑧𝐈)𝐐(𝐓 − 𝑧𝐈)−1𝐐H𝐯.

Aswith the Lanczos-FA approximation, wewill typically omit the arguments𝐀 and𝐯, and
in the case 𝑧 = 0, we will often write err𝑘 and res𝑘.

With Theorem 7.1 in place, the error of the Lanczos-FA approximation to 𝑓(𝐀)𝐯
can bewritten as

𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓) = − 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧) err𝑘(𝑧)d𝑧. (7.3)

Therefore, if for every 𝑧 ∈ Γ we are able to understand the convergence of
Lanczos-FA on the linear system (𝐀 − 𝑧𝐈)𝐱 = 𝐯, then this formula lets us
understand the convergence of Lanczos-FA for 𝑓(𝐀)𝐯. To simplify bounding
(7.3), we will write err𝑘(𝑧) for all 𝑧 ∈ Γ in terms of the error in solving a single
shifted linear system.

Todo this,weuse the fact that theLanczos factorization (1.3) canbe shifted, even
for complex 𝑧, to obtain

(𝐀 − 𝑧𝐈)𝐐 = 𝐐(𝐓 − 𝑧𝐈) + 𝛽𝑘−1𝐪𝑘𝐞T𝑘−1. (7.4)

That is, Lanczos applied to (𝐀, 𝐯) for 𝑘 steps produces output 𝐐 and 𝐓 satisfying
(1.3)while Lanczos applied to (𝐀 − 𝑧𝐈, 𝐯) for 𝑘 steps produces output 𝐐 and 𝐓 − 𝑧𝐈
satisfying (7.4). Using this fact, we have the followingwell known lemma.

Lemma 7.2. For all 𝑧where𝐓 − 𝑧𝐈 is invertible,

res𝑘(𝑧) = ‖𝐯‖2
⎛⎜⎜
⎝

(−1)𝑘

det(𝐓 − 𝑧𝐈)

𝑘−1

∏
𝑗=0

𝛽𝑗
⎞⎟⎟
⎠

𝐪𝑘.
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Proof. From (7.4), and the fact that 𝐐’s first column is 𝐯/‖𝐯‖2, it is clear that,

(𝐀 − 𝑧𝐈)𝐐(𝐓 − 𝑧𝐈)−1𝐐H𝐯 = (𝐀 − 𝑧𝐈)𝐐(𝐓 − 𝑧𝐈)−1‖𝐯‖2𝐞0

= 𝐐‖𝐯‖2𝐞0 + 𝛽𝑘𝐪𝑘𝐞H𝑘−1(𝐓 − 𝑧𝐈)−1‖𝐯‖2𝐞0

= 𝐯 + 𝛽𝑘𝐪𝑘𝐞H𝑘−1(𝐓 − 𝑧𝐈)−1‖𝐯‖2𝐞0.

Using the formula (𝐓 − 𝑧𝐈)−1 = (1/det(𝐓 − 𝑧𝐈)) adj(𝐓 − 𝑧𝐈), we see that

𝐞H𝑘−1(𝐓 − 𝑧𝐈)−1𝐞0 = (−1)𝑘−1

det(𝐓 − 𝑧𝐈)

𝑘−2

∏
𝑗=0

𝛽𝑗.

The result then follows by combining these expressions.

We use Lemma 7.2 to relate err𝑘(𝑧) to err𝑘(𝑤) for any 𝑧, 𝑤 ∈ ℂ.

Definition 7.3. For𝑤, 𝑧 ∈ ℂ define ℎ𝑤,𝑧 ∶ ℝ → ℂ and ℎ𝑧 ∶ ℝ → ℂ by

ℎ𝑤,𝑧(𝑥) ∶= 𝑥 − 𝑤
𝑥 − 𝑧 , ℎ𝑧(𝑥) ∶= 1

𝑥 − 𝑧.

Corollary 7.4. For all 𝑧, 𝑤 ∈ ℂ, where𝐀 − 𝑧𝐈 and𝐀 − 𝑤𝐈 are both invertible,

err𝑘(𝑧) = det(ℎ𝑤,𝑧(𝐓)) ℎ𝑤,𝑧(𝐀) err𝑘(𝑤)

res𝑘(𝑧) = det(ℎ𝑤,𝑧(𝐓)) res𝑘(𝑤).

Proof. ByLemma 7.2,

det(𝐓 − 𝑧𝐈) res𝑘(𝑧) = det(𝐓 − 𝑤𝐈) res𝑘(𝑤).

Thus,
res𝑘(𝑧) = det(𝐓 − 𝑤𝐈)

det(𝐓 − 𝑧𝐈) res𝑘(𝑤) = det(ℎ𝑤,𝑧(𝐓)) res𝑘(𝑤).

Noting that res𝑘(𝑧) = (𝐀 − 𝑧𝐈) err𝑘(𝑧) and res𝑘(𝑤) = (𝐀 − 𝑤𝐈) err𝑘(𝑤), we obtain
the relation between the errors,

err𝑘(𝑧) = det(ℎ𝑤,𝑧(𝐓))(𝐀 − 𝑧𝐈)−1(𝐀 − 𝑤𝐈) err𝑘(𝑤)

= det(ℎ𝑤,𝑧(𝐓)) ℎ𝑤,𝑧(𝐀) err𝑘(𝑤).

In summary, combining (7.3) and Corollary 7.4we have the following corollary.
This result is by no means new, and appears throughout the literature; see for
instance [FS09] and [FGS14b, Theorem 3.4].
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Corollary 7.5. Suppose𝐀 is a Hermitianmatrix and 𝑓 ∶ ℂ → ℂ is a function analytic in

a neighborhood of the eigenvalues of 𝐀 and 𝐓, where 𝐓 is the tridiagonal matrix output by

Lanczos run on𝐀, 𝐯 for 𝑘 steps. Then, if Γ is a simple closed curve or union of simple closed

curves inside this neighborhood and enclosing the eigenvalues of𝐀 and𝐓 and𝑤 ∈ ℂ is such

that𝑤 ∉ Λ(𝐓) ∪ Λ,

𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓) = (− 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧) det(ℎ𝑤,𝑧(𝐓)) ℎ𝑤,𝑧(𝐀)d𝑧) err𝑘(𝑤).

7.1.1 A reduction to linear system error

Ourmain result is aflexiblebound for theLanczos-FAerror, obtainedbybound-
ing the integral in the right-hand side of Corollary 7.5. As we will see in Sec-
tion 7.2,we can instantiate this theorem to obtain effective a priori and a poste-
riori error bounds inmany settings.

Theorem 7.6. In the setting of Corollary 7.5, if for some 𝑆, 𝑆0, … , 𝑆𝑘−1 ⊂ ℝ we have

Λ ⊂ 𝑆0 and 𝜆𝑖(𝐓) ∈ 𝑆𝑖 for 𝑖 = 0, … , 𝑘 − 1, then

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ ⎛⎜
⎝

1
2𝜋 ∮

Γ
|𝑓(𝑧)| ⎛⎜

⎝

𝑘−1

∏
𝑖=0

‖ℎ𝑤,𝑧‖𝑆𝑖
⎞⎟
⎠

‖ℎ𝑤,𝑧‖𝑆|d𝑧|)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

integral term

‖err𝑘(𝑤)‖.
⏟⏟⏟⏟⏟

linear system error

Analogously,we have a bound for Gaussian quadrature

Theorem 7.7. In the setting of Corollary 7.5, if for some 𝑆, 𝑆0, … , 𝑆𝑘−1 ⊂ ℝ we have

Λ ⊂ 𝑆0 and 𝜆𝑖(𝐓) ∈ 𝑆𝑖 for 𝑖 = 0, … , 𝑘 − 1, then

|𝐯H𝑓(𝐀)𝐯 − ∫ 𝑓 d[Ψ]gq2𝑘−1| ≤ ⎛⎜
⎝

1
2𝜋 ∮

Γ
|𝑓(𝑧)| ⎛⎜

⎝

𝑘−1

∏
𝑖=0

‖ℎ𝑤,𝑧‖2
𝑆𝑖
⎞⎟
⎠

‖ℎ𝑧‖𝑆|d𝑧|⎞⎟
⎠⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

integral term

‖res𝑘(𝑤)‖2
2.

⏟⏟⏟⏟⏟
linear system error

Theaboveboundsdependonourchoicesof Γ,𝑤, and the sets 𝑆, 𝑆0, … , 𝑆𝑘−1,which
must contain theeigenvaluesof 𝐀and𝐓𝑘. Thesets𝑆, 𝑆0, … , 𝑆𝑘−1 shouldbechosen
basedon the informationwehaveabout𝐀and𝐓𝑘. For example,wecould takeall
these sets to be the eigenvalue range ℐ(𝐀). If we havemore information a priori
about the eigenvalues of 𝐀, we can obtain a tighter bound by choosing smaller
𝑆, with correspondingly lower ‖ℎ𝑤,𝑧‖𝑆. For an a posteriori bound, we can simply
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set 𝑆𝑖 = {𝜆𝑖(𝐓𝑘)}, for 𝑖 = 0, … , 𝑘 − 1. This gives an optimal value for ‖ℎ𝑤,𝑧‖𝑆. Both
approaches are detailed in Section 7.2.

We emphasize that, in both bounds, the integral term and linear system error
term in the theorem are entirely decoupled. Thus, once the integral term is
computed, bounding the error of Lanczos-FA for 𝑓(𝐀)𝐯 is reduced to bounding
‖err𝑘(𝑤)‖, and if the integral term can be bounded independently of 𝑘, Theo-
rem 7.6 implies that, up to a constant factor, the Lanczos-FA approximation to
𝑓(𝐀)𝐯 converges at least as fast as ‖err𝑘(𝑤)‖.

Note that Theorem 7.6 depends on ‖err𝑘(𝑤)‖ whereas Theorem 7.7 depends on
‖res𝑘(𝑤)‖2

2. Thus, heuristically,we can expect the quadratic form to converge at a
rate twice that of thenormof the error of thematrix function. This is exacted as
Gaussian quadrature is exact for polynomials of degree2𝑘−1whereas Lanczos-
FA is exact for polynomials of degree 𝑘 − 1. In the case that the contour Γ does
not pass through ℐ, the bound of Theorem 7.7 is essentially as easy to compute
as that of Theorem 7.6. However, if the contour passes through ℐ at 𝑤, to ensure
that𝑆doesnot containpoints in thecontour, itmustbechosenasasetother than
ℐ. This setmust contain all of 𝐀’s eigenvalues andwemust bound its distance to
the contour (in particular, to 𝑤).

Proof of Theorem 7.6. Webegin by taking the norm on both sides of Corollary 7.5.
Applying the triangle inequality for integrals and using the fact that ‖ ⋅ ‖ is
induced by amatrixwith the same eigenvectors as 𝐀 (see Lemma 10.1) we have

‖𝑓(𝐀)𝐯− lan-FA𝑘(𝑓)‖ ≤ ( 1
2𝜋 ∮

Γ
|𝑓(𝑧)||det(ℎ𝑤,𝑧(𝐓))|‖ℎ𝑤,𝑧(𝐀)‖2|d𝑧|) ‖err𝑘(𝑤)‖. (7.5)

Next, since Λ ⊆ 𝑆 then

‖ℎ𝑤,𝑧(𝐀)‖2 = max
𝑖=0,…,𝑛−1

|ℎ𝑤,𝑧(𝜆𝑖(𝐀))| ≤ ‖ℎ𝑤,𝑧‖𝑆,

and similarly, if 𝜆𝑖(𝐓) ∈ 𝑆𝑖 for 𝑖 = 0, … , 𝑘 − 1, then

|det(ℎ𝑤,𝑧(𝐓))| =
∣∣∣∣

𝑘−1

∏
𝑖=0

ℎ𝑤,𝑧(𝜆𝑖(𝐓))
∣∣∣∣
≤

𝑘−1

∏
𝑖=0

‖ℎ𝑤,𝑧‖𝑆𝑖
. (7.6)

Combining these inequalities yields the result.
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Proof of Theorem 7.7. Recall

𝐯Hlan-FA𝑘(𝑓) = 𝐯H𝐐𝑓(𝐓)𝐐H𝐯 = ‖𝐯‖2
2𝚤 ∶ 𝐞H0 𝑓(𝐓)𝐞0 = ∫ 𝑓 d[𝑓]gq2𝑘−1.

Since 𝐀 is Hermitian, (𝐀 − 𝑧𝐈)H = 𝐀 − 𝑧𝐈. Thus, since

𝐯H(𝐀 − 𝑧𝐈)−1 = ((𝐀 − 𝑧𝐈)−1𝐯)H = (lan-FA𝑘(ℎ𝑧) + err𝑘(𝑧))𝐯)H

we can expand the quadratic form error as

𝐯Herr𝑘(𝑧) = 𝐯H(𝐀 − 𝑧𝐈)−1res𝑘(𝑧) = (lan-FA𝑘(ℎ𝑧)) + err𝑘(𝑧))H res𝑘(𝑧).

Now, by definition, lan-FA𝑘(ℎ𝑧(𝑥)) = 𝐐ℎ𝑧(𝐓)𝐐H𝐯 and by Lemma 7.2 res𝑘(𝑧) is
proportional to 𝐪𝑘+1. Thus, since, at least in exact arithmetic, 𝐪𝑘+1 is orthogonal
to 𝐐,

𝐯Herr𝑘(𝑧) = err𝑘(𝑧)Hres𝑘(𝑧) = ((𝐀 − 𝑧𝐈)−1res𝑘(𝑧))Hres𝑘(𝑧).

