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We study Lanczos-based methods for tasks involving matrix functions. We
begin by resurfacing a range of ideas regarding matrix-free quadrature which,
tothebest of our knowledge, have notbeen treated simultaneously. This enables
the development of a unified perspective from which a number of commonly
used randomized methods for spectrum and spectral sum approximation can
be understood. We proceed to develop optimal Krylov subspace methods for
approximating the product of a rational matrix function with a fixed vector.
Finally, we show how the optimality of such methods can be used to obtain fine-
grained spectrum dependent bounds for standard Lanczos-based methods for
approximating a wide class of matrix functions applied to a vector.
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Preface

At night, my apartment looks out to a thousand illuminated windows. I'm
drawn such views because they make me feel an isolating sense of closeness;
behind each window is a person—a family enjoying dinner, a student working
on their homework, a cleaning person ending their shift. I do not know them
and they do not know me, yet we are all connected in this moment of existence.
This is sonder, a concept for which we find a definition in the Dictionary of
Obscure Sorrows:

sonder

n. the realization that each random passerby is living a life as vivid

and complex as your own

Sonder, even with the accompanying melancholy, has been the single most
consistent force driving my success throughout my tertiary education. It only
fitting, then, that it receives mention in my dissertation, the symbolic culmina-

tion of my formal education.

Chinatown/International District
Seattle, Washington
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Chapter 1
Introduction

Computational approaches to today’s most pressing and world-changing ques-
tions are reliant on subroutines for fundamental linear algebraic tasks. The fo-
cus of this thesis is on the design and analysis of algorithms for an increasingly
prevalent subset of such tasks: those involving matrix functions of Hermitian
(or real symmetric) matrices. For the duration of this thesis, Awillbean x n
Hermitian matrix with eigenvalues A := {A;}'= and (orthonormal) eigenvectors

{ut}tn;%)r i'e'r
n—1
A=) Auul (1)
i=0

A matrix function transforms the eigenvalues of a Hermitian (or symmetric)
matrix according to some scalar function, while leaving the eigenvectors un-
touched.

Definition 1.1. The matrix function f(A), induced by f : R — Rand A, is defined as

Perhaps the most well known example of a matrix function is the matrix inverse

1. Other common

A7, which corresponds to the inverse function f(x) = x~
matrix functions including the matrix sign, logarithm, exponential, square root,
and inverse square root, each of which has many applications throughout the

mathematical sciences.

A reference sheet containing common notation and useful factscan be found in Chapter 10.
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A common task involving matrix functions is computing the product f(A)v
of a matrix function f(A) with a fixed vector v; for instance, the matrix in-
verse applied to a vector corresponds to the solution of a linear system of
equations. Beyond the multitude of applications of linear systems, matrix
functions applied to vectors are used for computing the overlap operator in
quantum chromodynamics [Esh+02], solving differential equations in applied
math [Saa92; HL97], Gaussian process sampling in statistics [Ple+20], principle
component projection and regression in data science [JS19], and a range of other
applications [Hig08].

Another related and especially interesting task involving matrix functions is

estimating the spectral sum,

e(f(A) = Y SA). 1.2

Applications of spectral sums include characterizing the degree of protein fold-
ing in biology [Est00], studying the thermodynamics of spin systems in quan-
tum physics and chemistry [Wei+06; SS10; SRS20; Jin+21], benchmarking quan-
tum devices in quantum information theory [Joz94], maximum likelihood es-
timation in statistics [BP99; PLO4], designing better public transit in urban
planning [BS22; Wan+21], and finding triangle counts and other structure in
network science [Avrl0; DBB19; BB20].

The trace of matrix functions is intimately related to the spectral measure of A
which encodes the eigenvalues of A.

Definition 1.2. The cumulative empirical spectral measure (CESM) ® : R — [0, 1],
induced by A, is defined by

n—1

D(x) = Dy := Zn‘lll[/\,- < x].
i=0

Here 1[true] = 1 and 1[false] = 0.

Not only is ®(x) itself a spectral sum for each x € R, but

tr(f(A)) = n j £do.

In this sense, approximating the CESM @ is equivalent to approximating spec-
tral sums. However, approximations to ® are also useful in that they provide a
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global picture of the spectrum of A. Such coarse grained approximations are
used in electronic structure computations and other tasks in physics' [Wei+06;
Jin+21], probing the behavior of neural networks in machine learning [GKX19;
Papl9; GWGI9; Yao+20], load balancing modern parallel eigensolvers in nu-
merical linear algebra [Pol09; Li+19], and computing the product of matrix
functions with vectors [Fan+19].

The simplest, and arguably most elegant, approach to spectrum and spectral
sum approximation involves computing quadratic forms v"f(A)v for suitably
chosen random vectors v. For any fixed v, the task of computing v f(A)v is inti-
mately related to quadrature[GM94; GM09] and, besides the many applications
of spectrum and spectral sum approximation, is used for estimating the error of
Krylov subspace methods [DEG72; G§94; GM09].

1.1 Lanczos-based methods

The algorithms we study in this thesis fall into a general class of algorithms
called Krylov subspace methods (KSMs). KSMs produce approximations using
information from the set of low-degree polynomials in A applied to a vector v;
i.e. from the so-called Krylov subspace generated by A and v.

Definition 1.3. The dimension k Krylov subspace K, generated by A and v is defined as

K, = Ky(A, v) := span{v, Av, ..., A¥lv} = {p(A)v : deg(p) < k}.

The information from a given Krylov subspace can be used to approximate
f(A)v and v" f(A)v. In particular, a natural approach is to use the approxima-
tions

fAy = [fIPA)v,  vIf(A)v = v[fIP(A)v,
where [f]:P : R —> Ris a degree s polynomial chosen to approximate f.

“ n

Throughout this thesis, the symbol “o” should be interpreted as a parameter
encompassing any other parameters which impact how [f];P(A) is determined
for f. For instance, once choice of o may correspond to the interpolating poly-

nomial to f at some set of nodes while another choice of o may correspond

'In physics, the “density” d®/dx is often called the density of states (DOS).
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to the Chebyshev approximation to f. Specific choices of o corresponding to
widely used algorithms will be defined as they come up. Here the use of “p”
stands for polynomial, and will be used to differentiate between polynomial
approximations of a function and quadrature approximations of a distribution

function, which will be defined later.

Remark 1.4. When A is Hermitian, Krylov subspace methods are, in one way
or another, related to the Lanczos algorithm [Lan50] described in Algorithm 1.1.
Even so, we use the term Lanczos-based methods to refer to algorithms which make
use of the information generated by the Lanczos algorithm in some non-trivial
way. This is in contrast to methods, such as those based on explicit polynomial
approximation, which can easily be constructed directly. A

Assumption 1.5. From this point onwards, we will assume ||v|, = 1.

The Lanczos algorithm (Algorithm 1.1) [Lan50] produces an orthonormal basis
{q,}%_, for the Krylov subspace K,,; such that, foralli = 0,1, ..., k,

span{qo, qi,--- ’qi} = Ki1-

These basis vectors satisfy a three term recurrence, foralli = 0,1, ..., k-1,

Aq; = Bi19i1 +29; + Bidii1

with initial conditions q_; = 0and _; = 0. The coefficients {a;}*=} and {B,}¥=}
defining the three term recurrence are also generated by the algorithm. This

recurrence can be written in matrix form as

AQ = QT + ;198 (13)
where
| | | aO BO
Bo «
Q:=|q, q; Qe |, T:= ° ._1

Bea|

Brz2
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Algorithm 1.1 Lanczos algorithm

1: procedure LANCZOS(A,V,k)

2 qy=v,p1=0,q,=

3 fori=0,1,...,k—1do

4 qis1 = Aq;— Bil19i1

5: @ = qi' Qi

6 Qis1 = Qi1 — 4;

7 optionally, reorthogonalize, q;,, against {qj}}zo
8 Bi = llqin

9 Qis1 = 9i11/Bi

10:  return {q;fi_o, {@: b, {Bi}ch.

Remark 1.6. It is not uncommon for the matrices which we call Q and T to be
denoted by Q, and T,. We omit these subscripts for legibility, as the number
of iterations k can be treated as fixed throughout this thesis. Note also that we
begin indexing at zero so that indices match the degree of the corresponding
polynomial. A

1.1.1 The insufficiency of interval-based bounds

As we previously noted, this thesis is concerned with polynomial approxima-
tions to f(A)v and v"'f(A)v. The error of such methods is often closely related
to problems in scalar polynomial approximation theory. In particular, note that

lg(A)l = I'ECIGE}\XW(X)' =: gl

where A is the set of eigenvalues of A. Here we have introduced the notation
lglls = sup, lg(x)| forg : € - CandS c C. Let| - | be any norm
induced by a positive definite matrix with the same eigenvectors as A. Then,
a simple application of the sub-multiplicative property of matrix norms (see
Lemma 10.1) implies

If(A)v = [fI(A)v]

v

< [If(A) = [FIP(A)2 = If = [f1P A (1.4)
Recalling our assumption |v||, = 1, we also have

VUf(A) = VIFIP(A)V] < [F(A) = [FIPA)LIVIE = If - [fIPls- - (15)
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Thus, we see that the quality of our approximations can be studied in terms of
the quality of the polynomial approximation [f]s? to f on the eigenvalues of A.

Since polynomial approximation on an interval is well understood, it is com-
mon to bound the quality of Krylov subspace methods in terms of the best

polynomial approximations on an interval. It is always true that

If=pls < 1f-plz

whereT := [A,;,, Amax] 18 the smallest interval containing all of the eigenvalues.
Thus, it is common to bound the left hand sides of (1.4) and (1.5) by an expression
like

2 min -plr 1.6
min I =Pl (16)

However, while such bounds are useful in some situations, they often provide
a large overestimate of the true behavior of Lanczos-based methods and are
therefore unsuitable for use as practical stopping criteria.

1.1.2 The effect of finite precision arithmetic

While reorthogonalization in the Lanczos algorithm is unnecessary in exact
arithmetic, omitting it often results in drastically different behavior when using
finite precision arithmetic. Specifically, the Lanczos basis Q may be far from
orthogonal, and the tridiagonal matrix T may be far from what would have
been obtained in exact arithmetic. Because the Lanzcos algorithm is osten-
sibly unstable, there has been a widespread hesitance towards Lanczos-based
approaches for problems involving matrix functions, at least without reorthog-
onalization [JP94; Sil+96; Aic+03; Wei+06; UCS17; GWG19].

The two primary effects of finite precision arithmetic on Lanczos-based meth-
ods when run without reorthogonalization are (i) a delay of convergence (in-
crease in the number of iterations to reach a given level of accuracy) and (ii) a
reduction in the maximal attainable accuracy. However, while both effects are
easily noticeable on most problems, they do not imply that reorthogonalization
isneeded. In fact, throughout this thesis, we argue that Lanczos-based methods

are highly effective even without reorthogonalization.
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1.1.3 A motivating example

We now provide a simple and familiar example chosen to illustrate the themes
introduced in this section. The conjugate gradient algorithm (CG)[HS52]is used
to solve positive definite linear systems of equations, and is perhaps the most
well-known Lanczos-based KSM. When applied to a positive-definite linear
system Ax = v, CG produces iterates cg, € K optimal in the A-norm. This
optimality implies the error bounds®

AV —cglla @ . o
L S emin e opla < min -l (17)

GivenI = [Ayiy, Amax), (1.7b) can be computed analytically and, roughly speak-
ing, it decreases linearly at a rate proportional to (1 — 1/Vx). In other words,
to reach accuracy ¢, CG requires at most O(vx log(e™!)) iterations, where k =
Amax/Amin
ber bound for CG. On the other hand, (1.7a) may be significantly better than the
latter bound involving T and provide a more realistic picture of the convergence

isthe condition number of A. This is the well known root condition num-

of CG. However, since (1.7a) depends on the spectrum of A, which is typically
unknown, the bound’s use is in that it provides intuition into the theoretical
behavior of CG rather than as a practical stopping critera.

In Figure 1.1, we plot the bounds (1.7a) and (1.7b) as well as the actual errors
in a Lanczos-based implementation of CG run with and without reorthogo-
nalization for a spectrum with exponentially spaced eigenvalues (the precise
details are not important at this point). Observe that the bound (1.7a) decreases
significantly faster than (1.7b) for the given spectrum. Note also that, even

without reorthogonalization, CG converges significantly faster than (1.7b).

An alternative to CG is the Chebyshev semi-iterative method [FS50; GRO2]. This
method can be implemented without using the Lanczos algorithm by directly
constructing an explicit polynomial approximation to x* on I. However, as
a result, the algorithm is unable to adapt to the spectrum of A and usually
converges very similarly to (1.7b). Moreover, if I is estimated inaccurately, then

the algorithm may become unstable. Interestingly, even in finite precision

“Throughout, we will occasionally use symbol “x” for the identity function x : A ~— A rather
than an unspecified real value. Thus, expressions like xp and x! — p should respectively be
interpreted to mean the functions A = Ap(A) and A — A~ —p(A).


eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
eqn:spec_int_bd
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number of matvecs: k

Figure 1.1: CG convergence (with and without reorthgonalization) and
error bounds. Legend: CG error |A™lv — cglla/llvily with ( —< ) and
without ( —— ) reorthgonalization, bound (1.7a) on A ( ), and
bound (L7b)onI( —— ).

arithmetic, an iterate very close to what would be produced by the Chebyshev
method can be obtained from the Lanczos method [Gre89; DK91; MMSI8]. Since
the extreme eigenvalues of T typically provide a very good estimate for I, this
means that a Lanczos-based implementation of the Chebyshev method avoids

the need for a priori parameter selection.

Remark 1.7. Optimization algorithms such as accelerated gradient descent
also attain a root condition number iteration complexity on any smooth and
strongly convex function (such as x — %XHAX — x"v for positive definite linear
systems). Since this rate is optimal among first-order methods for smooth and
strongly convex functions, accelerated gradient descent is often referred to as
“optimal”. The fact that CG has a similar convergence guarantee often leads
CG to be introduced as an alternative to accelerated gradient descent for linear
systems. However, accelerated gradient descent is essentially equivalent to
the Chebyshev semi-iterative method when applied to the above objective and
therefore is not typically competitive with CG in terms of the number of matrix-

vector products. A


eqn:spec_int_bd
eqn:spec_int_bd
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1.2 Context and contributions

Essentially any numerical linear algebra textbook will have at least one chapter
on KSMs. In fact, there are a number of texts which focus on the classical uses
of KSMs: eigenvalue problems and solving linear systems of equations [Pai7l;
Gre97; Saall; MS06; Meu06; LS13b]; see also [GO89] for a historical overview of
early developments. The large number of such resources means that treatments
of topics such as the behavior of algorithms in finite precision arithmetic can be

found at a range of levels of detail.

Resources dealing with general matrix functions are less plentiful. While many
textbooks might have a chapter on functions such as the exponential or square
root, the only recent book I am aware of which is dedicated specifically to
matrix functions is [Hig08]. However, this book is focused primarily on the case
of computing f(A), with only one chapter devoted to the task of computing
f(A)v and no discussion on the task of v"'f(A)v. There are a number of more
specialized texts on these topics. The topic of v"'f(A)v is covered thoroughly in
[GM94; GMO09] from a theoretical quadrature perspective. A widely used prac-
tical quadrature algorithm for estimating spectral sums and spectral densities
called the kernel polynomial method is discussed in [Wei+06] but not analyzed
theoretically. The thesis [Sch16] discusses practical error bounds for methods
for computing f(A)v for symmetric and non-symmetric A as well as restarting
techniques for non-symmetric problems, and the thesis [Cor22] discusses low-
rank approximation of matrix functions as well as stochastic trace estimation
of matrix functions. None of the above texts discuss thoroughly the impacts of
finite precision arithmetic.

During my PhD studies, it became strikingly clear that the state of knowledge
surrounding Lanczos-based methods for matrix functions is fragmented. For
instance, there are several lines of work within the quantum physics literature
which contain results not discovered in applied math until decades later. Con-
versely, practitioners in physics, data science, and machine learning, often lack
knowledge regarding the practical behavior of Lanczos-based methods in finite
precision arithmetic. While this can be partially attributed to a lack of due-
diligence in studying background material, alarger problem is that the requisite
background is not easily accessible to non-specialists. In fact, some of the most
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relevant work on Lanczos-based methods in finite precision arithmetic is not

even well known within the numerical analysis community.

This thesis aims to fill some of the gaps in the presentation of Lanczos-based
methods for matrix functions by providing a comprehensive background on the
topic. Indeed, several chapters are primarily expository, with the express goal
of providing a more thorough context for the other chapters. While there are a
number of technical contributions, arguably the most significant contributions
of this thesis are the following two themes:

- Boundsbased on polynomial approximation on a single interval are insuf-
ficient to describe the true behavior of Lanczos-based methods for matrix
functions. Instead, one should seek bounds based on the spectrum which
are able to take advantage of more fine-grained spectral structure such as
gaps and outlying eigenvalues.

- While Lanczos-based methods may behave differently in finite precision
arithmetic than exact arithmetic, they still outperform Krylov subspace
methods based on explicit polynomial approximations. Moreover, the
hyper-parameters in explicit polynomial methods can be determined ef-
fectively through the use of Lanczos-based implementations.

It is my hope that the contributions of this thesis are presented in a way which
will promote understanding of and intuition for Lanczos-based methods for

matrix functions outside of the numerical analysis community.

This thesis contains primarily work which appears in the following papers:

[Che+22a] T.Chen, A. Greenbaum, C. Musco, and C. Musco. “Error Bounds for
Lanczos-Based Matrix Function Approximation”. In: SIAM Journal
on Matrix Analysis and Applications 43.2 (May 2022), pp. 787-811. DOTI:
10.1137/21m1427784. arXiv: 2106.09806 [math.NA].

[Che+22b] T.Chen, A. Greenbaum, C. Musco, and C. Musco. Low-memory Krylov
subspace methods for optimal rational matrix function approximation.
2022. arXiv: 2202.11251 [math.NA].


https://doi.org/10.1137/21m1427784
https://arxiv.org/abs/2106.09806
https://arxiv.org/abs/2202.11251
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[CTU21] T. Chen, T. Trogdon, and S. Ubaru. “Analysis of stochastic Lanczos
quadrature for spectrum approximation”. In: Proceedings of the 38th
International Conference on Machine Learning. Vol. 139. Proceedings of
Machine Learning Research. PMLR, 18-24 Jul 2021, pp. 1728-1739.
arXiv: 2105.06595 [cs.DS].

[CTU22] T. Chen, T. Trogdon, and S. Ubaru. Randomized matrix-free quadrature
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Rather than stapling these papers together, I have arranged the content in
accordance with my broader goals for this thesis. In addition, a large amount of
new exposition has been included in order to tie things together more cleanly
and to provide additional context for non-experts. Towards this end, many of
the numerical examples from the above papers have been modified for consis-
tency with the rest of the thesis. The files needed to generate the figures in this
thesis (as well as the thesis itself) are freely available online.
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Chapter 2
Scalar polynomials

In this chapter, we introduce some basic theory regarding scalar polynomials!
whichwill come in handythroughout the rest of this thesis. A scalar polynomial

of degree kis a function of the form
X o o4 cqX + o 4k,

where ¢y, ¢y, ..., ¢, are fixed scalars. Such a polynomial is naturally extended to
matrices as
A o g+ A+ -+, AF

in a manner compatible with our definition of matrix functions. Thus, matrix

polynomials are intimately related to Krylov subspace methods.

2.1 Basic definitions

Our discussion on quadrature centers around approximating distributions and
integrals against distribution functions. Several examples of such functions are
illustrated in Figure 2.1.

Definition 2.1. A (signed) unit mass distribution function Y is a right continuous func-
tionY : R — Rsuch thatlim,_ . Y(x) = 1andlim Y(x) = O. If Y is also weakly
increasing, we say it is a probability distribution function.

X—00 X—>—00

'Polynomials were perhaps the first abstract mathematical object I encountered — I distinctly
remember grappling with the meaning of a variable x, which is “somehow a number but also not”,
in the later years of elementary school. It’s amazing, then, that the theory of polynomials of a
single variable underlies so much of my PhD thesis.



chapter 2 page 13

1.0

0.8 1

061 P

0.4 - J\}q{v
7

0.2 +

0.0 1

T T T T T
-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

Figure 2.1: Sample unit mass distribution functions. Legend: con-
tinuous increasing distribution function ( — ), continuous distribu-
tion function which is not weakly-increasing ( ——- ), discrete weakly-
increasing distribution function ( —— ), discrete distribution function
which is not weakly-increasing ( )-

Remark 2.2. If Y is differentiable, then the derivative dY/dx = Y’ is the usual
probability density function. Likewise, in the sense of distributions, d1[a <
x]/dx = 6(x — a) where 6(x — a) is a unit mass Dirac delta function centered
at a. Thus, if Y is piecewise constant, then dY/dx can be expressed in terms of
the sum of weighted Dirac delta functions, where a delta function is located at
each discontinuity and weighted by the size of the corresponding jump. A

We now introduce several definitions which we will use throughout the next

several chapters.

Definition 2.3. Given a function f and distribution function Y we denote by fab fdY the

standard Riemann-Stieltjes integral

b p-1
j fFaY = lim > fle) (X(i4) - Y(x)),
a i=0

IPl—0

where P = {a = x\ < ... < xP) = b}isa partition of [a, b], |P| = max, [x(V) — x()],

and c; € [x;, x;1]-
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For notational clarity, we will often write [ f dY in which case a, b can be taken as +oco.