Next, using Corollary 7.4 and the fact that ℎ𝑤,𝑧(𝑥)ℎ𝑤,𝑧(𝑥) = |ℎ𝑤,𝑧(𝑥)|2 for 𝑤, 𝑥 ∈ ℝ,

𝐯Herr𝑘(𝑧) = |det(ℎ𝑤,𝑧(𝐓))|2res𝑘(𝑤)H(𝐀 − 𝑧𝐈)−1res𝑘(𝑤).

We then have,

|𝐯Herr𝑘(𝑧)| ≤ |det(ℎ𝑤,𝑧(𝐓))|2‖(𝐀 − 𝑧𝐈)−1‖2‖res𝑘(𝑤)‖2
2.

Applying the Cauchy integral formula we therefore obtain a bound for the
quadratic form error analogous to Theorem 7.6we obtain the result.

7.1.2 Comparison with previous work

Our framework for analyzing Lanczos-FAhas four propertieswhich differenti-
ate it frompastwork: (i) it is applicable to awide range of functions, (ii) it yields
apriori boundsdependent onfine-grainedproperties of the spectrumof 𝐀 such
as clustered or isolated eigenvalues, (iii) it can be used a posteriori as a practical
stopping criterion, and (iv) it is applicablewhen computations are carried out in
finite precision arithmetic. To the best of our knowledge, no existing analysis
satisfies more than two of these properties simultaneously. In this section, we
provide a brief overviewof themost relevant pastwork.
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Most directly related to our framework is a series of works which also make
use of the shift-invariance of Krylov subspaces when 𝑓 is a Stieltjes function1

[FGS14a; FS15; ITS09] or a certain type of rational function [Fro+13; FS08b;
FS09]. These analyses are applicable a priori and a posteriori and in fact allow
for corresponding error lower bounds as well. However, these bounds cannot
be applied to more general functions, and the impact of a perturbed Lanczos
recurrence in finite precision is not considered.

The most detailed generally applicable analysis is [MMS18], which extends
[DK91; DK95] and studies Theorem 6.4, the classical bound for Lanczos-
FA based on polynomial approximation on ℐ, when Lanczos is run in finite
precision arithmetic. However, as we have seen throughout this thesis,
Theorem6.4 is often toopessimistic inpractice as it doesnotdependon thefine-
grained properties about the distribution of eigenvalues. Another generally
applicable analysis is [HLS98], which suggests replacing err𝑘(𝑧) with res𝑘(𝑧) in
(7.3). Since res𝑘(𝑧) can be computed once the outputs of Lanczos have been
obtained, the resulting integral can be computed (or at least approximated by a
quadrature rule). However, this approach does not take into account the actual
relationship between res𝑘(𝑧) and err𝑘(𝑧), and therefore gives only an estimate of
the error, not a true bound. Another Cauchy integral formula based approach is
[HL97] which shows that Lanczos-FA exhibits superlinear convergence for the
matrix exponential and certain other specific analytic functions.

There are a variety of other bounds specialized to individual functions. For
example, it is known that if 𝐀 is nonnegative definite and 𝑡 > 0, then the error
in the Lanczos-FA approximation for the matrix exponential exp(𝑡𝐀)𝐯 can be
related to themaximumover 𝑠 ∈ [0, 𝑡]of the error in the optimal approximation
to exp(𝑠𝐀)𝐯 over a Krylov space of slightly lower dimension [DGK98]. More
recent work involving the matrix exponential are [JL14; JAK19; Jaw21]. There
is also a range of work which analyzes the convergence of Lanczos-FA and re-
latedmethods for computing the square root and sign functions [Bor99; Bor03;
Esh+02].

1A function 𝑓 defined on the positive real axis is a Stieltjes function if and only if 𝑓(𝑥) ≥ 0 for
all 𝑥 ∈ ℝ and 𝑓 has an analytic extension to the cut plane ℂ ∖ (−∞, 0] satisfying Im(𝑓(𝑥)) ≤ 0 for
all 𝑥 in the upper half plane [Ber07, Theorem 3.2] [AK65, p. 127 attributed to Krein].
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7.2 Applying our framework

We proceed to showhow to effectively bound the integral term of Theorem 7.6,
to give a priori and a posteriori bounds on the Lanczos-FA error, assuming
accurate bounds on ‖err𝑘(𝑤)‖ are available. Throughout this chapter,we assume
𝑤 ∈ ℝ and we do not discuss in detail how to bound this linear system error
– there are many known approaches, both a priori and a posteriori, and the
best bounds to use are often context dependent. Some of these approaches are
similar to those used for Lanczos-OR in Section 5.4.

To use Theorem 7.6, we must evaluate or bound ‖ℎ𝑤,𝑧‖𝑆𝑖
. Towards this end, we

introduce the following lemmas, which apply when 𝑆𝑖 is an interval. These
lemmas are also useful when 𝑆𝑖 is a union of intervals – in that case ‖ℎ𝑤,𝑧‖𝑆𝑖

is
bounded by themaximum bound on any of these intervals. i

Lemma 7.8. For any interval [𝑎, 𝑏] ⊂ ℝ, if 𝑧 ∈ ℂ ∖ [𝑎, 𝑏] and𝑤 ∈ ℝ, we have

‖ℎ𝑤,𝑧‖[𝑎,𝑏] = max {∣𝑎 − 𝑤
𝑎 − 𝑧 ∣ , ∣𝑏 − 𝑤

𝑏 − 𝑧 ∣ , (∣ 𝑧 − 𝑤
Im(𝑧) ∣ if 𝑥∗ ∈ [𝑎, 𝑏] else 0)}

where

𝑥∗ ∶= Re(𝑧)2 + Im(𝑧)2 − Re(𝑧)𝑤
Re(𝑧) − 𝑤 .

Proof. Note that for 𝑥 ∈ ℝ,

|ℎ𝑤,𝑧(𝑥)|2 = ∣𝑥 − 𝑤
𝑥 − 𝑧 ∣

2
= (𝑥 − 𝑤)2

(𝑥 − Re(𝑧))2 + Im(𝑧)2 ,

and

d
d𝑥 (|ℎ𝑤,𝑧(𝑥)|2) = [(𝑥 − Re(𝑧))2 + Im(𝑧)2]2(𝑥 − 𝑤) − (𝑥 − 𝑤)22(𝑥 − Re(𝑧))

[(𝑥 − Re(𝑧))2 + Im(𝑧)2]2 .

Aside from 𝑥 = 𝑤, where ℎ𝑤,𝑧(𝑥) = 0, the only value 𝑥 ∈ ℝ for which
d
d𝑥 (|ℎ𝑤,𝑧(𝑥)|2) = 0 is 𝑥∗. This implies that the only possible local extrema of
|ℎ𝑤,𝑧(𝑥)| on [𝑎, 𝑏] are 𝑎, 𝑏, and 𝑥∗ if 𝑥∗ ∈ [𝑎, 𝑏]. Substituting the expression
for 𝑥∗ into that for |ℎ𝑤,𝑧(𝑥∗)|, one finds, after some algebra, that |ℎ𝑤,𝑧(𝑥∗)| =
|𝑧 − 𝑤|/| Im(𝑧)|.
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Lemma7.9. Fix 𝑟 > 0, let𝒟(𝑐, 𝑡) be the disc in the complex plane centered at 𝑐with radius
𝑡 ≥ 0, and define

𝑋𝑟 = ⋃
𝑥∈[𝑎,𝑏]

𝒟 (𝑥, |𝑥 − 𝑤|
𝑟 ) .

Then for 𝑧 ∈ ℂ ∖ 𝑋𝑟, we have

‖ℎ𝑤,𝑧‖[𝑎,𝑏] ≤ 𝑟.

In particular, if 𝑧 is on the boundary of𝑋𝑟, then ‖ℎ𝑤,𝑧‖[𝑎,𝑏] = 𝑟.

Proof. Let 𝑧 ∈ ℂ ∖ 𝑋𝑟 and pick any 𝑥 ∈ [𝑎, 𝑏]. Since 𝑧 ∉ 𝒟(𝑥, |𝑥 − 𝑤|/𝑟) it follows
that |𝑧−𝑥| > |𝑥 −𝑤|/𝑟 and therefore |ℎ𝑤,𝑧(𝑥)| = |𝑥 −𝑤|/|𝑥 −𝑧| < 𝑟. Maximizing over
𝑥 yields the result.

If 𝑧 is on the boundary of 𝑋𝑟, then for some 𝑥 ∈ [𝑎, 𝑏], |𝑧 − 𝑥| = |𝑥 − 𝑤|/𝑟, which
means that for this 𝑥, |ℎ𝑤,𝑧(𝑥)| = 𝑟.

Note that if 𝑟 ≤ 1 and 𝑤 ∈ ℝ ∖ [𝑎, 𝑏], then the region described in Lemma 7.9 is
simply a disc about 𝑏 if 𝑤 < 𝑎 or a disc about 𝑎 if 𝑤 > 𝑏. If 𝑟 > 1 and 𝑤 is real,
then the region described is that in the discs about 𝑎 and 𝑏 and between the two
external tangents to these two discs.

Similar to Lemma 7.8 we have the following bound on ‖ℎ𝑧‖𝑆𝑖
when 𝑆0 is an

interval. This allows a bound on Theorem 7.7 analogous to (7.5).

Lemma 7.10. For any interval [𝑎, 𝑏] ⊂ ℝ, if 𝑧 ∈ ℂ ∖ [𝑎, 𝑏], we have

‖ℎ𝑧‖[𝑎,𝑏] =

⎧{{{
⎨{{{⎩

1/| Im(𝑧)| Re(𝑧) ∈ ℐ

1/|𝑎 − 𝑧| Re(𝑧) < 𝑎

1/|𝑏 − 𝑧| Re(𝑧) > 𝑏

7.2.1 A priori bounds

We can use Theorem 7.6 to give a priori bounds, as long as we choose 𝑆 and 𝑆𝑖,
𝑖 = 0, … , 𝑘 − 1 independently of 𝐛 (and in turn 𝐓).

The simplest possibility is to take 𝑆 = 𝑆𝑖 = ℐ. In this case, as an immediate
consequence of Theorem 7.6 and Lemma 7.9 we have the following a priori
bound,
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Corollary 7.11. Suppose that for some 𝑤 < 𝜆min, 𝑓 is analytic in a neighborhood of

𝒟(𝜆max, 𝜆max − 𝑤). Then, taking Γ to be the boundary of this disk,

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ ( 1
2𝜋 ∮

Γ
|𝑓(𝑧)||d𝑧|) ‖err𝑘(𝑤)‖

≤ ((𝜆max − 𝑤) max
𝑧∈Γ

|𝑓(𝑧)|) ‖err𝑘(𝑤)‖.

Proof. To obtain the first inequality observe that Lemma 7.9 with [𝑎, 𝑏] = ℐ
implies ‖ℎ𝑤,𝑧‖ℐ = 1 on this contour. The second inequality follows since the
length of Γ is 2𝜋(𝜆max − 𝑤).

This bound is closelyrelated to [FGS14a,Theorem6.6]whichbounds the error in
Lanczos-FA for Stieltjes functions in terms of the error in the Lanczos approx-
imation for a certain linear system.

Corollary 7.11 provides simple reductions to the error of solving a positive def-
inite linear system involving 𝐀 − 𝑤𝐈 using Lanczos. However, these bounds
may be a significant overestimate in practice. In particular, for any 𝑘 > 1,
(7.6) cannot be sharp due to the fact that ‖ℎ𝑤,𝑧‖ℐ = sup𝑥∈ℐ |ℎ𝑤,𝑧(𝑥)| cannot be
attained at every eigenvalue of 𝐓. In fact, for most values 𝜆𝑖(𝐓) andmost points
𝑧 ∈ Γ, we expect |ℎ𝑤,𝑧(𝜆𝑖(𝐓))| ≪ ‖ℎ𝑤,𝑧‖ℐ. Figure 7.1 shows sample level curves for
‖ℎ𝑤,𝑧‖ℐ/| det(ℎ𝑤,𝑧(𝐓))|1/𝑘 which illustrate the slackness in the bound.

To derive sharper a priori bounds, there are several approaches.

First, if more information is knownabout the eigenvaluedistributionof 𝐀, then
the 𝑆𝑖 can be chosen based on this information. For example, it is possible to
exploit the interlacing property of the eigenvalues of 𝐓.

Example 7.12. Suppose 𝐀 has eigenvalues in [0, 1] with a single eigenvalue at
𝜅 > 1. Assume 𝑤 ≤ 0. Then there is at most one eigenvalue of 𝐓 in [1, 𝜅] so in
Theorem 7.6we can pick 𝑆𝑖 = [0, 1] for 𝑖 = 0, … , 𝑘 − 2 and 𝑆𝑘−1 = [0, 𝜅]. We have

|det(ℎ𝑤,𝑧(𝐓))| =
∣∣∣∣

𝑘−1

∏
𝑖=0

ℎ𝑤,𝑧(𝜆𝑖(𝐓))
∣∣∣∣
≤ (‖ℎ𝑤,𝑧‖[0,1])

𝑘−1 ‖ℎ𝑤,𝑧‖[0,𝜅].

If 𝑧 is near to 𝜅 then ‖ℎ𝑤,𝑧‖[0,1] maybemuch smaller than ‖ℎ𝑤,𝑧‖[0,𝜅].