Definition 2.4. In the setting of the previous definition,

p-1
J~bf |dY| = lim Zf(ci)|Y(x(i+l)) _ Y(x<l))’
‘ i=0

[P0

Definition 2.5. Let Y be a (distribution) function. The total variation (TV) of Y, denoted
dry(Y), is defined by
dTV(Y) = j |dY|

Remark 2.6. If ¥ is a weakly-increasing unit-mass distribution function, then
dTV(\P) = 1. A

To measure the similarity of two distribution functions, we will typically use the
Wasserstein (earth mover) distance.

Definition 2.7. Let Y, and Y, be two probability distribution functions. The Wasserstein
distance between Y| and Y ,, denoted dvy (Y1, Y,), is defined by

It is well known that the Wasserstein distance between two distribution func-

tions has a dual form involving 1-Lipshitz functions.
Definition 2.8. Wesaythat f € Lip(L, S)if|f(x)—f(y)| < Llx—y|forallx,y € S c R.

Lemma 2.9. Suppose Y, and Y, are two probability distribution functions of bounded

total variation each constant on (—oo, a) and (b, o). Then,

dw(Y1,Y,) = sup {ffd(yl ~Y,) : felip(l, [a,b])}.

Remark 2.10. In some situations, other metrics may be more meaningful. For
instance, if it is important for two distribution functions to agree to very high
precision in a certain region, but only to moderate accuracy in others, then the
Wasserstein distance may be unsuitable. A
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2.2 Orthogonal polynomials

Throughout this thesis, y will be a non-negative unit mass distribution function.
Associated with p is the inner product (., -), defined by

S0 = | foau 21

The set of u-square-integrable functions forms a Hilbert space with respect
to this inner product, so we may hope to find an orthonormal basis {p;}?2, of
polynomials with deg(p;) = i. Such a basis is easily produced by a simple
modification of the Gram-Schmidt algorithm which results in a naive imple-
mentation of the so-called Stieltjes algorithm. An implementation is described
in Algorithm 2.1.

Algorithm 2.1 Stieltjes algorithm (naive)

1: procedure STIELTJES(u, k)

2 po=1

3. fori=0,1,...,k—1do

4 Piy1 = Xp;

5 Pir1 = Pirt — ({Pos Pisthu Po + - +{Pis Pir1 )y Pi)
6 Pis1 = Pint/IPisll,

return {p;}i_,

=

Note that the polynomials satisfy, for alli > 0,
xp; = [Pially Piva +{Pos Pix 1)y Po + -+ +4{Pis Pisa )y Pi- (2.2)
This can be written in matrix form as

x[po,p1, -] = [Po, p1, - ]H,

where [py, p1, ---] is a quasi-matrix whose columns are the polynomials {p,}{2, and

H is a semi-infinite upper-Hessenberg matrix. Moreover, for alli,j > 0O,

[H]i,j = (ps xPj),; = <pjr xpi>)1 = [H]j,i;

that is, H is symmetric. Since, by construction, H is upper-Hessenberg, this
implies that H is symmetric tridiagonal!
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Therefore, for all i > 0, (2.2) becomes the symmetric three-term recurrence

xp; = BisiPica + aipi + Pibina (2.3)

with initial conditions p, = 1, p_; = 0, and B_; = O, where {&;};.o and
{Bi}i0 are chosen to enforce orthogonality. In particular, Algorithm 2.1 can be
modified to take advantage of this short-recurrence, resulting in the standard
implementation of the Stieltjes algorithm, Algorithm 2.2. In the case that §; =
0, the algorithm should be terminated as the dimension of Krylov subspaces

does not continue to grow.

Algorithm 2.2 Stieltjes algorithm

1: procedure STIELTJES(u, k)

2 po=1

32 fori=0,1,..,k—1do
4 Piy1 = XPp;

5: @ = Pis Pis1)u

6 Pis1 = Pis1 — %P

7 Bi = Pl

8 Pis1 = Pin1/Bi

9:  return {p;}*_o, {o;}525, {B:}S

Definition 2.11. The, possibly semi-infinite, tridiagonal matrix M = M(u) giving the
three-term recurrence coefficients for the orthogonal polynomials of u is called the Jacobi
matrix corresponding to u. Unless specified otherwise, the coefficients are

a Bo
Bo a1 B

B o

M =

An important property of a distribution function Y are it’s polynomial mo-
ments. We are particularly interested in those induced by u.

Definition 2.12. Foreachi > 0, the modified moments of Y (with respect to u) are

m; = my(Y,p) : Jp,dY

Ifmy, ..., my < 0o, we say Y has finite moments through degree s.
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Jacobi matrices have many interesting properties, several of which we review
here.

Lemma 2.13. The upper-leftmost k xk submatrix of a Jacobi matrix is entirely determined
by the moments through degree 2k — 1 of the associated distribution function.

Proof. This is a direct consequence of the fact that the k-point (degree 2k — 1)
Gaussian quadrature rule for a distribution function can be determined from
the upper-leftmost k x k submatrix of the associated Jacobi matrix. This argu-
ment will be made whole in Section 3.2.2. O

Lemma 2.14. Denote the zeros of p, by {B}k)}f;}). Then, foranyj = 0,1, ..., k—1,

H
[Po(0), p1(81), ..., s (61)]

is an eigenvector of [M],;, ., with eigenvalue G}k). Moreover, all eigenvectors are obtained in

this way.

Proof. In matrix form, (2.3) becomes

x[po,pr s Peci] = [Po, P1 o) Prca IM A+ Bioipreion
Evaluating each side of the above equality at Gj(k) gives the first part of the result.

To show all eigenvectors are obtained in this way, it suffices to show that
{9](-k)}0£j<,e are distinct. Let {tj}f;’& be the points at which p, changes signs. Then,

k-1
[ o] Jee-tyau o0
j=0

since the integrand does not change signs. This implies ¥ = &k since p, is
orthogonal to all polynomials of lower degree. O

2.2.1 Chebyshev polynomials

Owing to the deep connection between Chebyshev polynomials and approxi-
mation theory[Trel9], one particularly important choice of u is the distribution
function corresponding to the Chebyshev polynomials of the first kind. We will
often treat this case with special care.
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Definition 2.15. The Chebyshev distribution function of the first kind, p. , : [a,b] —
[0, 1], is defined as

T '—l+larcsin< 2 x—b+a)
Hap =377 b—a" b-a)’

Thus, for x € [a, b],

dug 2 2 btay2\P
dx — ﬂ(b—a)(l_ Goa* " bh—d) ) '

Definition 2.16. The Chebyshev polynomials of thefirst kind, denoted {T;}2 ,, are defined

by the recurrence Ty = 1, T; = x,and, foralli > 1,

Ti+1 = ZXTi - Ti—l'

It can be verified that the orthogonal polynomials {p;}2, with respect to i, , are

givenbypy = Ty = 1and, foralli > 1,

. 2 b+a
pi = ‘/ET"(_b—ax-l_b—a)'

Therefore, the Jacobi matrix M(u. ,) has diagonal and off diagonals entries given
by

a+b a+b ] and [b—a b—a b—-a ]
2 2 oz 44

respectively.

2.3 Polynomial approximations and bounds

As noted in the introduction, we use the notation [ f];P to denote a degree s poly-
nomial obtained from f by some algorithm parameterized by o. In particular,

we will make the following definitions.

Definition 2.17. Givena non-negative unit mass distribution function u with degree s+1
orthogonal polynomial p, , we define,

[f15P =

{o =1 degreesinterpolant to f at roots of p,,,

o =a degrees truncated series for f in -, -),
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The damped projection [f]¢?P and damped interpolant [f]¢P are respectively
obtained by scaling each of the coefficients of [f]2P and [f]iP, when represented
as a linear combination of the orthogonal polynomials {p;};_,, by constants p;
foreachi =0,1,...,s

Definition 2.18. Write [ f]:? in a polynomial series with respectto:, -),; ie. as

N

[f1P = Zcipi'

i=0

Then, given damping coefficients {p;};_, withO < p; < 1foralli,
= Z PiCiPi-
i=0

We now review several classical results from approximation theory which we
will use throughout this thesis. These are constructive bounds for the case
p = pl} ; which provide upper bounds for the quality of the best polynomial
approximation to f. In fact, both [f]?P and [f]P provide nearly optimal approx-

imations in many settings [Trel9].

Afulltreatment requires at least a textbook, and we refer readers to[Trel9]for an
excellent such book. The following theorems are summarized from Theorems
7.2 and 8.2in[Trel9].

Definition 2.19. Wesay that f € BV(d,V,S)if,onS c R, fisd times differentiable, its
derivatives through f\“=V) are absolutely continuous, and the d-th derivative f') has total

variation bounded above by some constant V on S.

Definition 2.20. Forp > 1the Bernsteinellipse E,(a, b)is the ellipse centered at =~ “+b with

semi-axis lengths = ba l(p +p)and =° b a1 2(p+p” 1) along the real and imaginary dtrecttons;

Le

a+b
2

E,(a,b) = {zeC:z: _a%(u+u‘1)+

, u=pexp(if), B8 € [0, Zﬂ)}.

Definition 2.21. Wesay that f € Anl(p, M, [a, b]) if f is analytic on the region enclosed
by E,(a, b) where it satisfies | f (x)| < M.

Theorem 2.22. For aninteger d > 0, suppose f is d times dz_l%rentzable its derivatives
through f-1) are absolutely continuous, and the d-th derivative f% has total variation
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bounded above by some constant V on [-1,-1]; i.e., suppose f € BV(d,V,[-1,1]). Then,
withy = pl, |, foranys > d,

2V i 4V
— ap _ - P S TY
||f [f]s ”[_1,1] < ﬂd(S—d)d’ ”f [f]s ”[—1,1] < ﬂd(s—d)d'

Theorem 2.23. Suppose f is analytic on the region enclosed by the Bernstein ellipse
E,(~1,1) where it satisfies ||f||Ep(—1,1) < M; ie., suppose f € Anl(p,M,[-1,1]). Then,
withy = pl, |, foranys > 0,

2Mp* 4Mp™*
I = U s 520 =Pl < S

p—1
Lemma 2.24. Setc; = 2andc, = 1. Then, foro € {i,a}, |f — [f]P|lo < €/2 provided

s> lntp)l <4CM>+$IH(€_1) fEAn|(p,M,[a,b]),

acv\ 4 _
d+ (%) et feBV(d,V,[a,b]).

Proof Define f : R — Rby f(x) = f(lﬂx+ “+b) Then we have that,

min L Nf = Playy = min ||f Pl
deg(p) deg

Note that if f € Anl(p,M,[a,b]) then f € Anl(p,M,[-1,1]) and if f €
BV(d,V,[a,b]) then f € BV(d,V,[-1,1]).

The result then follows by setting the upper bounds in Theorems 2.22 and 2.23
toe/2 and solving fors. O]

Next, we consider polynomial approximations to 1-Lipshitz functions. Note
that there exist 1-Lipshitz functions whose derivatives are not of bounded vari-
ation. Therefore we cannot simply use Theorem 2.22. Fortunately, the best
approximation of differentiable functions is well studied. In particular, we
have the following theorem due to Jackson; see [Ach92, Section 87] and [Che0O,
Section 6] for details.

Theorem 2.25. Suppose f is I-Lipshitz on [-1, 1], i.e., suppose that f € Lip(1,[-1, 1]).
Then,

dglln If =Pl < (S+1)
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In fact, the constant /2 is the best possible under the stated conditions.

While the “vanilla” Chebyshev projection and interpolation do not attain this
rate for all 1-Lipshitz functions, we can constructively obtain polynomial ap-

proximations which do attain this rate by damping.
Definition 2.26. Fori = 0,1, ..., s, the degree s Jackson’s damping coefficients are

(s—i+2)cos (’T’TZ) +sin (1) cot (i)

p{ — s §+2 s+2 )

s+2

The damped projection and interpolant then satisfy a similar bound to Theo-
rem 2.25.

Theorem 2.27. Suppose f € Lip(1,[-1,1]), u = u, ,, and we use Jackson’s damping
coefficients as in Theorem 2.26. Then for o € {d-i,d-a},

If = 1PN,y < %Z(S+2)'1.

We provide a proof of this statement in Section 2.A. While our proof is based
closely on [Riv81], the exact constant we obtain is sharper than other bounds we
know of for the quality of the damped projection [f]4-?P. Moreover, our version
of the proof works for the damped interpolant [f]¢-"P. We were unable to find a

similar result in the literature, although we suspect such a result is known.

2.A Proof of Jackson’s theorem

In this section we prove Theorem 2.27. We follow Chapter 1 of [Riv81] closely,
starting with trigonometric polynomials on [, 7] and then mapping to alge-
braic polynomials on [-1, 1]. Throughout this section we maintain the notation
of [Riv8l], so the constants in this section do not necessarily have the same
meaning as the rest of the paper. In particular, n is the degree of the trigono-
metric polynomials used.

Given g : R — R, 1-Lipshitz and 2m-periodic, for o € {i, a}, define

sp(0) := % + Z (aj cos(k) + by, sin(k0))
k=1
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where, fork = 0,1, ...,n
ii= 2 [ o) costkanni@)ag,  bii= L[ g@)sinteang(@) dg.

Here M3(¢) := 1and

1 T _ 2m(i-1/2)
§ 2 0@ b=

i€Z

where 8(¢) is a Dirac delta distribution centered at zero. Thus, s} is the trunca-
tion of the Fourier series of gwhile s, is the interpolant to g at the equally spaced

nodes {¢;}{".

Remark 2.28. Note that f_ﬂﬂ_ means an integral over [-m,7); i.e. the upper
endpoint of integration is excluded. This is important for integrals involving

M which can have nonzero integral at a single point. A

Finally, define the damped interpolant/approximant
o ao - o o 1
qn(0) := 70 + Zpk (aj cos(kO) + by, sin(k0O))
k=1

where the damping coefficients {p,};_, are arbitrary real numbers. Our aim is
to bound g, - gl x)-

Lemma 2.29. Forallk =0,1,...,n,

2 k=0
0 kel,2,..,n

-

1 (" .
,—,j cos(k¢>Mn<¢)d¢={

and

1 ("
EJ sin(kx)M;(¢)d¢ = 0.

-

Proof. Clearly % f_””_ cos(0¢p)Mid¢ = 2, and for k > 0, we have,

L[ costedmz(@) a = 0

-
By definition,

2n 2n

%, er COS(k(;b)Miz((xb) de = % Z COS(k(,b}-) = % Re Z eXp(ikd)]-).

j=1 j=1



chapter 2 page 23

The case for k = 0 is clear. Assume k > 0. Then, using that ¢; = %(j — %) —Twe
have

2n

1 |
- Re Z exp(ikp;) = - Re

j=1

exp (i (2 -7)) S exp (ikg,-)].

j=0
The result follows by observing that
2n-1 .
b\ _ exp(2ikm)—1
jZO eXp (l n }> ~ exp(ikm/n)-1 0.
Finally, since sin(k¢) is odd and M;, is symmetric about zero, the corresponding
integrals are zero. O]

We now introduce a generalized version of [Riv8l, Lemma 1.4].

Lemma 2.30. Define

N| =

u,($) := 5+ ) _pycos(kd).
k=1

Then, .
0(0) = % | ald-+0u(d)Mi(9 +6)dp.

Proof. First, note that
1ai0) = 3( [ atonti@)a0 )+ Y pi(( [ @) costiaon; @) ag ) cost)

+ ( " g(@)sin(kg)i(9) dqb) sin<k9>)

= j” g(gb)(% + Zn:pk(cos(kgb) cos(kB) + sin(k¢) sin(kG)))M;’l(d)) do.
7 k=1

Thus, using the identity cos(a)cos(f) + sin(a)sin(f) = cos(a — f) and the
definition of u,,

[ a9) (% +) pecos(k(g - 6») M;(¢) dp
- k=1

T

a(0) =
L soplo - 0Mi(9) 4o

T
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Now, note that g, u,, and M,, are 2m-periodic so by a change of variables,

L -0
7] gomlo M@ ag = 2 [ g(g+0)u,($)Mi(o+0)dg
1 ("

= L[ g@+ou@nmd+0)dp. O
—
Next, we prove a result similar to [Riv8]l, Lemma 1.7], but by assuming that g is

1-Lipshitz we obtain a slightly better constant.

Lemma 2.31. Suppose u,(¢p) > O for all ¢. Then, if g is 1-Lipshitz,

”g qn” [-m,7] < _(1 P1 )1/2

V2

Proof. Fixany 0 € [-n, 7]. Recall that g is 1-Lipshitz so that [g(0)—g(¢+0)| < ||.
Using this and the fact that u, is non-negative,

L[ 6(0)- 9 + ) @i+ 0) g

19(6) ~ 4:(0)] = |2

< 1 [7 iglu(@mi( +6)do.

Next, note M, and u, are 2z-periodic. Using this followed by the fact that
cos(k(p — 8)) = cos(keg)cos(kB) — sin(kp)sin(kO), the definition of u,, and
Lemma 2.29, we have

1 f °(p + O)u =1 j u,(p—6)dp = 1.
— -
Therefore, by the Cauchy-Schwarz inequality,
1 (" ’
(2] tohuonsio+o)as)
-

- (l f " 9lua() - ua (I + G)dd’)z

w

( L, P un(PIM;( +6) d‘i’)( f: ,()M;(p +6) dq))
=1 duons@ o)
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Using the fact that ¢? < ”72(1 —cos(¢)) we have

L[ du @+ 0)a0 < TL [ (1-cos@u(oi(0+0)d,

w

Next, we use that cos(¢) cos(kg) =
to obtain

%(cos((k—l)qb)+cos((k+1)d))) and Lemma 2.29

& 1

. n
T (- cost @ @Mi(6+0)dd = (1 -p).
Combining this sequence of inequalities we find that

19(8) — 43(6)] < Z=(1-py)V% [

Lemma 2.32. If we use Jackson’s damping coefficents from Theorem 2.26, then u, is
positive and

N

T (1-p) < To(n+2)7!

\/E 2

Proof. Let {c,}}_, be any real numbers. Then

( Zn: ¢ exp(i€9)>< Xn: ¢ eXp(—i(?G)) -

n 2

c,exp(i0)| > 0.

=0

Expanding and using that exp(ik8) + exp(—ik6) = 2 cos(kO) we find

n n n_n7p
( Z Co exp(i?@)) ( Z Cp exp(—if@)) Z i +2 CkCryp COS(PO).
=0 =0 k=0 r=1 k=0

Because u, must have the constant term equal to 1/2 we require c3+...+¢c2 = 1/2.

For?=0,1,...,n,let

where
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we obtain u,,.

Next, we show that these damping coefficients are equal to those described
above. Following [Wei+06] we have that

n—k n—k

ZZCeCe+k=ZCZ sin (€+1 ) in<g+f_-|2_1 )
=0 ¢=0
n—k+1
=2 sin (Lo s (L2kn)
= 2c ;sm(n_l_zrt sin n+2ﬂ
n—k+1
2 k ) <2€+k ))
=c ;(COS(_+27T os —n+2ﬂ

— 2 ((n_k) cos (m-izﬂ) - Ren_it.le}(p ( & +2k ))

n+
= ¢? ((n—k+1)cos(n+L2n‘)—sin( )

These are exactly Jackson’s damping coefficients.

w2))

Using this expression, it’s easy to verify that p; = cos(m/(n + 2)). Thus

o2 (1 L 1z ) L T
(L=p1) _<1 Cos(n+2>) _\/Esm<2n+4)s\/§2n+4
SO )
12 T
\/5(1 )< -

Finally, we prove the desired theorem.

Proof of Theorem 2.27. Without loss of generality, we can consider the case that
f is 1-Lipshitz. For 6 € [-m,m) define g by g(0) = f(cos(8)). Then g is 1-
Lipshitz, 2r-periodic, and even. Next define the inverse mapping of the damped
trigonometric polynomial g;, for g as

Pu(t) = qn(arccos(t)).

Foranyt € [-1, 1], setting & = arccos(t) € [0, 7] we use Lemmas 2.31 and 2.32 to
obtain the bound

1p2(6) - £(0) = Ipi(cos(6)) - f(cos(6)] = 1q;(6) -~ g(6)] < T
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We will now show that p3(t) = [f]¢°. The mapping & = arccos(t) gives the
Chebyshev polynomials; indeed, it is well known that

T,(t) = cos(k arccos(t)).

Since g is even we have b, = 0 so

Palt) = g(arccos(t) Z puaiTi(1)
k=

Thus, our goal is to show that a;, are the coefficients for the Chebyshev approxi-

mation/interpolation series.

Towards this end, recall that

i =1 [ o(@)costravi(@) ag.

1
)
Since g is even we can replace the integral on [-7, 7) an integral on (0,7) and

an integral on [0,7m). We first consider the case Mj(¢)) = 1. Noting that
—n~!arccos(t) = pl; (t), we find

1
at =2 froaut,
-1
as desired. Forj = 1,2,...,2n, we have the Chebyshev nodes

cos(¢;) = cos (271(}2;;/2) -—7‘1’) = —cos (M) .

Thus

i

=2 S(x-x),  x=—cos (M)

i€Z
SO

2n 1
aj = 2 ; %f(xi)Tk(xi) =2 J-_1 fTed[ply 1]8

as desired. The result follows by renaming n to s. O



page 28

Chapter 3
Matrix-free quadrature

This chapter focuses primarily on quadrature rules for the weighted CESM in-
duced by A and a unit vector v.

Definition 3.1. The weighted CESM ¥ : R — [0, 1], induced by A and a unit vector v,
is defined by
Y(x) = ¥y (x) := v7'1[A < x]v.