Second, the contour Γ can be chosen to try to reduce the slackness in (7.6).
Intuitively, the slackness is exacerbated when 𝑧 ∈ Γ is close to 𝑆𝑖 but far from
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Figure 7.1: Contour plot of ‖ℎ𝑤,𝑧‖ℐ/|det(ℎ𝑤,𝑧(𝐓))|1/𝑘 as a function of 𝑧 ∈
ℂ for a synthetic example with 𝑤 = 0 (top) and 𝑤 = 1 (bottom), ℐ =
[0.5, 3], andΛ(𝐓) = {0.5, 0.8, 1.2, 1.5, 3} (𝑘 = 5). Larger slackness in (7.6)
corresponds to darker regions. Legend: Here 𝑤 is indicated by thewhite
diamond ( ). and the eigenvalues of 𝐓 are indicated bywhite x’is ( ).
Takeaway: Slackness exchibits structure; inparticular, it is lower far from
Λ.
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𝜆𝑖(𝐓). For instance, for any 𝑘 > 1,

lim
|𝑧|→∞

‖ℎ𝑤,𝑧‖𝑘
ℐ

| det(ℎ𝑤,𝑧(𝐓))| → 1, and ∀𝜆 ∈ ℐ, lim
𝑧→𝜆

‖ℎ𝑤,𝑧‖𝑘
ℐ

|det(ℎ𝑤,𝑧(𝐓))| → ∞.

This behavior is also observed in Figure 7.1.

These observations suggest that we should pick Γ to be far from the spectrum
of 𝐀. Of course, we are constrained by properties of 𝑓 such as branch cuts
and singularities. Moreover, certain contours may increase the slackness in
Theorem 7.6 itself. These considerations are discussed further in Section 7.3.1.

7.2.2 A posteriori error bounds

After the Lanczos factorization (1.3) has been computed, 𝐓 is known and Λ(𝐓)
can be cheaply computed. Thus, in Theorem 7.6we can take 𝑆𝑖 = {𝜆𝑖(𝐓)} for 𝑖 =
0, … , 𝑘 − 1, which is the best possible choice. In this case (7.6) is an equality and
det(ℎ𝑤,𝑧(𝐓)) = det(𝐓−𝑤)/ det(𝐓−𝑧) canbecomputedvia tridiagonaldeterminant
formulas rather than using the eigenvalues of 𝐓.

If ℐ is not known, the extreme Ritz values 𝜆min(𝐓) and 𝜆max(𝐓) can be used to
estimate the extreme eigenvalues of 𝐀 [KW92; PSS82]. All together, this means
that it is not difficult to efficiently obtain accurate estimates of the bound from
Theorem 7.6.

7.2.3 Numerical computation of integrals

Typically, to produce an a priori or a posteriori error bound, the integral term
in Theorem 7.6must be computed numerically. Consider a discretization of the
integral

𝑓(𝐀) = − 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧)(𝐀 − 𝑧𝐈)−1d𝑧

using nodes 𝑧𝑖 and weights 𝑤𝑖, 𝑖 = 0, 1, … , 𝑞 − 1. This yields a rational matrix
function

𝑟𝑞(𝐀) ∶= − 1
2𝜋𝒊

𝑞−1

∑
𝑖=0

𝑤𝑖𝑓(𝑧𝑖)(𝐀 − 𝑧𝑖𝐈)−1.

Using the triangle inequality, we canwrite

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖
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≤ ‖𝑓(𝐀)𝐯 − 𝑟𝑞(𝐀)𝐯‖ + ‖𝑟𝑞(𝐀)𝐯 − lan-FA𝑘(𝑟𝑞))‖ + ‖lan-FA𝑘(𝑟𝑞) − lan-FA𝑘(𝑓)‖

≤ 2 ( max
𝑥∈Λ∪Λ(𝐓)

|𝑓(𝑥) − 𝑟𝑞(𝑥)|) ‖𝐯‖ + ‖𝑟𝑞(𝐀)𝐯 − lan-FA𝑘(𝑟𝑞)‖. (7.7)

Now, observe that analogous to Theorem 7.6,

‖𝑟𝑞(𝐀)𝐯 − lan-FA𝑘(𝑟𝑞)‖

≤ ⎛⎜⎜
⎝

1
2𝜋

𝑞−1

∑
𝑖=0

𝑤𝑖 |𝑓(𝑧𝑖)| ⎛⎜
⎝

𝑘−1

∏
𝑖=0

‖ℎ𝑤,𝑧‖𝑆𝑖
⎞⎟
⎠

‖ℎ𝑤,𝑧‖𝑆0

⎞⎟⎟
⎠

‖err𝑘(𝑤)‖. (7.8)

If we use the same nodes and weights to evaluate the integral term in Theo-
rem 7.6, we obtain exactly the expression on the right hand side of (7.8). Thus,
this discretization of Theorem 7.6 is a true upper bound for the Lanczos-FA
error towithin an additive error of size equal to twice the approximation error
of 𝑟(𝑥) to 𝑓(𝑥) on Λ ∪ Λ(𝐓) times ‖𝐯‖. In many cases, we expect exponential
convergence of 𝑟𝑞 to 𝑓, which implies that this term can be made less than any
desired value 𝜖 > 0 using a number of quadrature nodes that grows only as the
logarithm of 𝜖−1 [HHT08; TW14].

We note that fast convergence of 𝑟𝑞 to 𝑓 suggests that, instead of applying
Lanczos-FA, we can approximate 𝑓(𝐀)𝐯 by first finding 𝑟𝑞 and then solving a
small number of linear systems (𝐀 − 𝑧𝑖𝐈)𝐱𝑖 = 𝐯 to compute 𝑟𝑞(𝐀)𝐯. Solving these
systemswith any fast linear system solver yields an algorithm for approximat-
ing 𝑓(𝐀)𝐯 inheriting, up to logarithmic factors in the error tolerance, the same
convergence guarantees as the linear system solvers used. A recent example of
this approach is found in [JS19]whichuses amodifiedversion of stochasticvari-
ance reduced gradient (SVRG) to obtain a nearly input sparsity time algorithm
for 𝑓(𝐀)𝐯when 𝑓 corresponds to principal component projection or regression.

A range of work suggests using a Krylov subspace method and the shift in-
variance of the Krylov subspace to solve these systems and compute 𝑟𝑞(𝐀)𝐛
explicitly. This was studied in [Fro+13; FS09] for the Lanczos method, and
in [Ple+20] for MINRES, the latter of which uses the results of [HHT08] to
determine the quadrature nodes andweights. However, as the above argument
demonstrates, the limit of the Lanczos-based approximation as the discretiza-
tionbecomesfiner is simplytheLanczos-FAapproximation to𝑓(𝐀)𝐯. Therefore,
there is no clear advantage to such an approach over Lanczos-FA in terms of the
convergence properties, unless preconditioning is used. .
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On the other hand, there are some advantages to these approaches in terms of
computation. Indeed, Krylov solvers for symmetric/Hermitian linear systems
require just𝑂(𝑛) storage; i.e. theydonot requiremore storageasmore iterations
are taken. A naive implementation of Lanczos-FA requires 𝑂(𝑘𝑛) storage, and
while Lanczos-FA can be implemented to use𝑂(𝑛) storage by taking two passes,
this has the effect of doubling the number of matrix-vector products required.
See [GS21] for a recent overviewof limited-memoryKrylov subspacemethods.

7.3 Examples and numerical verification

We next present examples in which we apply Theorem 7.6 to give a posteriori
and a priori error bounds for approximating common matrix functions with
Lanczos-FA.These examples illustrate the general approaches to applying The-
orem 7.6 described in Section 7.2. All integrals are computed either analytically
or using SciPy’s integrate.quadwhich is awrapper for QUADPACK routines.

In all cases, we exactly compute the ‖err𝑘(𝑤)‖ term in the bounds. In practice,
onewould bound this quantity a priori or a posteriori using existing results on
bounding the Lanczos error for linear system solves. By computing the error
exactly,we separate any looseness due to our bounds from any looseness due to
an applied bound on ‖err𝑘(𝑤)‖.

7.3.1 Choice of contour

Let𝐀bepositivedefinite and𝑓(𝑥) = √𝑥. Perhaps the simplest bound isobtained
by using Theorem 7.6 with 𝑤 = 0, 𝑆𝑖 = ℐ and Γ chosen as the boundary of
the disk 𝒟(𝜆max, 𝜆max).We then obtain a bound via Corollary 7.11. However, this
boundmay be loose – note that except through ‖err𝑘(𝑤)‖, it does not depend on
the number of iterations 𝑘. Thus it cannot establish convergence at a rate faster
than that of solving a linear systemwith coefficient matrix 𝐀.

Keeping 𝑤 = 0, we can obtain tighter bounds by letting Γ be a “Pac-Man” like
contour that consists of a large circle about the origin of radius 𝑅 with a small
circular cutout of radius 𝑟 that excludes the origin and a small strip cutout to
exclude the negative real axis. That is, as shown in Figure 7.2b, the boundary of
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(a) circle contour (b) Pac-Man contour (c) double circle contour

Figure 7.2: Circle, Pac-Man and double circle contours described in
Sections 7.3.1 and 7.3.2 respectively. All three figures show ℐ ( ) and
𝑤 ( ).

the set,
𝒟(0, 𝑅) ∖ ({𝑧 ∶ Re(𝑧) ≤ 0, | Im(𝑧)| < 𝑟} ∪ 𝒟(0, 𝑟)).

As the outer radius 𝑅 → ∞, the integral over the large circular arc goes to 0
since ‖ℎ𝑤,𝑧‖ℐ = 𝑂(𝑅−1), |𝑓(𝑧)| = 𝑂(𝑅1/2), and the length of the circular arc is
on the order of 𝑅. Thus, the product 𝑓(𝑧)(‖ℎ𝑤,𝑧‖ℐ)𝑘+1 goes to 0 as 𝑅 → ∞, for all
𝑘 ≥ 1. Similarly, as 𝑟 → 0, the length of the small arc goes to zero. Therefore,we
need only consider the contributions to the integral on [−𝑅 ± 𝑖𝑟, ±𝑖𝑟] in the limit
𝑅 → ∞, 𝑟 → 0.

In this case,when 𝑆𝑖 = ℐ for all 𝑖, we can compute the value of the integral term
in Theorem 7.6 analytically. We have

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ ( 1
2𝜋 ∫

0

−∞
|(𝑥 ± 0𝑖)1/2| ‖ℎ𝑤,𝑥±0𝑖‖𝑘+1

ℐ d𝑥) ‖err𝑘‖

= ( 1
2𝜋 ∫

0

−∞
|𝑥 ± 0𝑖|1/2 𝜆max(𝐀)𝑘+1

(𝜆max(𝐀) − 𝑥)𝑘+1 d𝑥) ‖err𝑘‖

= (1
𝜋𝜆max(𝐀)𝑘+1 ∫

∞

0

𝑦1/2

(𝜆max(𝐀) + 𝑦)𝑘+1d𝑦) ‖err𝑘‖

= (𝜆3/2
max

2√𝜋
Γ(𝑘 − 1/2)
Γ(𝑘 + 1) ) ‖err𝑘‖,

wherewe havemade the change of variable 𝑦 = −𝑥. Note that

lim
𝑘→∞

𝑘3/2 Γ(𝑘 − 1/2)
Γ(𝑘 + 1) = 1.

This proves that lan-FA𝑘(√⋅) converges somewhat faster than the Lanczos algo-
rithm applied to the corresponding linear system 𝐀𝐱 = 𝐯.
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Figure 7.3: 𝐀-norm error bounds for 𝑓(𝑥) = √𝑥 where 𝐀 has 𝑛 = 1000
eigenvalues spaced uniformly in [10−2, 102] and Γ is a circular contour
(left) or Pac-Man contour (right). Legend: Lanczos-FA error ( ), a
prioriboundsobtainedbyusingTheorem7.6with𝑆 = 𝑆𝑖 = ℐ ( ) and
𝑆 = 𝑆𝑖 = ̃ℐ(𝐀) = [𝜆min/2, 2𝜆max] ( ), a posteriori bounds obtained
by using Theorem 7.6 with 𝑆 = ̃ℐ ( ). Takeaway: The a posteriori
bounds tend to be quite accurate. The choice of contour impacts the
quality of the bounds, particuarly the a priori bounds.

In Figure 7.3 we plot the bounds from Theorem 7.6 for the circular and Pac-
Man contours described above. For both contours we consider 𝑆𝑖 = ℐ for all
𝑖, as well as bounds based on an overestimate of this interval, 𝑆𝑖 = ̃ℐ(𝐀) where

̃ℐ(𝐀) = [𝜆min/2, 2𝜆max]. This provides some sense of how sensitive the bounds
are to the choice of 𝑆𝑖 when 𝑆𝑖 is a single interval. For a posteriori bounds,we set
𝑆𝑖 to {𝜆𝑖(𝐓𝑘)} for 𝑖 > 0.

We remark that the bounds from Theorem 7.6 are upper bounds for (7.5) which
implies that the slackness of (7.5) is relatively small. This suggests that the
roughly2orders of magnitude improvement inTheorem7.6whenmoving from
the circular contour to the Pac-Man contour is primarily due to reducing the
slackness in (7.6), aligningwith our intuition.
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7.3.2 Piecewise analytic functions

Wenowdiscuss the application of Theorem 7.6 to piecewise analytic functions.
Functions of this class have found widespread use throughout scientific com-
puting and data science but have proven particularly difficult to analyze using
existing approaches [NPS16; Fro+16; JS19; Esh+02].

Let 𝑓(𝑥) be one of |𝑥 − 𝑎|, step(𝑥 − 𝑎), or step(𝑥 − 𝑎)/𝑥 for 𝑎 ∈ ℐ, where, for
𝑧 ∈ ℂ we define step(𝑧) ∶= 0 for Re(𝑧) < 0 and step(𝑧) ∶= 1 for Re(𝑧) ≥ 0.
Note that the latter two functions correspond to principle component projec-
tion and principle component regression respectively. In the case of principle
component regression,weassume𝐀 is positive semi-definite. The step function
is also closely related to the sign function, which is widely used in quantum
chromodynamics to compute the overlap operator [Esh+02].