This definition implies that

de‘l’ = vif(A)v,

so it is clear that ¥ is closely related to the task of approximating v"'f(A)v. In
fact, in this chapter, we take the perspective that Krylov subspace methods for
vi f(A)v are in correspondence with quadrature rules for ¥. Such a perspective
was popularized by [GM94; GM09]

Remark 3.2. Itis now clear that the Lanczos algorithm Algorithm 1.1is simply
the Stieltjes procedure Algorithm 2.2 applied to the weighted CESM W. Specif-
ically, q; < p;(A)vfori = 0,1, ...,k and the tridiagonal matrix T generated by
Lanczos is equal to the Jacobi matrix M(¥). A

The chapter title, matrix-free quadrature refers to the fact that our approach to
constructing quadrature approximations to ¥ involve matrix-free algorithms;
i.e. algorithms which access A only through matrix-vector products. While the
quadrature rules we study are standard in approximation theory, it is worth
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noting several critical differences between classical quadrature methods and
the algorithm studied in this chapter. First, the costs of the algorithms in
this paper are determined primarily by the number of matrix-vector products.
This is because we typically only want to approximate [ f d¥ for a single, or
perhaps a few, functions. On the other hand, the weight functions which clas-
sical quadrature rules approximate never change, so nodes and weights can
be precomputed and the dominant cost becomes the cost to evaluate f at the
quadrature nodes. Second, while classical weight functions, such as the weight
functions for Jacobi or Hermite polynomials, are typically relatively uniform in
the interior of the interval of integration, ¥ may vary wildly from application
to application. In some cases ¥ might resemble the distribution function of
a classical weight function whereas in others it might have large gaps, jumps,
and other oddities. These distinctions are hinted at throughout the chapter and
illustrated explicitly in the numerical examples at the end of this chapter.

Moment based methods for estimating the weighted CESM! have been used in
physics for at least half a century. Early approaches were based on monomial
moments [Cyr67; Cyr69; DC70; DC71; CD71], but the use of modified Chebyshev
moments [WB72] and Lanczos-based approaches [Hay+72; HHK72; HHK75]

were soon introduced.

3.1 Extracting moments from a Krylov subspace

Bases for the Krylov subspace K,,; = span{v,Av,..., Akv} can be computed
using k matrix-vector products with A and contain a wealth of information
about the interaction of A with v; in particular, they contain the information
necessary to compute the moments of ¥ through degree 2k. Indeed, for all
i,j >0,

(Av)H(Alv) = vHATy = fx”j dv.

Note, however, that it is sometimes more straightforward to obtain the mo-
ments through degree s, forsome s < 2k. Thus, we will use s to denote the degree
of the maximum moment we compute and k to denote the number of matrix-

vector products used.

'In physics, the “density” d¥/dx is often called the local density of states (local DOS).
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3.1.1 Computing modified moments directly

Perhaps the most obvious approach to computing modified moments is to con-
struct the basis [py(A)v, ..., pp(A)v] for K, and then compute

VH[PO(A)Vr o, PE(A)V].

This can be done using k matrix-vector products and O(n) storage using the

matrix recurrence version of (2.3). Indeed for alli = 0,1, ..., k— 1 we have that

Ap(A)v = Bi1pii(A)V+app(A)v +Bip. 1 (A)v

from which we can implement an efficient matrix-free algorithm to compute

the modified moments {m,}*_,, as shown in Algorithm 3.1.

Algorithm 3.1 Get modified moments of ¥ wrt.

1: procedure GET-MOMENTS(A,V,k, 1)

2 qo=v,my=vlv,q;=08,=0
3. fori=0,1,...,k—1do

4: qiy1 = [% (Aq; —;9; — Bi_19i-1)

5 Mip = V'qip

6:  return {m]5,

If we instead compute

[Po(A)V, ..., pe(A)V]"[Po(A)V, .., Pr(A)V],

then we have the information required to compute the modified moments
though degree 2k. However, it is not immediately clear how to do this without
the O(kn) memory required to store a basis for Kj,,,. It turns out it is indeed
generally possible to compute these moments without storing the entire basis,
and we discuss a principled approach for doing so using connection coefficients

in Section 3.1.2.

One case where extracting the moments to degree 2k, without storing a basis
for Krylov subspace, is straightforward is when u = p ;. This is because, for all
i > 0, the Chebyshev polynomials satisfy the identities

Ty = 2(T)* - 1, Ty = 2T;Ti = x.

1
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Thus, using the recurrence for the Chebyshev polynomials and their relation
to the orthogonal polynomials with respect to ul,, we obtain Algorithm 3.2.
This algorithm is well-known in papers on the kernel polynomial method are
variants; see for instance [Ski89; SR94; Wei+06; Hal21].

Remark 3.3. The Chebyshev polynomials grow rapidly outside of the interval
[-1,1]. Therefore, if the spectrum of A extends beyond this interval, then
computing the Chebyshev polynomials in A may suffer from numerical insta-
bilities. Instead, the distribution function u, and corresponding orthogonal

polynomials should be used for some choice of a and bwith I c [a,b].

A

Algorithm 3.2 Get modified moments of ¥ wrt. erb

1: procedure GET-CHEBYSHEV-MOMENTS(A,V,k,a,b)
22 qo=V,mg =q5q0

3 qp1= ﬁ(A‘IO 2 2q0), m; = V2qflq;
4. fori=1,2,...,k—1do

5 my;: = V2(2q}'q; - mp)

6 qiy1 = Zﬁ(AQi a;rb‘lz)
& Mait1 = \/E(Z(IiHQiH) -
8 my, = V2(2qfq; —m)

9:  return{m}¥*,

qi-1

3.1.2 Connection coefficients to compute more modified moments

We now discuss how to use connection coefficients to compute the modified mo-
ments of ¥ with respect to u given knowledge of either (i) the modified moments
of ¥ with respect to some distribution v or (ii) the tridiagonal matrix computed
using Algorithm 1.1. Much of our discussion on connection coefficients is based
on [WO21]; see also [FGO91].

Definition 3.4. The connection coefficient matrix C = C,_,, is the upper triangular
matrix representing a change of basis between the orthogonal polynomials {p;}2, with

respect to u and the orthogonal polynomials {q;}2 , with respect to v, whose entries satisfy,

ps = [C]O,qu + [C]l,sql +e [C]s,sqs‘
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Definition 3.4 implies that, foralli = 0,1, ..., s,

j=0 j=0

where {n;}{_, are the modified moments of ¥ with respect to v. Thus, we can
easily obtain the modified moments {m;}{_, of ¥ with respect to u from the
modified moments of ¥ with respect to v. In particular, if m and n denote the
vectors of modified moments, thenm = C'n.

Moreover, in the special case that v has the same moments as ¥ through degree
s,so,forany;j > O,

n; = jqde = jqjdv = jqoqjdv = 1[j = 0].

Therefore, the modified moments of ¥ (with respect to ) through degree s can
be computed by

m; = IPi d¥ = [C]O,i'

In order to use the above expressions, we must compute the connection co-
efficient matrix. Definition 3.4 implies that for all i < j, the entries of the

connection coefficient matrix are given by

[C]i,j = IQin dv.

Unsurprisingly, then, the entries of the connection coefficient matrixC = C,_,,

can be obtained by a recurrence relation.

Proposition 3.5 (WO21, Corollary 3.3]). Suppose the Jacobi matrices for y and v are
respectively given by

ay Bo Yo 6o
M(y) = Bo a1 B M(v) = 6 y1 6
B oy - 6 Y2

Then the entries of C = C,_,, satisfy, for i, j > O, the following recurrence:

p—v

[C]o,o =1
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[Clo,1 = (Yo —a0)/Bo

[Cl1,1 = 80/Bo

[Clo; = ((Yo—&j-1)[Clo j-1 + 80[Cl2 j-1 — Bj-2[Clo j-2)/Bj-1

[Clij = (6i-1[Cliy jo1 + (vi — @j-1)[Cl; jo1 + 6;[Clis1 1 — Bj—2[Cli j—2)/Bj1

Proposition 3.5 yields a natural algorithm for computing the connection coeffi-

cient matrix C This algorithm is shown as Algorithm 3.3. Note that C is, by

-
definition, up;er triangular, so [C];; = O wheneveri > j. We remark that for
certain cases, particularly transforms between the Jacobi matrices of classical
orthogonal polynomials, faster algorithms are known [TWOI17]. We do not focus
on such details in this paper as the cost of products with A is typically far larger

than the cost of computing C

p—v*

Algorithm 3.3 Get connection coefficients

1: procedure GET-CONNECTION-COEFFS(i, k,, k,’l, v, k,, k)
[Clo,o = 1,[Clyj = 0ifi">j orj" = -

3 forj =1, 2,...,min(k;,, k,+k;) do

4: fori =0,1,..., min(j, k, + k,—j) do

5, [Clij = (8i1[Clicyj1 + (vi — @j-1)[Ci j1
+6;[Clis1 j-1 — Bj—2[Cli j-2)/Bj—1

L

6: returnC=C,,,

Remark 3.6. From Proposition 3.5 it is not hard to see that [C], ., can be
computed using [M(v)],;, ;, and [M(u)],;, .- Moreover, [C]j .41 can be computed
using [M(v)] 11 . and [M(u)].op, .o In general M(u) will be known fully, and in
such cases, the modified moments through degree 2k can be computed using the

information generated by Lanczos run for k iterations. A

We can use Algorithm 3.3 in conjunction with Algorithm 3.2 and Algorithm 1.1
to compute modified moments with respect to . This is shown in Algorithm 3.4
and Algorithm 3.5 respectively.
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Algorithm 3.4 Get modified moments wrt. u of weighed CESM (via Chebyshev
moments)

1: procedure GET-MOMENTS-FROM-CHEB(A,V,s,1,a,b)
k= [s/2]
{n;}*, = GET-CHEBYSHEV-MOMENTS(A, v, k, a,b)

fori=0,1,...,sdo
m; = Z,;'=0[C]j,inj

7. return{m;}i_,

2

3

4:  C = GET-CONNECTION-COEFFS([M(t)].2¢ .20, [M(12 )12k, :2%)
5

6

Algorithm 3.5 Get modified moments wrt. u of weighed CESM (via Lanczos)

1: procedure GET-MOMENTS-FROM-LANCZOS(A,V,s, )
k= [s/2]
[Tliks1,. = LANCZOS(A, v, k)

fori=0,1,...,sdo

2
3
4. C = GET-CONNECTION-COEFFS([M(1)].2 :o0r [T]:k41 :1)
5
6 m; = [Clo,;

=

return {m;}{_,

Remark 3.7. Given the modified moments of ¥ with respect to u, the tridiago-
nal matrix produced by Algorithm 1.1 can itself be obtained [SD71]. This is quite
similar to s-step Lanczos methods designed to reduce communication on dis-
tributed memory computers. However, if implemented naively, such methods
can be even more susceptible to the effects of finite precision arithmetic than
the regular Lanczos method [CD15; Car20], so special care must be taken when
implementing such an algorithm. A

3.2 Quadrature approximations for weighted spectral
measures

We now discuss how to use the information extracted by the algorithms in the
previous section to obtain quadrature rules for the weighted CESM W. We begin
with a discussion on quadrature by interpolation in Section 3.2.1 followed by a
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discussion on Guassian quadrature in Section 3.2.2 and quadrature by approxi-
mation in Section 3.2.3. Finally, in Section 3.2.4, we describe how damping can

be used to ensure the positivity of quadrature approximations.

3.2.1 Quadrature by interpolation

Our first class of quadrature approximations for ¥ is the degree s quadrature by
interpolation [¥]i (i.e. o = i) which is defined by the relation

| i ey, (5)

where [f]PP is the degree s polynomial interpolating a function f at the zeros
{9](-s+1)}]s~:0 of p,,1, the degree s + 1 orthogonal polynomial with respect to u. (3.1)

implies that

where the weights {w;};_, are chosen such that the moments of [¥]9 agree with
those of ¥ through degreess.

One approach to doing this is by solving the Vandermonde-like linear system of
equations
(s+1) (s+1)
Po(6o ") - po(Bs )| | wo S pod¥

: : = : . (3.2)
P05 o p (O | |w,| | S ped¥

which we denote by Pw = m. This will ensure that polynomials of degree up to

s are integrated exactly.

While it is not necessary to restrict the test polynomials to be the orthogonal
polynomials {p;}72, with respect to u nor the interpolation nodes to be the zeros
{9}(-”1)};:0 of p,,1, doing so has several advantages. If arbitrary polynomials
are used, the matrix P may be exponentially ill-conditioned; i.e. the condition
number of the matrix could grow exponentially in s. This can cause numerical
issues with solving Pw = m. If orthogonal polynomials are used, then as in
Theorem 2.14 we see that the columns of P are eigenvectors of the Jacobi matrix
M. Since M is symmetric, this implies that P has orthogonal columns; i.e. PHP

is diagonal. Therefore, we can easily apply P~! through a product with P" and
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an appropriately chosen diagonal matrix. In particular, if S is the orthonormal
matrix of eigenvectors, then P = Sdiag([S]y.)™ so that P™' = diag([S],.)S".
This yields Algorithm 3.6.

Algorithm 3.6 Quadrature by interpolation

1: procedure GET-IQ({m;}{_o, 1)
2 0,8 = EIG([M(t)].541 :541) D> Eigenvectors normalized to unit length
3 o = diag([S]y.)$"m

& return[¥] = 7 [w]1[[0]; < x]

Remark 3.8. In certain cases, such asu = p.,, P! can be applied quickly and
stably using fast transforms, such as the discrete cosine transform, without ever
constructing P. A

3.2.2 Gaussian quadrature

While interpolation-based quadrature rules supported on k nodes do not, in
general, integrate polynomials of degree higher than k — 1 exactly, if we allow
the nodes to be chosen adaptively we can do better. The degree 2k — 1 Gaussian
quadrature rule [¥]5} ; for ¥ is obtained by constructing an quadrature by
interpolation rule at the roots {Gl(k) k_| of the degree k orthogonal polynomial
ppof ¥ (i.e. by taking u = ¥).

Theorem 3.9. Ifp is any polynomial of degree at most 2k — 1, then
j pd¥ = J pd[¥]3 ;-

Le., the Gaussian quadrature rule integrates polynomials of degree 2k — 1 exactly.

Proof. We can decompose p as

p=4qptr

where g and r are each polynomials of degree at most k — 1. Since p, is the k-th
orthogonal polynomial with respecttou = ¥, itis orthogonal to all polynomials
of lower degree, including g. Thus,

de‘l’ = jqpkdw+jrdw = jrd‘l’.
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On the other hand, since the interpolation nodes {H}k)};‘;%) are the roots of p,,
i 5 k k k 5 k i
[patent = > i (a0)pu6f) +r6) = )_wyr(@) = [ rdrwi,.
j=0 j=0

Since the quadrature rule [‘I’]}eq is interpolatory of degree k, this implies
[pav=[parwis, 0

Because the polynomials {p;}{2, are orthogonal with respect to the probability
distribution ¥ function, we have that, foralli > 0,

m; = V(AW = [ pipod¥(a,v) = 1(i = 0]

This means the right hand side m of (3.2) is the first canonical unit vector
e, = [1,0,...,0]". Thus, as in Algorithm 3.6, w = diag([S],,.)[S]o; that is, the
quadrature weights are the squares of the first components of the unit length
eigenvectors of [T],, ;. We then arrive at Algorithm 3.7 for obtaining a Gaussian
quadrature rule for ¥(A,v) from the tridiagonal matrix [T], , generated by

Algorithm 1.1.

Algorithm 3.7 Gaussian quadrature

1: procedure GET-GQ([T], ..)
22 0,8 =EIG([T] ) D> Eigenvectors normalized to unit length
5 o = diag([S],)[Sl,

4 return [P, = 37 [w]1[[6]; < x]

Remark 3.10. To construct a Gaussian quadrature rule, the three term recur-
rence for the orthogonal polynomials of ¥ must be determined. Thus, the main
computational cost is computing the tridiagonal matrix giving this recurrence.
However, due to orthogonality, we know that all but the degree zero modified
moments are zero and do not need to compute the moments. This is in contrast
to other schemes where the polynomial recurrence is known but the modified
moments must be computed. A
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3.2.3 Quadrature by approximation

Rather than defining a quadrature approximation using an interpolating poly-

nomial, we might instead define an approximation [¥]34 by the relation

[ rdrepa = e aw

where [f]2P is the projection of f onto the orthogonal polynomials with respect

to u through degree s in the inner product (-, -), . That is,

P = Y ori= Y ([ Srdn) e
i=0 i=0
Expanding the integral of [f]2P against ¥,

furtray =[5 ([ smaw)pav = [ 5

This implies

5 ([ )

1

di¥le _ N _ N
du Z (jpi dW) pi = Zmipi
i=0 i=0
where d[¥]2/du is the Radon-Nikodym derivative of [¥]2? with respect to p.

Supposing? that the Radon-Nikodym derivative d¥/du exists, we observe
dv
ml' = i d\P = J. i1 d
j p p du H

is the pu-projection of d¥/du onto p; fori = 0,1, ...,s. Thus d¥/du is approxi-
mated in a truncated orthogonal polynomial series as

§([n8g)n- )

This means the density d[¥]29/dx is, at least formally, the polynomial approx-
imation to the Radon-Nikodym derivative d¥/du times the density du/dx; i.e.
d[P]5%/dx = [d¥/du]sP.

If ¥ = Y(A,v) then ¥ is not absolutely continuous with respect to the Lebesgue measure
(or any equivalent measure) so the Radon-Nikodym derivative does not exist. However, there
are absolutely continuous distribution distributions with the same modified moments as ¥ up to
arbitrary degree, so conceptually one can use such a distribution instead.
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We can obtain an approximation to the density d¥/dx by using the density du/dx
and the definition of the Radon-Nikodym derivative:

d[¥]¢e _ d[¥]du _
dx du dx Zm”l

Converting this “density” to a distribution gives the approximation [¥]39 shown
in Algorithm 3.8.

Algorithm 3.8 Quadrature by approximation

1: procedure GET-AQ({m;}i_o, 1)
2. return [V]i? = (x > Y omi [P dy)

Remark 3.11. When u = y,f/b, d[¥]29/du can be evaluated quickly at Cheby-
shev nodes by means of the discrete cosine transform. This allows the density
d[¥]29/dx to be evaluated quickly at these points. A

Evaluating spectral sums and the relation to quadrature by interpolation

We have written the output of Algorithm 3.8 as a distribution function for

consistency. However, note that

[ £ = ;mi [ fpin

Thus, if used for the task of spectral sum approximation, the distribution func-
tion [¥]29need not be computed. Rather, the u-projections of f onto the orthog-
onal polynomialswith respect tou can be used instead. In many cases, the values
of these projections are known analytically, and even if they are unknown,

computing them is a scalar problem independent of the matrix size n.

A natural approach to computing the u-projections of f numerically is to use a
quadrature approximation for u. Specifically, we might use the d-point Gaus-
sian quadrature rule [u]5} | for u to approximate [ fp;du. This gives us the
approximation

ffpldug m | fpd 2s+1—Z Zw (61" )pi(6)")
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(d)dl

where {w;"'}{Zj are the Gaussian quadrature weights for p.

Similar to above, denote by P the d x d Vandermonde-like matrix of orthogonal
polynomials with respect to u evaluated at the zeros of p,,. If Sis the orthonor-
mal matrix of eigenvectors of the dxd Jacobi matrix [M],; ., for u, then recall that
the Gaussian quadrature weights w@ are given by diag([S]y,..;1)([S].s41..)"- This
yields Algorithm 3.9.

Remark3.12. Inthecased = s+1, Algorithm 3.9 is equivalent to Algorithm 3.6.

A
Algorithm 3.9 Approximate quadrature by approximation
1: procedure GET-AAQ({m;}i_o, d, n)
22 0,8 = EIG([M(u)].4.4) > Eigenvectors normalized to unit length

3: w = diag([S]O,:s+l)([s]:s+1,:)Hm

4 return [¥] = ¥~ [w]/1[[0]; < x]

3.2.4 Positivity by damping and the kernel polynomial method

While it is clear that that the Gaussian quadrature [¥]8? is a non-negative
probability distribution function, neither [¥]i4 nor [¥]2? are guaranteed to be
weakly increasing. We now discuss how to use damping to enforce positivity.

Towards this end, define the damping kernel,

_ ipimxw )

where {p;}:_, are damping coefficients as in Theorem 2.18. Then the damped inter-

polant [f]¢"P and approximant [f]¢-?P can be written in terms of P, as

) = [Rrapfla amd (7 = [Rran

Remark 3.13. If p; = 1 for all i, then [f]¢"P = [f]iP and [f]d?P = [f]2. A

These approximations induce [¥]¢19 and [¥]¢-2d by

[ rdwpine= [(reay ana [ rapeiiees [(eeaw.
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Algorithmically, this is equivalent to replacing m; by p,m; in the expressions
for quadrature by interpolation and approximation described in Sections 3.2.1
and 3.2.3.

Lemma 3.14. Ifp, = 1, then [¥]¢9 and [¥]9-29 have unit mass, and if P,(y) > O for
all x, y, then [¥]49 and [¥]4-29 are weakly-increasing.

Proof. The first part of the theorem follows from the fact that
fodu = Zpipi(X) f pidu = po.
i=0
To prove the remainder, suppose f is non-negative. Then clearly

1P = [Pfdu >0

so that [ fd[¥]¢24 > 0. A similar argument implies [ fd[¥]¢%4 > 0 as well.

Therefore the approximations are weakly increasing. O]

Remark 3.15. While we have describe the damping procedure in terms of the
damped interpolant and approximant, an equilvalent perspective is that we
first smooth the distribution ¥ with the damping kernel P,(y) and subsequently
use quadrature by interpolation or approximation with this new distribution

function. A

One particularly important damping kernel for the case u = uJ , is given by the
Jackson coefficients defined in Theorem 2.26. The associated damping kernel
was used in the original proof of Jackson’s theorem [Jacl2] and leads to the
Jackson damped KPM approximation, which is the most popular KPM variant
[Wei+06; BKM22]. The rate of convergence of polynomial approximations
using these damping coefficients is estimated in Theorem 2.27 below. For a

discussion on other damping schemes we refer readers to [Wei+06; LSY16].