We take 𝑤 = 𝑎 and define Γ1 and Γ2 as the boundaries of the disks

𝒟1 ∶= 𝒟(𝜆min, 𝑤 − 𝜆min − 𝜀) and 𝒟2 ∶= 𝒟(𝜆max, 𝜆max − 𝑤 − 𝜀),

for some sufficiently small 𝜀 > 0. To extend |𝑥 − 𝑎| to the complex plane, we
replace |𝑥 − 𝑎| by 𝑧 − 𝑎 if Re(𝑧) > 𝑎 and by 𝑎 − 𝑧 if Re(𝑧) ≤ 𝑎. Then 𝑓 is analytic
in a neighborhood of the union of these two disks, so assuming none of the
eigenvalues of 𝐀 or 𝐓 are equal to 𝑎, we can apply Lemma 7.9.

𝑓(𝑥) 𝑓(𝑧), 𝑧 ∈ Ω1 𝑓(𝑧), 𝑧 ∈ Ω2
1
2𝜋 ∑2

𝑗=1 |Γ𝑗| max𝑧∈Γ𝑗
|𝑓(𝑧)|

|𝑥 − 𝑎| 𝑎 − 𝑧 𝑧 − 𝑎 2(𝑎 − 𝜆min)2 + 2(𝜆max − 𝑎)2

step(𝑥 − 𝑎) 0 1 (𝜆max − 𝑎)
step(𝑥 − 𝑎)/𝑥 0 1/𝑧 (𝜆max − 𝑎)/𝑎

Table 7.1: Values of the factor in parentheses on the right-hand side of
(7.9) (ignoring 𝜀) for several common piecewise analytic functions.

Note that ‖ℎ𝑤,𝑧‖ℐ → 1 as 𝑧 → 𝑤 from outside [𝑎, 𝑏], avoiding a potential
singularity which would occur if the contour Γ passed through ℐ at any other
points. In fact, ignoring the contribution of 𝜖, ‖ℎ𝑤,𝑧‖ℐ = 1 for all 𝑧 ∈ Γ1 and for
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all 𝑧 ∈ Γ2. Thus, Corollary 7.11 can bewritten as

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ ⎛⎜⎜
⎝

1
2𝜋

2

∑
𝑗=1

|Γ𝑗| max
𝑧∈Γ𝑗

|𝑓(𝑧)|⎞⎟⎟
⎠

‖err𝑘(𝑤)‖. (7.9)

The values of this bound for all three functions are summarized in Table 7.1.

If 𝑤 ∈ ℐ we note that ‖err𝑘(𝑤)‖ corresponds to the indefinite linear system
(𝐀 − 𝑤𝐈)𝐱 = 𝐯, so standard results for the Conjugate Gradient algorithm are
not applicable. However, the residual of this system can still be computed
exactlyonce the Lanczos factorization (1.3) has been obtained, and aswediscuss
in Section 7.4, a priori bounds for the convergence of MINRES [CG96] can be
extended to the Lanczos algorithm for indefinite systems. It is also clear that,
at the cost of having to compare against the error of multiple different linear
systems, functions which are piecewise analytic on more than two regions can
be handled.

In Figure 7.4, we plot the bounds from Theorem 7.6 for the contour described
above for principle component regression with 𝑓(𝑥) = step(𝑥 − 𝑎)/𝑥. Here we
use the samemodel as in Section 4.3.2. In particular, we set 𝑛 = 2000, 𝑑 = 0.3,
and 𝜎 = 8 and take

𝐀 = 1
𝑚𝚺1/2𝐗𝐗H𝚺1/2,

where 𝑚 = 𝑛/𝑑, 𝐗 is a 𝑛 × 𝑚 matrix with iid standard normal entries, and 𝚺 a
diagonalmatrixwith 1/𝑚 as the first 𝑛/2 entries and 𝜎/𝑚 as the last 𝑛/2 entries.
As discussed in Section 4.3.2, in the large 𝑛 limit, the spectrumof suchmatrices
is supported on intervals [𝑎1, 𝑏1] ∪ [𝑎2, 𝑏2], so we take 𝑎 = (𝑏1 + 𝑎2)/2 and 𝑆 =
𝑆𝑖 = [𝑎1 − 0.1, 𝑏2 + 0.1] for a priori bounds and 𝑆 = [𝑎1 − 0.1, 𝑏2 + 0.1 for a
posteriori bounds. Thus, 𝑓(𝑥) corresponds to solving a linear system involving
the eigenmodes of the right cluster of eigenvalues supported on [𝑎2, 𝑏2].

7.3.3 Quadratic forms

Let 𝑓(𝑥) = step(𝑥−𝑎) for 𝑎 ∈ ℐ, and set𝑤 = 𝑎. Similarly to the previous example
we use Theorem 7.7 to obtain a bound for the quadratic form error |𝐯H𝑓(𝐀)𝐯 −
𝐯Hlan-FA𝑘(𝑓)|. However, since ‖ℎ𝑧‖𝑆𝑖

has singularities at each point in 𝑆𝑖,wemust
have 𝑆𝑖 avoidwhere Γ crosses the real axis.
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Figure 7.4: (𝐀 − 𝑤𝐈)2-norm error bounds for 𝑓(𝑥) = step(𝑥 − 𝑎)/𝑥where
𝐀 is a random matrix whose limiting density is supported on [𝑎1, 𝑏1] ∪
[𝑎2, 𝑏2], 𝑎 = (𝑏1+𝑎2)/2, andΓ is a double circle contour. Legend: Lanczos-
FA error ( ), a priori bounds obtained by using Theorem 7.6 with
𝑆 = 𝑆𝑖 = [𝑎1 − 0.1, 𝑏2 + 0.1] ( ) and (7.9) with the values from
Table 7.1 ( ) a posteriori bounds obtained byusing Theorem7.6with
𝑆 = [𝑎1 − 0.1, 𝑏2 + 0.1] ( ). Takeaway: The bounds work well, even
for pieceiwise analytic functions.

Suppose 𝜆l,𝑤
max(𝐀) and 𝜆r,𝑤

min(𝐀) are consecutive eigenvalues of 𝐀 so that 𝜆l,𝑤
max(𝐀) <

𝑤 < 𝜆r,𝑤
min(𝐀). Thenwe can define

ℐ𝑤(𝐀) ∶= [𝜆min, 𝜆l,𝑤
max(𝐀)] ∪ [𝜆r,𝑤

min(𝐀), 𝜆max].

In this case, ‖ℎ𝑧‖ℐ𝑤(𝐀) = max{‖ℎ𝑧‖[𝜆min,𝜆l,𝑤
max], ‖ℎ𝑧‖[𝜆r,𝑤

min,𝜆max])} can be computed using
Lemma 7.10. We can then applyTheorem 7.7 to obtain a bound for the quadratic
form error |𝐯H𝑓(𝐀)𝐯 − 𝐯Hlan-FA𝑘(𝑓)|. A priori bounds are obtainedwith 𝑆0, 𝑆𝑖 =
ℐ𝑤(𝐀)while a posteriori bounds are obtainedwith 𝑆 = ℐ𝑤(𝐀) and 𝑆𝑖 = {𝜆𝑖(𝐓)}.

In Figure 7.5 we use the samematrix as in Section 7.3.2. This time, however, we
use 𝑆 = 𝑆𝑖 = [𝑎1 − 0.1, 𝑏1 + 0.1] ∪ [𝑎2 − 0.1, 𝑏2 + 0.1] for a priori bounds and
𝑆 = [𝑎1 − 0.1, 𝑏1 + 0.1] ∪ [𝑎2 − 0.1, 𝑏2 + 0.1] for a posteriori bounds. Note that the
squared error ‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖2 is close to that of the quadratic form error
|𝐯H𝑓(𝐀)𝐯 − ∫ 𝑓 d[Ψ]gq2𝑘−1|.
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Figure 7.5: Quadratic form error bounds for 𝑓(𝑥) = step(𝑥 − 𝑎) where
𝐀 is a random matrix whose limiting density is supported on [𝑎1, 𝑏1] ∪
[𝑎2, 𝑏2], 𝑎 = (𝑏1+𝑎2)/2, andΓ is a double circle contour. Legend: Lanczos-
FAquadratic form error ( ), squared Lanczos-FA 2-norm ( ), a
priori bounds obtained byusing Theorem7.6with 𝑆 = 𝑆𝑖 = [𝑎1 −0.1, 𝑏1 +
0.1] ∪ [𝑎2 − 0.1, 𝑏2 + 0.1] ( ) a posteriori bounds obtained by using
Theorem 7.6 with 𝑆 = [𝑎1 − 0.1, 𝑏1 + 0.1] ∪ [𝑎2 − 0.1, 𝑏2 + 0.1] ( ).
Legend: The bounds are applicable to quadratic forms.

7.4 Error bounds for Lanczos-FA on indefinite systems

In this section, we review several results which rigorously justify the claim
that, for any choice of 𝑤 with 𝐀 − 𝑤𝐈 invertible, ‖err𝑘(𝑤)‖ satisfies a spectrum-
dependent error bound.

Note that on indefinite problems, the standard implementation of CG (or the
LDL version onwhich Lanczos-OR is based) may fail in such situations since 𝐓
can be singular inwhich case the inversionwill break down. As a result, in such
situations, it is standardpractice touseMINRESorother relatedalgorithms. On
the other hand, the Lanczos algorithmdoes not break down if 𝐓 is singular, and
so the Lanczos-FA approximation to 𝐀−1𝐯 can be computedwhenever 𝐓 is non-
singular, even if itwas singular at earlier iterations. Interestingly, however, the
“overall” convergence of the algorithm tends to be comparable to MINRES in
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the sense that at many iterations the error is quite similar.

The first result we remark onwas first proved in [CG96] compares the residual
norms of Lanczos-FA andMINRES.

Theorem 7.13. Let𝐀 be a nonsingular Hermitianmatrix and define 𝐫𝑀
𝑘 as theMINRES

residual at step 𝑘; i.e.

𝐫𝑀
𝑘 ∶= 𝐯 − 𝐀�̂�, �̂� = argmin

𝐲∈𝒦𝑘

‖𝐯 − 𝐀𝐲‖2.

Then, assuming that the initial residuals in the two procedures are the same,

‖res𝑘‖2
‖res0‖2

= ‖𝐫𝑀
𝑘 ‖2/‖𝐫𝑀

0 ‖2

√1 − (‖𝐫𝑀
𝑘 ‖2/‖𝐫𝑀

𝑘−1‖2)2
.

Therefore,wesee that if MINRESmakesgoodprogressat step𝑘 (i.e. ‖𝐫𝑀
𝑘 ‖2/‖𝐫𝑀

𝑘−1‖2

is small), then Theorem 7.13 implies ‖res𝑘‖2/‖res0‖2 ≈ ‖𝐫𝑀
𝑘 ‖2/‖𝐫𝑀

0 ‖2. Thus, since
MINRES converges at a linear rate, theremust be iterationswhere theMINRES
residual normdecreases enough that the Lanczos-FA residual norm is similarly
small. This is made precise in [Che+22, Corollary A.2] which demonstrates the
iteration complexity of Lanczos-FA on indefinite systems is nearly the same as
that of MINRES.

In fact, stronger results are known. In particular, it is known that Lanczos-FA
process iterateswhose residuals satisfy aminimax bound on the eigenvalues of
𝐀, at least at everyother iteration [GDK99]. Whilenotwell known, theargument
proving this claim is amazingly simple, so we provide proofs for the exact
arithmetic case. These results hold to close approximation in finite precision
arithmetic; see [GDK99] for the statements and proofs in this setting.

We beginwith several lemmas.

Lemma7.14. Suppose𝜃 is an eigenvalue of 𝐓with eigenvector 𝐬 and 𝜇 is an eigenvalue of
[𝐓]∶𝑘−1,∶𝑘−1 with eigenvector 𝐯. Then,

𝜃 − 𝜇 = 𝛽𝑘−2[𝐬]𝑘−1[𝐯]𝑘−2
𝐬H�̂�

where �̂� is 𝐯with a zero appended at the bottom.



chapter 7 page 127

Proof. Observe that

𝜃𝐬H�̂� = 𝐬H𝐓�̂� = 𝐬H(𝜇�̂� + 𝛽𝑘−2[𝐯]𝑘−2𝐞𝑘−1) = 𝜇𝐬H�̂� + 𝛽𝑘−2[𝐬]𝑘−1[𝐯]𝑘−2.

The result follows by rearranging the above expression.

Lemma 7.15. Suppose 𝜃 is an eigenvalue of 𝐓with eigenvector 𝐬. Then

min
0≤𝑖<𝑛

|𝜃 − 𝜆𝑖| ≤ |𝛽𝑘−1[𝐬]𝑘−1|.

Proof. Using the Lanczos recurrence (1.3) and the eigendecomposition 𝐀 =
𝐔𝚲𝐔Hwe find,

𝛽𝑘−1𝐪𝑘𝐞H𝑘−1𝐬 = 𝐀𝐐𝐬 − 𝐐𝐓𝐬 = 𝐀𝐐𝐬 − 𝜃𝐐𝐬 = 𝐔(𝚲 − 𝜃𝐈)𝐔H𝐐𝐬.

Rearranging and taking norms on both sideswe then have

1 = ‖𝐐𝐬‖ = ‖𝛽𝑘−1𝐔(Λ − 𝜃𝐈)−1𝐪𝑘𝐞H𝑘−1𝐬‖2 ≤ |𝛽𝑘−1[𝐬]𝑘−1|‖(𝚲 − 𝜃𝐈)−1‖2

wherewe have used that ‖𝐔‖2 = 1 and ‖𝐐𝐬‖2 = 1. The result then follows from
the fact that

‖(𝚲 − 𝜃𝐈)−1‖−1
2 = ( max

0≤𝑖<𝑛
|𝜆𝑖 − 𝜃|−1)−1 = min

0≤𝑖<𝑛
|𝜆𝑖 − 𝜃|.

Thefirstmain result of [GDK99] asserts that eigenvalues of 𝐓 are bounded away
from zero at least at every other iteration, provided 𝐀 is not singular.

Theorem 7.16. Suppose 𝜃 is an eigenvalue of 𝐓 and 𝜇 is an eigenvalue of [𝐓]∶𝑘−1,∶𝑘−1.

Then
max{|𝜃|, |𝜇|}

‖𝐀‖ ≥ 𝜅2

2 + √3
.

Proof. Applying Lemma 7.15 to 𝐓 and [𝐓]∶𝑘−1,∶𝑘−1 and then using Lemma 7.14 and
the fact that ‖𝐬‖2 = ‖𝐯‖2 = 1we have

|𝜃||𝜇| ≤ 𝛽𝑘−2𝛽𝑘−1[𝐬]𝑘−1[𝐯]𝑘−2 = 𝛽𝑘−1|𝜃 − 𝜇|𝐬H�̂� ≤ 𝛽𝑘−1|𝜃 − 𝜇|.

Let 𝜏 ∶= max{|𝜃|, |𝜇|}. Then |𝜃 − 𝜇| ≤ 2𝜏, |𝜃| ≥ 𝜎min − 𝜏, and |𝜇| ≥ 𝜎min − 𝜏. This
implies that

(𝜎min − 𝜏)2 ≤ |𝜃||𝜇| ≤ 𝛽𝑘−1|𝜃 − 𝜇| ≤ 2𝛽𝑘−1𝜏.
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Solving for 𝜏we find

𝜏 ≥ 𝜎2
min

𝜎min + 𝛽𝑘−1 + √𝛽2
𝑘−1 + 2𝛽𝑘−1𝜎min

≥ 𝜅
2 + √3

where, in the final inequality, we have use the fact that both 𝛽𝑘−1 and 𝜎min are
bounded above by ‖𝐀‖2.

We are nearly ready to show that the Lanczos-FA iterate satisfies a minimax
boundonΛ. First, however,we require the following lemmarelating thebottom
left entry of 𝐓−1 to the norm of 𝐓−1.

Lemma 7.17.
|𝐞H𝑘−1𝐓−1𝐞0| ≤ ‖𝐓−1‖2 min

deg(𝑝)<𝑘,𝑝(0)=1
‖𝑝(𝐓)𝐞1‖2.

Proof. Write 𝑝 = 1 − 𝑥𝑞 for some 𝑞with deg(𝑞) < 𝑘 − 1. Then 𝐞H𝑘−1𝑞(𝐓)𝐞0 = 0 so

𝐞H𝑘−1𝐓−1𝐞0 = 𝐞H𝑘−1(𝐓−1 − 𝑞(𝐓))𝐞0 = 𝐞H𝑘−1𝐓−1𝑝(𝐓)𝐞0.

Now, applying a submultiplicative bound,we find

|𝐞H𝑘−1𝐓−1𝐞0| ≤ ‖𝐓−1‖2‖𝑝(𝐓)𝐞1‖2.

The result follows by optimizing over 𝑝.

Proving aminimax bound for the Lanczos-FA residual is now straightforward.

Theorem 7.18. At least at every other iteration,

‖res𝑘‖2 ≤ 𝜅2

2 + √3
𝑙 min

deg(𝑝)<𝑘,𝑝(0)=1
‖𝑝‖Λ

Proof. From Lemma 7.2we see have that

‖res𝑘‖2 = |𝛽𝑘−1𝐞H0 𝐓−1𝐞0|.

The result then follows immediately from Lemma 7.17 and Theorem 7.16.
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Interestingly, it is known that 𝐓 cannot have eigenvalues near zero in two
successive iterations, at least assuming that the eigenvalues of 𝐀 are not too
close to zero. Specifically, [GDK99, Equation 3.10] asserts that

max{𝜎min([𝐓]∶𝑘−1,∶𝑘−1), 𝜎min(𝐓)} > 𝜎min(𝐀)2

(2 + √3)‖𝐀‖2

. (7.10)

Thus, asnoted inTheorem6.2,wemight still use theLanczos-FAapproximation
to 𝐀−1𝐯.
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Chapter 8

Finite precision arithmetic

As mentioned in the introduction and observed in the many numerical exper-
iments throughout this thesis, even in finite precision arithmetic, Lanczos-
basedmethods for matrix functions tend to perform at least aswell as their ex-
plicit polynomial counterparts. In fact, they often perform significantly better.
This is indirect conflictwith thewidespreadnotion that costlyreorthogonaliza-
tion schemes are necessary for Lanczos-basedmethods [JP94; Aic+03; Wei+06;
UCS17; GWG19].

In this chapter,weprovideanoverviewof several existing theoreticallyrigorous
resultswhich explain this phenomenon. We also prove that the reduction tech-
nique fromChapter 7 stillworks infiniteprecisionarithmetic. It is ourhope that
our treatment of this topic will provide an accessible starting point for those
outsideof numerical analysis tobetterunderstand the impactof finiteprecision
arithmetic onLanczos-basedmethods. Thus,while this chapter consistsmostly
of exposition on existing results, we believe it to be it to be one of the more
important contributions of this thesis.

In this chapter, wewill use ‖ ⋅ ‖ rather than ‖ ⋅ ‖2 to denote the operator 2-norm
of matrices and Euclidean norm of vectors. We will also make the simplifying
assumption that 𝐀 is real symmetric.
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8.1 Preliminaries

Almost all of modern scientific computing involves computations in finite pre-
cision arithmetic, and specifically, floating point arithmetic. The introduction
of rounding errors can have potentially large impacts on the output of an
algorithm, so accounting for these errors is important. In fact, this is one of the
main goals of the field of numerical analysis.

There are many possible implementations of floating point arithmetic and
other low-level math kernels. For instance, the number of bits of precision
may vary, the rounding scheme may vary, the way basic functions such as the
square root and logarithmare implementedmayvary, etc. To avoid the need for
a separate analysis of each implementation, it is standard towork in amodel of
computationwhich captures the essential qualities of a broad number of basic
math routines.

Perhaps the most commonly studied model of finite precision computing as-
sumes that basic operations are carried out to relative accuracy 𝜖mach, a constant
referred to as the machine precision. For floating point numbers 𝛼 and 𝛽 and
standard binary arithmetic operations ∘ ∈ {+, −, ×, ÷}, these assumptions take
the form

|fp(𝛼 ∘ 𝛽) − 𝛼 ∘ 𝛽 | ≤ 𝜖mach |𝛼 ∘ 𝛽 |.

Similar assumptions are alsomade forunaryoperations suchas the square root,

|fp(√𝛼) − √𝛼| ≤ 𝜖mach|√𝛼 |.

Assuming overflow and underflow do not occur, the above assumptions are
satisfied for IEEE754floatingpointarithmetic [ieee_19]. Since thevastmajority
of modern computers use IEEE 754floating point arithmetic, such assumptions
are relatively safe.1

Under the above assumptions, the accuracy of basic linear algebraic primitives
can be bounded. For instance, for floating point vectors 𝐱, 𝐲, floating point

1It is worth noting, however, that the above bounds do not necessarily hold for other number
systems. Notable examples include Cray supercomputers prior to the mid 1990s as well as a
number of other early computers [Hig02]. In fact, with the recent rise in low precision number
formats and custom hardware acceleration methods, the above bounds cannot be universally
assumed [Fas+21].
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number 𝛼, and floating point matrix 𝐀, reasonable implementations of basic
linear algebraic tasks [Hig02]will satisfy

‖fp(𝐱 + 𝛼𝐲) − (𝐱 + 𝛼𝐲)‖ ≤ 𝜖mach (‖𝐱‖ + 2|𝛼|‖𝐲‖)

‖fp(⟨𝐱, 𝐲⟩) − ⟨𝐱, 𝐲⟩‖ ≤ 𝜖mach 𝑛 ‖𝐱‖‖𝐲‖

‖fp(𝐀𝐱) − 𝐀𝐱‖ ≤ 𝜖mach 𝑐 ‖𝐀‖‖𝐱‖.

Here 𝑐 ≤ 𝑛3/2 is a dimensional constant depending on the method of matrix
multiplication and the sparsity of 𝐀which is oftenwritten in terms of the ratio
of thenormof the absolutevalue of 𝐀 and thenormof 𝐀. These results can then
be applied to analyze linear algebra routines.

8.2 Three term recurrences

The Lanczos algorithm as well as the explicit polynomial methods Algo-
rithms 1.1 and 3.2 from Chapter 3 compute 𝐪𝑖+1 by a symmetric three term
recurrence of the form

𝐪𝑖+1 = 1
𝛽𝑖

(𝐀𝐪𝑖 − 𝛼𝑖𝐪𝑖 − 𝛽𝑖−1𝐪𝑖−1) .

In Algorithms 3.1 and 3.2 the coefficients are predetermined, whereas Lanczos
chooses the coefficients adaptively in order to enforce orthogonality. Regard-
less, in finite precision arithmetic, wewill instead have a perturbed recurrence

𝐪𝑖+1 = 1
𝛽𝑖

(𝐀𝐪𝑖 − 𝛼𝑖𝐪𝑖 − 𝛽𝑖−1𝐪𝑖−1) + 𝐟𝑖+1

where 𝐟𝑖+1 accounts for local rounding errors made in the computation of 𝐪𝑖+1.
These simple arithmetic computations are all stable in the sense described
above, so 𝐟𝑖+1 is small (on the order of 𝜖mach‖𝐀‖) relative to the involved quan-
tities.

While 𝐪𝑖+1 = 𝑝𝑖+1(𝐀)𝐯 in exact arithmetic, this is no longer the case in finite
precision arithmetic. Indeed, the difference between 𝐪𝑖+1 and 𝑝𝑖+1(𝐀)𝐯 depends
on the associated polynomials of the recurrence applied to the 𝐟𝑗’s; see for in-
stance [Meu06]. In the case of the Chebyshev polynomials of the first kind,
the associated polynomials arewell behaved on [−1, 1]2, so it can be shown that

2In fact, the associated polynomials are the Chebyshev polynomials of the second kind.
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𝐪𝑖+1 ≈ 𝑝𝑖+1(𝐀)𝐯. Here “≈” means the error has a polynomial dependence on 𝑘
and a linear dependence on themachine precision, alongwith other reasonable
dependence on the dimension and matrix norm. This can be easily seen by
performing an analysis similar to that in the proof of Theorem 8.4 found later
in this section.

As such, the computed modified moments for 𝜇 = 𝜇𝑇
𝑎,𝑏 can be expected to

be near to the true modified moments and Lemma 3.16 can be expected to
hold to close degree as long as ℐ ⊂ [𝑎, 𝑏]. On the other hand, for different
{𝛼𝑖}∞

𝑖=0 and {𝛽𝑖}∞
𝑖=0, for instance those generated by the Lanczos algorithm, the

associatedpolynomialsmaygrowexponentially in ℐ and themodifiedmoments
obtained from the finite precision computation may differ greatly from their
exact arithmetic counterparts unless very high precision is used. In fact, this
situation includes 𝜇𝑇

𝑎,𝑏 if 𝑎 and 𝑏 are not chosen so that ℐ ⊂ [𝑎, 𝑏].

8.2.1 The Lanczos algorithm

In the case of Lanczos, the coefficients are computed adaptively and therefore
depend on 𝐪𝑖−1, 𝐪𝑖, and 𝐪𝑖+1. It is well known that even if the 𝐟𝑗’s are small,
the coefficients produced by Lanczos run in finite precision arithmetic may
differ greatly fromwhat would be obtained in exact arithmetic and the Lanczos
vectors {𝐪𝑗}𝑘+1

𝑗=1 need not be orthogonal. Moreover, the tridiagonal matrix 𝐓
from the finite precision computation may have multiple “ghost” eigenvalues
near certain eigenvalues of 𝐀, evenwhen the eigenvalues of 𝐓would have been
well separated in exact arithmetic. In this sense, the algorithm is notoriously
unstable, and such instabilities can appear even after only a few iterations.

A great deal is known about the Lanczos algorithm in finite precision arith-
metic; see for instance [Gre97; MS06; Meu06]. In this section, we summarize
the content needed to understanding why Lanczos-based methods for matrix
functions still work in finite precision arithmetic. A fully rigorous and self-
contained treatment of the topicwould be very long and exceedingly technical,
and such a treatment would not improve understanding of the big-picture (in
fact, it might do exactly the opposite). As such, we aim to provide an overview
of existing theorywhich provides an intuitive understanding.

Throughout the next several sections the symbol “⪯” suppresses absolute con-
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stants (e.g. 5, 12, and 1/10) and higher order terms in the machine precision,
𝜖mach (e.g. 𝜖2

mach). The results in the literature typicallystate explicit constants for
terms linear in 𝜖mach, but such a precise analysis is not necessary to understand
the intuitionwewish to convey.