3.3 A priori error bounds on an interval

Most of the quadrature approximations we consider have the property that they
integrate polynomials exactly. In this case, we can use this property to reduce
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error bounds to the quality of the best uniform polynomial approximations to
f, which we discussed in Section 2.3.

Lemma 3.16. Suppose Y, and Y, are probability distribution functions whose moments
are equal through degree s, each constant on (—oo, a) and (b, 0o). Then,

|| rava= [ ravs| = @r(0) +dr(X2)) jmin 1= pliosy

Proof. Let p be any polynomial of degree at most s and note that [pdY, =
[ pdY,. Then, applying the triangle inequality,

[ ravi- [rav,|=|[r-par,- [(r-p ax)
< [ir=plldryl+ [ 1f-pllaxs

< [ 1= Pliamtdrsl+ [ 15 =pligsidrs
= (dqy(Yy) + drv(Y2))If = Pllia,b-

The result follows by optimizing over p. O]

Lemma 3.16 shows that the Lanczos-based Gaussian quadrature approxima-
tions always perform within a factor of two of the best polynomial approxima-
tion on I. Intuitively, approaches based on explicit polynomial approximation
will have error roughly equal to | f — [f]:P[; as a large portion of mass of ¥ is
likely in regions where |f — [ f]sP|is large. Thus, Gaussian quadrature should not
be expected to perform significantly worse than explicit polynomial methods,
at least in exact arithmetic. In fact, as we will discuss in Chapter 8, even in finite

preicsion arithmetic, Lemma 3.16 is still morally correct.

For some quadrature approximations we consider, polynomials are not inte-

grated exactly. In such cases, we turn to the following bound:

Lemma 3.17. Suppose Y, is a probability distribution function and Y, is defined by
[ fdY, = [ O[f]dY, for some operator O[ - |. Then, for any f,

[ ravi- [ rav,| = 15 - ol lludn()
Proof. The result follows by a simple application of the triangle inequality:

|| ravi- [ rav,| =|[¢-ounan| < [1f -0y
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= |f = Olf Nljg,pdrv(Y1)- o

The primary downside of this bound is that it requires being able to bound
If = O[f]lijq)- However, at least in the case that O corresponds to undamped
or Jackson damped Chebyshev interpolation or approximation, we are able to
derive bounds for | f — O[f][,,) directly.

3.4 Qualitative comparison of algorithms

In Sections 1.1 and 3.1 we described Algorithm 3.1 (GET-MOMENTS), Algo-
rithm 3.2 (GET-CHEBYSHEV-MOMENTS), Algorithm 1.1 (LANczos), Algo-
rithm 3.4 (GET-MOMENTS-FROM-CHEB), and Algorithm 3.5 (GET-MOMENTS-
FROM-LANCzOS) which are used to compute the information required for
the quadrature approximations described in Section 3.2 Since Algorithms 3.4
and 3.5 respectively call Algorithms 1.1 and 3.2, Algorithms 1.1, 3.1 and 3.2
constitute the bulk of the computational cost of all implementations of the

protoalgorithm discussed in this paper.

In each iteration, Algorithms 1.1, 3.1 and 3.2 each require one matrix vector
product with A along with several scalar multiplications, vector additions, and
inner products. As such, the total computational cost of each algorithms is
O(k(T,y +n)) where k is the number of iterations and T, is the cost of a matrix-
vector product with A. Here we ignore terms depending only on k (e.g. k?)
which are unimportant if we assume k < n. Each of the algorithms can also
be implemented using just O(n) storage; i.e. without storing the entire basis for
the Krylov subspace which would cost O(kn) storage.

While the algorithms are typically quite storage efficient, there are some sit-
uations in which it may be desirable to store the whole Krylov basis. First,
Algorithm 1.1 is sometimes run with full reorthogonalization. This can improve
numerical stability, but increases the computation cost to O(k(T,, + kn)). Next,
by delaying all inner products to a final iteration (or using a non-blocking
implementation), the number of global reductions required by Algorithm 3.1
and Algorithm 3.2 can be reduced. Since global communication can signifi-
cantly slow down Krylov subspace methods, this may speed up computation
on highly parallel machines [DHL15; Ber+08]. As mentioned earlier, there are
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implementations of the Lanczos algorithm which aim to decrease the number
of global communications [CD15; Car20]. Designing Krylov subspace methods
for avoiding or reducing communication costs is a large area study, but further

discussion is outside the scope of this paper.

3.5 Numerical experiments

In this section, we provide a range of numerical experiments to illustrate the
behavior of the algorithms described above as well as the tradeoffs between al-
gorithms. Our focusis primarily on quadrature approximations of the weighted
CESM, as the approximation of the true CESM by the average of weighted
CESMs is straightforward and well understood.

3.5.1 Comparison with classical quadrature

We begin with an example designed to illustrate some of the similarities and
differences between the behavior of classical quadrature rules for continuous
weight functions and the behavior of the matrix-free quadrature algorithms

presented in this paper.

Throughout this example, we use the Runge function f(x) = 1/(1 + 16x?) and
a vector v with uniform weight on each eigencomponent. We will compare
the effectiveness of the Gaussian quadrature rule [¥]5} ;, the quadrature by
interpolation rule [‘P]iz(}e and the quadrature by approximation rule [¥]5/. For
the latter approximations, we set u = u| |, and for the quadrature by approx-
imation rule, we use Algorithm 3.9 with enough quadrature nodes so that the
involved integrals are computed to essentially machine precision. All three
approximations can be computing using k matrix-vector products with A, and
since the approaches exactly integrate polynomials of degree 2k — 1 and 2k
respectively, we might expect that them to behave similarly. However, there are

a variety of factors which prevent this from being the case.

In our first experiment, shown in Figure 3.1, the spectrum of A uniformly fills
out the interval [-1,1];ie.,A4; = =1+ (2i+1)/n,i = 0,1,...,n — 1. We take

n = 10° so that [¥]5} , and [¥],} respectively approximate the k-point Gaussian
quadrature and (2k — 1)-point Fejér quadrature rules for a uniform weight on
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Figure 3.1: Errors for approximating [ fd¥ = v"f(A)v when f(x) =
1/(1 + 16x?) for a spectrum uniformly filling [-1,1]. Legend: Gaus-
sian quadrature with ( —— ) and without ( —— ) reorthogonalization,
quadrature by interpolation ( ), and approximate quadrature by
approximation ( —— ). Takeaway: Intuition about classical approxi-
mation theory informs our understanding of algorithms for matrix-
free quadrature. In fact, in some cases, quadrature by interpolation or
approximation can provably outperform Gaussian quadrature.

[-1, 1]. For many functions, certain quadrature by interpolation rules on [-1, 1],
including the Fejér rule, behave similarly to the Gaussian quadrature rule when
the same number of nodes are used [Tre08]. For f(x) = 1/(1 + 16x?), this
phenomenon is observed for some time until the convergence rate is abruptly
cut in half [WTO7]. In our setting, a fair comparison means that the number of
matrix-vector products are equal, so we see that the quadrature by interpolation
approximation initially converges twice as quickly as the Gaussian quadrature
approximation! The rate of the quadrature by interpolation approximation is
eventually cut in half to match the rate of the Gaussian quadrature approxima-

tion.

In our second experiment, shown in Figure 3.2, the spectrum of A uniformly
fills out the disjoint intervals [-1,—0.75] U [0.75, 1] with the same inter-point
spacing as the first example; i.e. we remove the eigenvalues in the previous
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Figure 3.2: Errors for approximating [ fd¥ = v"f(A)v when f(x) =
1/(1 + 16x?) for a spectrum uniformly filling [-1, 1] except for a gap
around zero. Legend: Gaussian quadrature with ( —— ) and without
( —« ) reorthogonalization, quadrature by interpolation ( ), and
approximate quadrature by approximation ( —— ). Takeaway: The be-
havior of the algorithms are highly dependent on the eigenvalue distri-
bution of A, and Gaussian quadrature may perform significantly better
that explicit methods when the spectrum of A has additional structure
such as gaps.

example which fall between —0.75 and 0.75. Here we observe that the Gaussian
quadrature rule converges significantly faster than in the previous experiment.
This to be expected. Indeed, the Gaussian quadrature rule has its nodes near
[-1,-0.75] U [0.75,1], so the union of the support of ¥ and [‘P]‘z‘}e is further
from the poles of f located at +i/4. We also note that the conditions which
enabled accelerated convergence in the first experiment are no longer present,

so the quadrature by interpolation approximation converges at its limiting rate
[TreO8].

In the both experiments, the Lanczos based Gaussian quadrature approach be-
haves similar with and without reorthogonalization. In fact, it is easily verified
that the Lanczos algorithm does not lose orthogonality and behaves nearly the
same regardless of whether or not reorthogonalization is used. To the best of
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Figure 3.3: Errors for approximating [ fd¥ = v"f(A)v when f(x) =
1/x for model problem. Legend: Gaussian quadrature with ( —— )
and without ( —« ) reorthogonalization, quadrature by interpolation
( ), and approximate quadrature by approximation ( —— ). Take-
away: Without reorthogonaliztion the convergence of Gaussian quadra-
ture is slowed. However, the method still converges and can even out-
perform the other methods.

our knowledge, such a result has not been proved rigorously.

3.5.2 Finite precision convergence

In this example, we consider several experiments where orthogonality is lost
and the effects of finite precision arithmetic are easily observed. In both exper-
iments we use diagonal matrices scaled so |All, = 1 and set v to have uniform
entries. Weseta, b asthelargest and smallest eigenvalues respectivelyand again
use u = pl , for the interpolatory and quadrature by approximations.

In the first experiment, shown in Figure 3.3, the eigenvalues of A are distributed
according to the model problem (10.1) and f(x) = 1/x. Specifically, the eigenval-
ues are given by the model problem with selected parameters n = 300, x = 10°,
and p = 0.85. In the second experiment, shown in the right panel Figure 3.4, we

use the n = 9664 eigenvalues of the California matrix from the sparse matrix
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Figure 3.4: Errors for approximating [ fd¥ = v"f(A)v when f(x) =
1[x > c] for MNIST covariance matrix. Legend: Gaussian quadrature
with ( —— ) and without ( — ) reorthogonalization, quadrature by
interpolation ( ), and approximate quadrature by approximation
( —— ). Takeaway: Without reorthogonaliztion the convergence of
Gaussian quadrature is slowed. However, the method still converges
and can even outperform the other methods.

suite [DH11] and the function f(x) = |x].

In both cases, the Jacobi matrices produced by Lanczos, with or without re-
orthogonalization, differ greatly; i.e. the difference of the matrices is on the
order of ||All,. Even so, the modified moments for y = y,f/b obtained by Algo-
rithms 3.4 and 3.5 differ only in the 12th digit and 14th digits respectively. Using
one approach in place of the other does not noticeably impact the convergence
of the quadrature by interpolation approximations.
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Chapter 4

Spectrum and spectral sum
approximation

We now turn to the tasks of spectrum and spectral sum approximation. Specifi-
cally, we will show how the algorithms from the previous chapter can be used to
produce approximations to the CESM @, the probability distribution function
with unit mass at each eigenvalue of A which we defined in Theorem 1.2. This in
turn induces approximations to tr(f(A)).