Wewill write thematrix-form of the perturbed Lanczos recurrence as

𝐀𝐐 = 𝐐𝐓 + 𝛽𝑘−1𝐪𝑘𝐞T𝑘−1 + 𝐅. (8.1)

We denote by𝐑 the strictly upper triangular part of 𝐐T𝐐; i.e.

𝐐T𝐐 = 𝐑 + 𝐑T + 𝐃.

It can then be shown that

𝐓𝐑 = 𝐑𝐓 − 𝛽𝑘−1𝐐T𝐪𝑘𝐞T𝑘−1 + 𝐇

for some upper triangular perturbation term 𝐇 which is 𝟎 in exact arithmetic;
see for instance [Pai76, Equation 41]. We will also denote by 𝜂 the minimum
value so that

Λ(𝐓) ⊂ [𝜆min − 𝜂, 𝜆max + 𝜂].

The firstworkwhich truly explainedwhy the Lanczos algorithmwas still useful
as an eigenvalue algorithmwas thePhD thesis [Pai71] of Paige (and the technical
reports leading up to the thesis). The results in [Pai71] were subsequently sim-
plified and extended in [Pai72; Pai76; Pai80]. Themain result we need is [Pai76,
Theorem 1]whichwe have simplified to the needs of this chapter.

Theorem 8.1. Suppose the implementation of the Lanczos algorithm given in Algo-

rithm 1.1 is run in finite precision arithmetic with machine precision 𝜖mach. Then, for 𝑖 < 𝑘,
under somemild technical assumptions on 𝜖mach, the following quantities

‖𝐃 − 𝐈‖, ‖𝐅‖, ‖𝐇‖, 𝜂

are bounded by𝑂(𝑘𝛼𝑛𝛽‖𝐀‖𝜖mach) for small constants 𝛼, 𝛽.

Remark 8.2. The full version of Theorem 8.1 from [Pai76] is significantlymore
precise than our above statementmight suggest. In particular, the above quan-
tities (and several others) are each explicitlybounded tofirst order in 𝜖mach,with
the constants and the dependence on 𝑘, 𝑛, and ‖𝐀‖ stated explicitly for each
quantity. △
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In exact arithmetic, Lanczos-based approaches such as Gaussian quadrature
and Lanczos-FA apply sufficiently lowdegree polynomials exactly. Wewill now
show that, even in finite precision arithmetic, these approaches apply (appro-
priately scaled) Chebyshev polynomials accurately. For functionswhich have a
Chebyshev expansion with bounded coefficients, this implies that Lemma 3.16
andTheorem6.4 holds to close degree. Thus, Lanczos-based approaches should
be expected to perform at least as well as explicit polynomial approaches for
most reasonable functions 𝑓.

For convenience, from this point to the end of the chapter, wewill assume that
𝐀 has been shifted and scaled so that Λ and Λ(𝐓) are each contained in [−1, 1].

Recall that the Chebyshev polynomials of the first kind satisfy the recurrence

𝑇𝑖 = 2𝑥𝑇𝑖−1 − 𝑇𝑖−2, 𝑇1 = 𝑥, 𝑇0 = 1.

and that the Chebyshev polynomials of the second kind satisfy the recurrence

𝑈𝑖 = 2𝑥𝑈𝑖−1 − 𝑈𝑖−2, 𝑈1 = 2𝑥, 𝑈0 = 1.

Wehave the following,well known, bound.

Lemma 8.3. For all 𝑗 ≥ 0, ‖𝑇𝑗‖[−1,1] ≤ 1 and ‖𝑈𝑗‖[−1,1] ≤ 𝑗 + 1.

For notational brevity, for 𝑖 ≥ 1, introduce the vectors

𝐭𝑖 = 𝑇𝑖(𝐀)𝐯, ̃𝐭𝑖 = 𝑇𝑖(𝐓)𝐞0, 𝛙𝑖 = 𝐭𝑖 − 𝐐 ̃𝐭𝑖.

8.3 Lanczos-FA

To the best of our knowledge, the result in this section first appeared in [DK91,
Section 4]; see also [MMS18, Lemma 10].

Theorem 8.4. For all 𝑖 = 0, 1, … , 𝑘 − 1,

‖𝑇𝑖(𝐀)𝐯 − 𝐐𝑇𝑖(𝐓)𝐞0‖2 ≤ 𝑘2‖𝐅‖.

Proof. Using (8.1) and Corollary 10.3, observe that for 𝑖 > 1, the 𝐝𝑖 satisfy a
perturbed three term recurrence

𝛙𝑖 = (2𝐀𝐭𝑖−1 − 𝐭𝑖−2) − (2𝐐𝐓 ̃𝐭𝑖−1 − 𝐐 ̃𝐭𝑖−2)
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= 2(𝐀𝐭𝑖−1 − (𝐀𝐐 ̃𝐭𝑖−1 + 𝛽𝑘𝐪𝑘−1𝐞T𝑘−1 ̃𝐭𝑖−1 + 𝐅 ̃𝐭𝑖−1)) − 𝛙𝑖−2

= 2𝐀𝛙𝑖−1 − 𝛙𝑖−2 + 2𝐅 ̃𝐭𝑖−1.

Bydirect computation,we also have 𝛙0 = 𝟎 and 𝛙1 = 𝐅 ̃𝐭0. Then, it’s easy to see
that

𝐝𝑖 = 𝑈𝑖−1(𝐀)𝐅 ̃𝐭0 + 2
𝑖

∑
𝑗=1

𝑈𝑖−𝑗−1(𝐀)𝐅 ̃𝐭𝑗.

Wenowuse Theorem 8.3 to obtain

‖𝐝𝑖‖ ≤ 2
𝑖−1

∑
𝑗=0

‖𝑈𝑖−𝑗−1(𝐀)‖‖𝐅‖‖ ̃𝐭𝑗‖ ≤ 2
𝑖−1

∑
𝑗=0

(𝑖 − 𝑗)‖𝐅‖ ≤ 2𝑖2‖𝐅‖.

8.4 Gaussian quadrature

The results in this section are summarized from [Kni96]. Interestingly, this
work seems to be relatively unknown, despite its significance given the
widespread use of Lanczos-based quadrature methods. It is our hope that
the resurfacing of these results will help assuage some of the hesitancy to use
Lanczos-based quadraturemethodswithout reorthogonalization.

We beginwith several lemmas.

Lemma 8.5. For all 𝑖 = 0, 1, … , 𝑘 − 1,

‖𝐑𝑇𝑖(𝐓)𝐞0‖ ≤ 𝑘2‖𝐇‖.

Proof. Write 𝚫𝑖 = 𝐑𝑇𝑖(𝐓)𝐞0. Using Section 8.2.1 and Corollary 10.3, for 𝑖 > 1,
analogous to Theorem 8.4, the 𝚫𝑖 satisfy the perturbed three term recurrence

𝚫𝑖 = 2𝐑𝐓 ̃𝐭𝑖−1 − 𝐑 ̃𝐭𝑖−2

= 2(𝐓𝐑 ̃𝐭𝑖−1 + (𝛽𝑘−1𝐐T𝐪𝑘𝐞T𝑘−1 ̃𝐭𝑖−1 + 𝐇 ̃𝐭𝑖−1) − 𝐑𝚫𝑖−2

= 2𝐓𝚫𝑖−1 − 𝚫𝑖−2 + 2𝐇 ̃𝐭𝑗−1

Since 𝐑 is strictly upper triangularwe have 𝚫0 = 𝟎 and, by direct computation,
𝚫1 = 𝐇𝐞0. This implies that

𝚫𝑖 = 𝑈𝑖−1(𝐓)𝐇𝐞0 + 2
𝑖−1

∑
𝑗=1

𝑈𝑖−𝑗−1(𝐓)𝐇 ̃𝐭𝑗.
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We again use Theorem 8.3 to obtain

‖𝚫𝑖‖ ≤ 2
𝑖−1

∑
𝑗=0

‖𝑈𝑖−𝑗−1(𝐓)‖‖𝐇‖‖ ̃𝐭𝑗‖ ≤ 2
𝑖−1

∑
𝑗=0

(𝑖 − 𝑗)‖𝐇‖ ≤ 2𝑖2‖𝐇‖.

Wenow state themain result.

Theorem 8.6. For all 𝑖 = 0, 1, … , 2𝑘 − 2

|𝐯T𝑇𝑖(𝐴) − 𝐞T0𝑇𝑖(𝐓)𝐞0| ⪯ 𝑘2(‖𝐅‖ + ‖𝐇‖) + ‖𝐃 − 𝐈‖.

Proof. Recall that the Chebyshev polynomial satisfy the identities

𝑇2𝑖 = 2(𝑇𝑖)2 − 1, 𝑇2𝑖+1 = 2𝑇𝑖𝑇𝑖+1 − 𝑥.

It therefore suffices to bound |𝐯T𝑇𝑖(𝐀)𝑇𝑗(𝐀)𝐯 − 𝐞T0𝑇𝑖(𝐓)𝑇𝑗(𝐓)𝐞0|.

By definition,
𝐭T𝑖 𝐭𝑗 = ( ̃𝐭𝑖𝐐T + 𝛙T

𝑖 )(𝛙𝑗 + 𝐐 ̃𝐭𝑗)

Thus,

|𝐭T𝑖 𝐭𝑗 − ̃𝐭T𝑖 ̃𝐭𝑗| ≤ | ̃𝐭𝑖𝐐T𝐐 ̃𝐭𝑗 − ̃𝐭T𝑖 ̃𝐭𝑗| + ‖𝛙𝑖‖‖𝐐 ̃𝐭𝑗‖ + ‖𝛙𝑗‖‖𝐐 ̃𝐭𝑖‖ + ‖𝛙𝑖‖‖𝛙𝑗‖

Bydefinition of 𝐑,

̃𝐭T𝑖 𝐐T𝐐 ̃𝐭𝑗 = ̃𝐭T𝑖 (𝐑 + 𝐑T + 𝐈 + (𝐃 − 𝐈)) ̃𝐭𝑗.

Thus, applying Theorems 8.1, 8.3 and 8.5we have

| ̃𝐭𝑖𝐐T𝐐 ̃𝐭𝑗 − ̃𝐭T𝑖 ̃𝐭𝑗| ≤ ‖ ̃𝐭𝑗‖‖𝐑 ̃𝐭𝑖‖ + ‖ ̃𝐭𝑖‖‖𝐑 ̃𝐭𝑗‖ + ‖𝐃 − 𝐈‖‖ ̃𝐭𝑖‖‖ ̃𝐭𝑗‖ ⪯ 𝑘2‖𝐇‖ + ‖𝐃 − 𝐈‖.

Now, observe that by Theorem 8.3

‖𝐐 ̃𝐭𝑗‖ = ‖𝛙𝑗 − 𝐭𝑗‖ ≤ ‖𝛙𝑗‖ + ‖𝐭𝑗‖ ⪯ 1 + 𝑘2‖𝐅‖.

Then, dropping higher order terms in 𝜖mach,

‖ ̃𝐭𝑖‖‖𝐐 ̃𝐭𝑗‖ ⪯ 𝑘2‖𝐅‖ and ‖ ̃𝐭𝑗‖‖𝐐 ̃𝐭𝑖‖ ⪯ 𝑘2‖𝐅‖.

The result follows by combining the above expressions.

Remark8.7. In fact,whenLanczos is run for 𝑘 iterations, Theorem8.6 holds for
𝑖 = 0, 1, … , 2𝑘 − 1. However, in the context of this thesis, the additional work
required to prove thismore general statement is notwarranted. See [Kni96] for
details. △
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8.5 Backwards stability of the Lanczos algorithm

The Lanczos method is clearly far from forward stable in the sense that the 𝐐
and 𝐓 output are far from what would be produced in exact arithmetic. The
work of Greenbaum [Gre89] shows that the matrix 𝐓 in a perturbed Lanczos
recurrenceof the form(8.1) canbeviewedas theoutputof theLanczosalgorithm
run in exact arithmetic on a certain “nearby” problem, provided the conclusions
of Theorem 8.1 are satisfied; i.e. it shows that Lanczos is backwards stable. In
particular, [Gre89] shows that if these conditions are satisfied, there exists a
𝑁 ×𝑁matrix �̄� andvector �̄� such that Lanczos run on �̄�, �̄� in exact arithmetic for
𝑘 steps produces 𝐓 (i.e., in the notation from Chapter 3, that Ψ𝐓,𝐞0

= [Ψ�̄�,�̄�]gq2𝑘−1)
and , that

(i) Eigenvalues of �̄� are clusterednear to those of 𝐀: for any 𝑗 ∈ 0, 1, … , 𝑁 −1,
there exists 𝑖 ∈ 0, 1, … , 𝑛 − 1 such that

𝜆𝑗(�̄�) ≈ 𝜆𝑖(𝐀).

(ii) The sum of squares of first components of eigenvectors corresponding
to eigenvalues or clusters of eigenvalues of �̄� approximately equal tot
he squares of the projections of 𝐯 onto the eigenvectors of 𝐀: for an
eigenvalue 𝜆𝑖(𝐀)

𝑤𝑖 ≈ ∑
𝑗∈𝑆

�̄�𝑗

where 𝑆𝑖 is the set of indices such that 𝜆𝑗(�̄�) ≈ 𝜆𝑖(𝐀) for all 𝑗 ∈ 𝑆.

Together, these conditions imply that

Ψ𝐀,𝐯 ≈ Ψ�̄�,�̄�. (8.2)

8.5.1 A new approach

While the analysis of [Gre89] provides a backwards stability result, the proofs
are highly technical. We now show how the result of [Kni96] implies a simple
backwards stability result.
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Towards this end, denote by {𝜎𝑚}∞
𝑚=0 and {𝜌𝑚}∞

𝑚=0 the Chebyshev moments of
Ψ𝐀,𝐯 and Ψ𝐓,𝐞0

respectively; i.e.

𝜎𝑚 = ∫ 𝑇𝑚 dΨ𝐀,𝐯 and 𝜌𝑚 = ∫ 𝑇𝑚 dΨ𝐓,𝐞0
.

Nowdefine the distribution function

Ψ̂ = Ψ𝐀,𝐯 + Ξ, where dΞ
d𝑥 =

d𝜇𝑇
−1,1
d𝑥

2𝑘−1

∑
𝑚=0

(𝜌𝑚 − 𝜎𝑚)𝑇𝑚.

By construction, for 𝑚 = 1, 2, … , 2𝑘 − 1,

∫
1

−1
𝑇𝑚Ψ̂ = ∫

1

−1
𝑇𝑚 dΨ𝐀,𝐯 + ∫ 𝑇𝑚 dΞ

= 𝜎𝑚 +
2𝑘−1

∑
ℓ=0

(𝜌ℓ − 𝜎ℓ) ∫ 𝑇𝑚𝑇ℓ d𝜇𝑇
−1,1

= 𝜎𝑚 + (𝜌𝑚 − 𝜎𝑚).

Thus, themodifiedmoments {�̂�𝑚}∞
𝑚=0 of Ψ̂ satisfy

�̂�𝑚 = ∫
1

−1
𝑇𝑚 dΨ̂ =

⎧{
⎨{⎩

𝜌𝑚 𝑚 = 0, 1, … , 2𝑘 − 1

𝜎𝑚 𝑚 = 2𝑘, 2𝑘 + 1, …
.

Now, observe that

𝑑W(Ψ, Ψ̂) = ∫
1

−1
|Ξ(𝑥)|d𝑥 ≤

2𝑘−1

∑
𝑚=0

|𝜌𝑚 − 𝜎𝑚| ∫
1

−1
∣∫

𝑥

−1
𝑇𝑚 d𝜇𝑇

−1,1∣d𝑥.

The Chebyshev polynomials are bounded by one on [−1, 1], so

∣∫
𝑥

−1
𝑇𝑚 d𝜇𝑇

−1,1∣ ≤ ∫
𝑥

−1
|𝑇𝑚 d𝜇𝑇

−1,1| ≤ ∫
1

−1
d𝜇𝑇

−1,1 = 1.

Thus, assuming |𝜌𝑚 − 𝜎𝑚| ≤ 𝜖(𝑘),

𝑑W(Ψ, Ψ̂) ≤
2𝑘−1

∑
𝑚=0

2|𝜌𝑚 − 𝜎𝑚| ≤ 4𝑘𝜖(𝑘).

The distribution function Ψ̂ is near toΨ𝐀,𝐯 in the sense of Wasserstein distance,
and 𝐓𝑘 is producedwhen the Stieltjes algorithm is applied. However, there are
two shortcomings. First, the support of Ψ̂ is all of [−1, 1] as Ξ is absolutely
continuous on (−1, 1). Second Ξ is not necessarily increasing, and so Ψ̂ is not
necessarily increasing.
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8.6 CIF bounds Finite precision

While the tridiagonal matrix 𝐓 and the matrix 𝐐 of Lanczos vectors produced
in finite precision arithmetic may be very different from those produced in
exact arithmetic, we now show that our error bounds, based on the 𝐓 and
𝐐 actually produced by the finite precision computation, still hold to a close
approximation. First,we argue that Lemma 7.2 holds to a close degree provided
𝐅 is not too large. Towards this end, note that we have the shifted perturbed
recurrence,

(𝐀 − 𝑧𝐈)𝐐 = 𝐐(𝐓 − 𝑧𝐈) + 𝛽𝑘−1𝐪𝑘𝐞H𝑘−1 + 𝐅. (8.3)

From (8.3), it is then clear that,

(𝐀 − 𝑧𝐈)𝐐(𝐓 − 𝑧𝐈)−1𝐞0 = 𝐐𝐞1 + 𝛽𝑘−1𝐪𝑘𝐞H𝑘−1(𝐓 − 𝑧𝐈)−1𝐞0 + 𝐅(𝐓 − 𝑧𝐈)−1𝐞0.

This implies that Corollary 7.4 also holds closely. More specifically,

res𝑘(𝑧) = det(ℎ𝑤,𝑧(𝐓))res𝑘(𝑤) + 𝐟𝑘(𝑤, 𝑧)

err𝑘(𝑧) = det(ℎ𝑤,𝑧(𝐓))ℎ𝑤,𝑧(𝐀)err𝑘(𝑤) + (𝐀 − 𝑧𝐈)−1𝐟𝑘(𝑤, 𝑧)

where
𝐟𝑘(𝑤, 𝑧) ∶= 𝐅 ((𝐓 − 𝑧𝐈)−1 − det(ℎ𝑤,𝑧(𝐓))(𝐓 − 𝑤𝐈)−1) 𝐞0.

Using thiswe have,

𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓) = − 1
2𝜋𝒊 ∮

Γ
𝑓(𝑧)err𝑘(𝑧)d𝑧 − 1

2𝜋𝒊 ∮
Γ

𝑓(𝑧)(𝐀 − 𝑧𝐈)−1𝐟𝑘(𝑤, 𝑧)d𝑧

whichwemay bound using the triangle inequality as

‖𝑓(𝐀)𝐯 − lan-FA𝑘(𝑓)‖ ≤ 1
2𝜋 ∥∮

Γ
𝑓(𝑧)err𝑘(𝑧)d𝑧∥ + 1

2𝜋 ∥∮
Γ

𝑓(𝑧)(𝐀 − 𝑧𝐈)−1𝐟𝑘(𝑤, 𝑧)d𝑧∥ .

This expression differs from Theorem 7.6 only by the presence of the term
involving 𝐟𝑘(𝑤, 𝑧) (and, of course, by the fact that err𝑘(𝑧) now denotes the error
in the finite precision computation). If we take ‖ ⋅ ‖ as the (𝐀 − 𝑤𝐈)2-norm, then
this additional term can be bounded by using that

∥∮
Γ

𝑓(𝑧)(𝐀 − 𝑧𝐈)−1𝐟𝑘(𝑤, 𝑧)d𝑧∥ ≤ ∮
Γ

|𝑓(𝑧)|‖(𝐀 − 𝑤𝐈)(𝐀 − 𝑧𝐈)−1‖2‖𝐟𝑘(𝑤, 𝑧)‖2|d𝑧|

≤ ∮
Γ

|𝑓(𝑧)|‖ℎ𝑤,𝑧‖𝑆0
‖𝐟𝑘(𝑤, 𝑧)‖2|d𝑧|. (8.4)
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Figure 8.1: 𝐀2-norm error bounds for 𝑓(𝑥) = √𝑥 where 𝐀 has 𝑛 = 50
eigenvalues spaced according to the model problem with 𝜌 = 0.8 and
𝜅 = 103. We take Γ as a circular contour of radius 𝜆max centered at
𝜆max and 𝑤 = 0. Computations without reorthogonalization are run
in single precision arithmetic, and error bounds are computed using
Theorem 7.6 using the finite precision quantities. Legend: Lanczos-FA
error with ( ) and without ( ) reorthogonalization, a priori
bounds with 𝑆 = 𝑆𝑖 = ℐ ( ), and a posteriori bounds obtained by
using Theorem 7.6 with 𝑆 = ℐ ( ). Takeaway: The bounds in finite
precision arithmetic are accurate until near the ultimately attainable
accuracy.

Note that 1/(2𝜋) times (8.4) can be viewed as an upper bound of the ultimate
obtainable accuracy of Lanczos-FA in finite precision after convergence. If
the inequalities do not introduce too much slack, this upper bound will also
produce a reasonable estimate. Since ‖𝐅‖ is small, one may simply ignore the
contribution of (8.4), at least provided the Lanczos-FA error is not near thefinal
accuracy. Finally, we have worked in the (𝐀 − 𝑤𝐈)2 norm as it simplifies some
of the analysis, but in principle, a similar approach could be used with other
norms. This is straightforward, but would involve bounding something other
than ‖ℎ𝑤,𝑧‖𝑆0

.
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8.6.1 Numerical experiment

To illustrate the point of above analysis, we use a setup similar to what was
used to produce Figure 7.3. However, we now use the model problem and run
Lanczoswithout reorthgonalization. We use the 𝐓 produced in finite precision
arithmetic in our computationof the error bounds fromTheorem7.6 and report
the results in Figure 8.1. Note that we use Theorem 7.6 and therefore do not
account for the roundoff term analyzed above. However, since this term can
be expected to be on the order of machine precision, the absence of this term
in our computed bound does not significantly impact the bounds until near the
ultimately attainable accuracy of Lanczos-FA. In otherwords, Theorem 7.6 still
holds until the Lanczos-FA error is small.
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Chapter 9

Outlook

So, what’s next for algorithms for computing expressions involving matrix
functions?While this is far toovagueaquestion toprovide anysort of definitive
answer, I will gladly discuss several directions which I hope will be pursued
further in the near future. These topics are simply a collection of directions for
futurework I personally find interesting, and they should not be viewed as any
sort of statement regarding the direction the field as a whole should move in.
Indeed, many important topics, such as algorithms for high performance com-
puting and the use of mixed precision arithmetic [Abd+21] are not discussed.

9.1 Randomization

It is nowwidely recognized that randomization is an extremely powerful algo-
rithmic tool in numerical linear algebra [HMT11; MT20]. While a number of
topics have “matured”, the use of randomization in Krylov subspace methods
and related algorithms remains ripe for further study.

A big question is how to compute a low-rank approximation to 𝑓(𝐀), given
access to products with 𝐀. Some progress on this question has beenmade, pri-
marilywith the end goal of estimating the spectral sum tr(𝑓(𝐀)) [Lin16; GSO17;
SAI17; LZ21; CH22], but a general theoretical understanding of randomized
Krylovsubspacemethods for approximating𝑓(𝐀) is anopenproblem. Anatural
starting point is the analysis of block Krylov subspacemethods applied to a set
of random vectors [MM15; MT20; Tro21]. However, block Lanczos methods are
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perhaps evenmore susceptible to the effects of finite precision arithmetic than
the standardLanczosmethods, andnotmuch isknowntheoreticallyabout their
behavior in finite precision arithmetic.

Another interesting question is how randomization can be used to speed up
computations of 𝑓(𝐀)𝐯.

For overdetermined linear systems 𝐀𝐱 = 𝐯, methods such as the randomized
Kaczmarz algorithm [SV08; NSW14], accelerated coordinate descent [LS13a;
All+16], and stochastic heavy ball momentum [BCW22] can all outperform ap-
plying CG to the normal equations 𝐀H𝐀𝐱 = 𝐀H𝐯. In fact, for positive definite
systems, accelerated coordinate descent methods can outperform CG applied
directly to the system of interest.

A natural way to extend these fast linear system solvers to matrix functions is
by applying them to a proxy rational functionwhose individual terms are each
positivedefinite linear systems. This techniquewasused in [JS19] to obtain a fast
algorithmforapproximatingproductswith thematrix sign functionandrelated
quantities. However, this approach treats each term in the proxy rational func-
tion as independent, despite the fact that there is significant shared structure.
Froma theoretical perspective this is acceptable as long as the number of terms
in the proxy rational function is logarithmic in the accuracy tolerance,which is
typically the case [GT19]. However, this is likely somewhatwasteful in practice,
so it would be worthwhile to study how such ideas can be implemented more
efficiently.

9.2 Typicality

Recall that typicality, discussed in Section 4.1.1, is essentially the physics version
of concentration of quadratic trace estimators. I find typicality fascinating for
a number of reasons. First, typicality provides a physical meaning to quadratic
trace estimators, which have become one of the most widely studied methods
in randomized numerical linear algebra. Second, the literature on typicality
has a rich history, with the earliest works dating back nearly a century. This
not only means the popular opinion on typicality has evolved, but it makes
typicality an interesting case study in the fragmentation of knowledge between
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disciplines. While several review papers have been published recently in the
physics literature [Gol+10; Jin+21], I believe a reviewfrom theperspective of nu-
merical linear algebrawouldyieldmany interesting historical insights. Indeed,
applied mathematicians have seemingly overlooked several important lines of
literature on this topic.

9.3 Accessibility to non-experts

Asmentioned in the introduction, it is my sense that practitioner knowledge of
Lanczos based methods for matrix functions is limited by the lack of resources
providing easy to understand background for such methods. While I hope that
this thesis provides a more accessible introduction to the topic, by nature, a
thesis emphasizes the author’s own work and only touches on the important
work of others. A more balanced treatment of methods for matrix functions,
with a treatment of methods for non-symmetric problems as well as a further
emphasis on the important case of linear systemswould be of general interest.

Separately, Ihope that easy-to-useblack-boxversionsof someof thealgorithms
studied in this thesis are eventually implemented. A natural starting point
would be implementing the integral based bounds fromChapter 7 in such away
that they could be easily integrate into existing codes. In order for such a tool
to be truly black-boxwould require additional study into how to choose param-
eters such as the contour of integration. However, even if some user input is
required, such a toolwould help ensuremore efficient resource allocation.
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Chapter 10

Notation and other reference sheets

10.1 Basic notation

Here we provide a reference for some common notation. The page number
is the first page on which the notation is used. In many cases, some of the
parameters will be suppressed for notational convince. for instance, while the
𝑖-th eigenvalue of a matrix 𝐁 is denoted 𝜆𝑖(𝐁), wewill oftenwrite 𝜆𝑖 for the 𝑖-th
eigenvalue of 𝐀

notation description page

𝐀 𝑛 × 𝑛 Hermitianmatrix 1
𝜆𝑖, 𝜆𝑖(𝐀) 𝑖-th eigenvalue of 𝐀 1
Λ, Λ(𝐀) set of eigenvalues of 𝐀 1
ℐ, ℐ(𝐀) smallest interval containing Λ(𝐀 6

𝑓(𝐀) matrix function 1
tr(𝑓(𝐀)) spectral sum 2
Φ, Φ𝐀 cumulative empirical spectral measure (CESM) 2
Ψ, Ψ𝐀,𝐯 weighted CESM 28
𝒦𝑘, 𝒦𝑘(𝐀, 𝐯) dimension 𝑘 Krylov subspace 3
𝐐, 𝐓 Lanczos vectors and coefficients after 𝑘 iterations 4

continues on next page
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notation description page

�̂�, �̂� Lanczos vectors and coefficients after completion 71

𝟙 indicator function 1
‖𝑔‖𝑆 supremum of 𝑔 ∶ ℂ → ℂ on 𝑆 ⊂ ℂ 5
‖ ⋅ ‖ norm induced bymatrixwith same eigenvectors as 𝐀 5

𝜇 non-negative unit-mass distribution function 15
⟨⋅, ⋅⟩𝜇 inner product induced by 𝜇 15
𝑝𝑖 degree 𝑖 orthogonal polynomial of 𝜇 15
𝜃(𝑠+1)

𝑗 𝑗-th zero of 𝑝𝑠 17
𝐌, 𝐌(𝜈) Jacobi matrix for 𝜇, 𝜈 16
𝜇𝑇

𝑎,𝑏 Chebyshev distribution function on [𝑎, 𝑏] 18
𝑚𝑖 degree 𝑖 modifiedmomentwith respect to 𝜇 16

[𝑓]ap𝑠 degree 𝑠 projection of 𝑓 in ⟨⋅, ⋅⟩𝜇 18
[𝑓]ip𝑠 degree 𝑠 interpolation of 𝑓 at zeros of 𝑝𝑠 18
[𝑓]d-ap𝑠 degree 𝑠 damped projection of 𝑓 in ⟨⋅, ⋅, ⟩𝜇 18
[𝑓]d-ip𝑠 degree 𝑠 damped interpolation of 𝑓 at zeros of 𝑝𝑠 18
{𝜌𝑖}𝑠

𝑖=0 damping coefficients 19
{𝜌𝐽

𝑖}𝑠
𝑖=0 Jackson’s damping coefficients 21

𝐂𝜇→𝜈 connection coefficient matrix 31
⟨ ⋅ ⟩ average over ℓ = 0, … , 𝑛v − 1 49
𝕊𝑛−1 unit hypersphere on ℂ𝑛 55

cg𝑘 CG iterate at step 𝑘 72
mr𝑘 MINRES iterate at step 𝑘 73
qmr𝑘 QMR iterate at step 𝑘 73
lan-OR𝑘(𝑟, 𝑅) Lanczos-OR iterate 74
lan-FA𝑘(𝑓) Lanczos-FA iterate 92
sign − OR Lanczos-OR induced iterate tomatrix sign 95

err𝑘(𝑧) Lanczos-FA error at step 𝑘 for for 𝐀−1𝐯 107
res𝑘(𝑧) Lanczos-FA residual at step 𝑘 for for 𝐀−1𝐯 107
ℎ𝑤,𝑧 ℎ𝑤,𝑧 = (𝑥 − 𝑤)/(𝑥 − 𝑧) 108
ℎ𝑧 ℎ𝑧 = 1/(𝑥 − 𝑧) 108

continues on next page
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notation description page

𝑆, 𝑆0, … , 𝑆𝑘−1 Λ ⊂ 𝑆, 𝜆𝑖(𝐓) ⊂ 𝑆𝑖 109

10.2 Indexing for matrices

Givenamatrix𝐁,weuse [𝐁]𝑟∶𝑟′,𝑐∶𝑐′ todenote the submatrixmatrix of 𝐁 consisting
of rows 𝑟 up to (but not including) row 𝑟′ and columns 𝑐 up to (but not including)
𝑐′. Thus, the dimension of [𝐁]𝑟∶𝑟′,𝑐∶𝑐′ is (𝑟′ − 𝑟) × (𝑐′ − 𝑐). Indexing of matrices starts at

zero. If any of these indices are equal to 0 or the corresponding max dimension
of 𝐁, theymay be omitted. If 𝑟′ = 𝑟 + 1 or 𝑐′ = 𝑐 + 1, thenwewill simplywrite 𝑟
or 𝑐.

As an example, suppose

𝐁 =
⎡
⎢
⎢
⎣

1 2 3 4
5 6 7 8
9 10 11 12

⎤
⎥
⎥
⎦

Then

[𝐁]∶,∶2 =
⎡
⎢
⎢
⎣

1 2
5 6
9 10

⎤
⎥
⎥
⎦

, [𝐁]1,∶ = [5 6 7 8] , and [𝐁]0,3 = 4.

I amsuremanyreaders arewonderingwhyIwoulduse such anotation. Perhaps
some are even thinking of xkcd number 927, Standards.

https://xkcd.com/927/
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While I do not expect this notation to become standard in linear algebra, it was
chosen intentionally after much consideration. The two primary motivations
are as follows:

– Much of this thesis relies on the theoryof orthogonal polynomials, and it
isnatural for orthogonalpolynomials tobe indexedbytheir degree (which
starts at zero). It then makes sense that matrices involving orthogonal
polynomials are indexed in awaywhichmatches the polynomials.

– This thesis is written to be as accessible as possible to practitioners, par-
ticularly those in physics and data science. Zero-indexed programming
languages are more common than one-indexed languages in these fields.
In such languages, non-inclusive endpoints are idiomatic, so that the
number of objects in a range is equal to the difference of the endpoints.1

In fact, our notation is identical to that of Python/NumPy, the language of
choice inmany disciplines from these fields.

In my opinion, it would have been nice if sums were also indexed in a similar
way. However, using a notation like ∑𝑟≤𝑖<𝑟′ was deemed too verbose, andmodi-
fying the standard notation ∑𝑟′−1

𝑖=𝑟 would have caused toomuch confusion.

10.3 The model problem

The model problem [Str91; SG92] is a standard class of problems used in the
analysisof thefiniteprecisionbehaviorof Lanczosbasedalgorithms, especially
in the context of solving linear systems of equations. This is because the expo-
nential spacing of the eigenvalues is favorable to Lanczos based linear system
solvers in exact arithmetic yet simultaneously causes the Lanczos algorithm to
rapidly lose orthogonality in finite precision arithmetic. The model problem is
parameterized by the dimension 𝑛, the condition number 𝜅, and a parameter 𝜌
controlling the rate of growth of eigenvalues. Specifically,

𝜆0 = 1, 𝜆𝑛−1 = 𝜅, 𝜆𝑖 = 𝜆1+( 𝑖
𝑛 − 1)⋅(𝜅−1)⋅𝜌𝑛−𝑖−1, 𝑖 = 1, … , 𝑛−1. (10.1)

1The reason many languages use such conventions is perhaps due in part to Dijkstra’s 1982
letter,Whynumbering should start at zero,whichadvocates for indexing to start at zeroand for ranges
to include the start point but not the end point.
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10.4 Some basic properties

Lemma 10.1. Let ‖ ⋅ ‖ be a norm induced by a positive definite matrix with the same

eigenvectors as𝐀. Then

‖𝑔(𝐀)𝐯‖ ≤ ‖𝑔(𝐀)‖2‖𝐯‖.

Proof. Let 𝐁2 be thematrix inducing ‖ ⋅ ‖. By assumption 𝐀 and 𝐁 commute, so

‖𝑔(𝐀)𝐯‖ = ‖𝐁𝑔(𝐀)𝐯‖2 = ‖𝑔(𝐀)𝐁𝐯‖2 ≤ ‖𝑔(𝐀)‖2‖𝐁𝐯‖2 ≤ ‖𝑔(𝐀)‖2‖𝐯‖.

Wenowprovide a number of useful facts about powers of tridiagonalmatrices.
To simplify our proofs, we recall the following fact.

Lemma 10.2. For any 𝑞 > 0 and 𝑘0, 𝑘𝑞 = 0, 1, … , 𝑛 − 1,

[𝐀𝑞]𝑘0,𝑘𝑞
=

𝑛−1

∑
𝑘1=0

𝑛−1

∑
𝑘2=0

⋯
𝑛−1

∑
𝑘𝑞−1=0

[𝐀]𝑘0,𝑘1
[𝐀]𝑘1,𝑘2

⋯ [𝐀]𝑘𝑞−1,𝑘𝑞
.

Proof. This is the definition of matrix multiplication applied 𝑞 times.

Note that if 𝐓 is tridiagonal, then [𝐓]𝑘ℓ,𝑘ℓ+1
= 0whenever |𝑘ℓ − 𝑘ℓ+1| > 1. Thus, the

product
[𝐓]𝑘0,𝑘1

[𝐓]𝑘1,𝑘2
⋯ [𝐓]𝑘𝑞−1,𝑘𝑞

(10.2)

is nonzero, if and only if |𝑘ℓ −𝑘ℓ+1| ≤ 1 for all ℓ. Thus, assuming (10.2) is nonzero,
we can view {𝑘ℓ} as a walk on {0, 1, … , 𝑛 − 1}, starting from 𝑘0 and ending at 𝑘𝑞,
where, at each iteration ℓ, we stay put ormove to an adjacent index. Clearly

|𝑘0 − 𝑘1| + |𝑘1 − 𝑘2| + ⋯ + |𝑘𝑞−1 − 𝑘𝑞| ≤ 𝑞.

In otherwords, the total distancemoved during thewalk is at most 𝑞.

Using this perspective,we immediatelyfind that powers of tridiagonalmatrices
are banded.

Corollary 10.3. Suppose𝐓 is a tridiagonalmatrix and 𝑞 ≥ 0 an integer. Then, for all 𝑖, 𝑗
with |𝑖 − 𝑗| > 𝑞,

[𝐓𝑞]𝑖,𝑗 = 0.
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Proof. Consider a nonzero term (10.2). If |𝑖−𝑗| > 𝑞, then it is not possible tomove
from 𝑖 to 𝑗 in 𝑞 steps.

More generally, we find that the entries of powers of a tridiagonal matrix
depend only on nearby entries of the base tridiagonal matrix. We consider the
symmetric case for simplicity.

Corollary 10.4. Suppose 𝐓 is a symmetric tridiagonal matrix and 𝑞 ≥ 0 an integer.

Then, for any 𝑖, 𝑗with |𝑗 − 𝑖| ≤ 𝑞,
[𝐓𝑞]𝑖,𝑗

is determined entirely by [𝐓]∶𝑘,∶𝑘, where 𝑘 = max(𝑖, 𝑗)+⌊(𝑞− |𝑗 − 𝑖|)/2⌋. In fact, if 𝑞− |𝑗 − 𝑖|
is even, then there is no dependence on [𝐓]𝑘−1,𝑘−1.

Proof. Without loss of generality, wemay assume 𝑖 ≤ 𝑗.

Consider a nonzero term (10.2). We require at least 𝑗 − 𝑖 of our allocated 𝑞
movements to move from 𝑖 to 𝑗. Since we must end at 𝑗, we could move past 𝑗
at most ⌊(𝑞 − (𝑗 − 𝑖))/2⌋ indices before returning.

If (𝑞 − (𝑗 − 𝑖))/2 is an integer, then when we reach the maximum point 𝑗 + (𝑞 −
(𝑗 − 𝑖))/2wemust immediately return towards 𝑗. Thus, 𝑘ℓ ≠ 𝑘ℓ+1 for any ℓ, and in
particular, for ℓ = 𝑗 + (𝑞 − (𝑗 − 𝑖))/2.
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10.5 List of algorithms

name description reference

Lanczos Lanczos algorithm Algorithm 1.1

Stieltjes Stieltjes algorithm (naive) Algorithm 2.1
Stieltjes Stieltjes algorithm Algorithm 2.2

get-moments Getmodifiedmoments of Ψwrt. 𝜇 Algorithm 3.1
get-Chebyshev-moments Getmodifiedmoments of Ψwrt. 𝜇𝑇

𝑎,𝑏 Algorithm 3.2
get-connection-coeffs Get connection coefficients Algorithm 3.3
get-moments-from-Cheb Getmodifiedmomentswrt. 𝜇 of weighed CESM (via Chebyshevmoments) Algorithm 3.4
get-moments-from-Lanczos Getmodifiedmomentswrt. 𝜇 of weighed CESM (via Lanczos) Algorithm 3.5
get-IQ Quadrature by interpolation Algorithm 3.6
get-GQ Gaussian quadrature Algorithm 3.7
get-AQ Quadrature by approximation Algorithm 3.8
get-aAQ Approximate quadrature by approximation Algorithm 3.9
spec-approx Prototypical randomized spectrum and spectral sum approximation Algorithm 4.1

LDL LDL factorization Algorithm 5.1
streaming-LDL Streaming LDL factorization Algorithm 5.2
streaming-banded-prod Streaming banded product Algorithm 5.3
streaming-banded-inv Streaming banded inverse Algorithm 5.4
streaming-tridiag-square Streaming tridiagonal square Algorithm 5.5
get-poly Get polynomial of tridiagonal matrix Algorithm 5.6
banded-rational Streaming banded rational inverse Algorithm 5.7
Lanczos-OR-lm Lanczos-OR (lowmemory) Algorithm 5.8
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