Towards this end, suppose v is a random vector satisfying E[vv"] = n'I;i.e., v
is isotropic with appropriate scale. Then, using basic properties of the trace and

expectation for any x € R, we have

E[¥(x)] = E[V'1[A < x]v] = E[tr(v"1[A < x]v)]
= E[tr(1[A < x]vvH)] = tr(E[L[A < x]vv"])
= tr(1[A < x]E[vv"]) = n"l tr(1[A < x]) = ®(x).
That ¥ is an unbiased estimator for @ at every point x € R is illustrated in

Figure 4.1. Further, almost by definition, we see that [ fd¥ = v"f(A)visan
unbiased estimator for n™! tr(f(A)).

Let {\Pe};‘;}} be independent and identically distributed (iid) copies of the
weighted CESM ¥ corresponding to vectors {vg};?v:‘ol which are iid copies of v.
Then the averaged weighted CESM

n,—1
(o) := n3t Z ¥,
=0
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Figure 4.1: CESM ® ( — ) and 10 independent samples of weighted
CESM V¥ corresponding to random v ( ). Each copy of ¥ is an
unbiased estimator for ® at each point x € R.

is also an unbiased estimator for the CESM at every point x. This implies

n,~1

(Vif(A)ve) i=n3t > lif(A)vy = | £d(¥y),

=0

<

is an unbiased estimator for n”! tr(f(A)). In both cases, the standard deviation
of the averaged estimator decreases proportional to 1/,/n,, so the averaged

estimators concentrate more sharply about the mean as n, increases.

We refer to estimators of the form v'Bv, where v is an isotropic random vector,
as quadratic trace estimators. Thus, we see that the quadratic trace estimator
for the spectral sum tr(f(A)) is an integral against the weighted CESM, which
is itself a quadratic trace estimator for the CESM at every point x. Moreover,
since the quadratic form v" f(A)v can be written as an integral of f against the
weighted CESM, classical results about the convergence of quadrature rules for
approximating this integral can be leveraged to obtain error estimates for the

convergence of our Krylov subspace approximations of v"'f(A)v.

In order to approximate a sample of ¥, and therefore integrals against such
samples, we can simply use the algorithms from the previous chapter. Thus,
we arrive at a prototypical algorithm for spectrum and spectral sum approx-
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imation,Algorithm 4.1. The output ([¥,];9) of Algorithm 4.1 is a distribution
function which approximates the CESM ®. For any function f : R — R, this
approximation naturally yields an approximation to the spectral sum tr(f(A))

by integration.

Algorithm 4.1 Prototypical randomized spectrum and spectral sum approxi-
mation

1: procedure SPEC-APPROX(A, ny, k, o)

22 for?¢=0,1,..,n,—-1do

3 define (implicitly) ¥, ™4 ¥ by sampling v, ¢ v, E[vv"] = n™'I

4: compute moments of ¥, through degree s by constructing Kj,1(A, vy)
5: approximate ¥, by [¥,]s? induced by a polynomial operator [ - ]s¥

6: return ([(¥,];%) := nj! ZZL_OI[‘PQ]Q’Q

4.1 Related work and context

Specificimplementations of the prototypical algorithm, given in Algorithm 4.1,
are by far the most common algorithms for spectral sum and spectrum approx-
imation, and they have found widespread use in a range of disciplines [LSY16;
UCSI17]. Aswe have alluded to, the two key ingredients for such algorithms are (i)
polynomial approximation and quadrature and (ii) quadratic trace estimation.
The first of these ingredients has been studied for centuries[Trel9], so the popu-
larization of the latter [Gir87; Hut89; Ski89] quickly lead to a variety algorithms
fitting this framework. In this section we focus primarily on conceptual and
theoretical advancements relating to the protoalgorithm. We hope our brief
review of prior work will help tie together several clusters of literature which

have remained largely disjoint.

Both [Gir87; Hut89] focus on estimating the trace of a large implicit matrix B =
A~! for some matrix A. While [Gir87] suggests the use of the conjugate gradient
algorithm, neither paper discusses in detail how to approximate products with
B. Therefore, to the best of our knowledge, [Ski89] contains the first example of
an algorithm which truly fits into the form considered in this paper. In [Ski89],
an approximation to ® based on an expansion in Chebyshev polynomials is de-

scribed. This approximation is then used to approximate tr(In(A)) = In det(A).
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The Chebyshev based approach of [Ski89] was improved in [SR94] where a
damping Kernel was introduced to avoid Gibbs oscillations. The connection to
Jackson’s damping and other classical ideas from approximation theory were
subsequently considered in [Sil+96]. The resulting algorithm is now typically
called the kernel polynomial method (KPM) and is widely used in the computa-
tional physical sciences; see [Wei+06] for a review.

Essentially in parallel, stochastic trace estimation was combined with quadra-
ture explicitly. Typically, such approaches are based on the Lanczos algorithm
which can be used in a straightforward way to compute certain quadrature
rules for ¥ [GMO9, Chapter 6], [Gau06]. In[BFG96], Gauss, Gauss-Lobatto, and
Gauss-Radau quadrature rules are used to derive upper and lower bounds for
[ fd¥when f(x) = 1/xor f = In(x). These bounds were in turn combined with
stochastic trace estimation to provide probabilistic upper and lower bounds on
the traces of the corresponding matrix functions. The Gaussian quadrature
based approach is now typically referred to as stochastic Lanczos quadrature

(SLQ).

Bounds on the number of samples n, required so that the average of iid
quadratic trace estimators is within € of the true trace with at least probability
1 — n were derived in [AT11] and subsequently improved on in [RA14]. These
bounds enabled a range of analyses which explicitly balanced the number
of samples n, with the approximation degree s. For instance, [Han+17] and
[UCSI17] respectively consider approximation of spectral sums corresponding
to analytic functions by a Chebyshev based approach and SLQ. Later, [CK21]]
gives stronger bounds for quadratic trace estimators, and as in [UCS17], these
bounds are used to analyze SLQ.

Around this time, spectrum approximation in Wasserstein distance was ana-
lyzed for KPM [BKM22] and SLQ[CTU21]. We remark that[BKM22; CTU21] both
arrive at the conclusion that the number of samples required to approximate
® in Wasserstein distance to accuracy e actually decreases as the matrix size n

increases, provided e > n~1/2

asn — oo. While not stated explicitly, the analysis
in [CK21] implies this same fact for the number of samples required to approx-
imate [ fd® = n™' tr(f(A)) to additive error +e. This fact was already known to
the physics community [Wei+06], although, to the best of our knowledge, was

not proved rigorously in the literature.
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4.1.1 Note on history of stochastic quadratic trace estimators and
their analysis

What we are calling a quadratic trace estimator is often called the Hutchinson’s
trace estimator, especially when v is chosen uniformly from the set of vectors

with entries +n1/2

. However, [Hut89] was not the first use of quadratic trace
estimators for the task of approximating the trace of an implicit matrix; [Hut89]
itself cites [Gir87] which addresses the same task by using samples of v drawn
uniformly from the unit hypersphere. Algorithms based on the use of random

vectors back at least to the mid 1970s [Alb+75; WW76; WW77; RV89].

In fact, such estimators are a special case of the concept of typicality in quantum
physics. Typicality has its origins in work of Schrodinger [Sch27] and von
Neumann [Neu29] from the late 1920s but was dismissed and/or forgotten until
a resurgence in the mid 2000s [GMMO09; Gol+06; PSWO06; Rei07]; see [Gol+10]
for a historical overview and discussion in a modern context and [Jin+21] for a
review of algorithms based on typicality.

Likewise, while the first tail bounds for quadratic trace estimators are typically
attributed to [AT11; RA14], quadratic trace estimators were analyzed before ei-
ther of these papers. For instance, [ReiO7] provides tail bounds based on Cheby-
shev’s inequality for quadratic trace estimators used for the specific purpose
of estimating the trace of a symmetric matrix. Sub-Gaussian concentration
inequalities for quadratic trace estimators, similar to those in [AT1l; RA14] are
derived in [PSWO06] using Levy’s Lemma, a general result about concentration
of measure [LedO1]; see also [GoglO, Theorem 2.2.2].

There are also many earlier analyses of quadratic trace estimators outside of
the specific context of trace estimation. For instance, [HW71] provides con-
centration bounds for quadratic trace estimators when the entries of v are
independent symmetric sub-Gaussian random variables. In fact, some of the
strongest bounds for quadratic trace estimators [Mey+21; PCK22] make use of
so called Hanson-Wright inequalities [RV13] introduced in [HW71]. Earlier still,
[GPS59] states as fact that the expectation of such estimators, when v has iid
Gaussian entries, is the sum of the eigenvalues of the matrix in question, citing
abook [Cra46] from the 1940s.



chapter 4 page 54

4.1.2 Other randomized trace estimation algorithms

As a consequence of the central limit theorem, the average of iid samples of
quadratic trace estimators requires O(¢ %) samples to reach accuracy e. In fact,
any algorithm which returns a linear combination of estimators depending on
vectors drawn independently of A requires O(e~%) samples to obtain an approx-
imation of the trace accurate to within a multiplicative factor 1 + e[WWZ14]. A
number of papers aim to avoid this dependence on the number of samples by
incorporating low-rank approximation to f(A) [Linl6; GSO17; SAI17; Ada+18;
LZ21; Mey+21; PCK22; CH22].

In [Mey+21] algorithm called Hutch++ in introduced and proved to output an
estimate the trace of a positive definite matrix to relative error 1 + € using just
O(e!) matrix-vector products. It is also shown that this e dependence is nearly
optimal in certain matrix-vector query models. The practicality of Hutch++
was improved in [PCK22] which describes a variant which outputs an (g, §)
approximation to the trace. Such methods can be used to compute the trace of
matrix functions by computing products with f(A) (e.g. using black-box Krylov

subspace methods).

A so-called Krylov-aware approach to estimating the trace of matrix functions
was introduced in [CH22]. Rather than treating products with f(A) as a black-
box, [CH22] advocates a more careful approach in which products with A are
viewed as the natural computational primative. This allows several efficincies
not present in black-box versions of Hutch++ for matrix functions by produc-
ing better low-rank approximations. At least in terms of the total number of
matrix-vector products used, the Krylov-aware approach always outperforms

Hutch++ and related variants.

Finally, we note several more specialized techniques which may be of interest.
Variance reduction techniques based on multi-level Monte Carlo methods are
studied in [HT21; FKR21]. In [DM21], the problem of estimating the traces of a
sequence of slowly-varying implicit matrices is studied. Such a setting occurs
naturally in machine learning and physics. In physics, in order to compute
important quantities for open quantum systems interacting strongly with their
environment, [CC22]studies how to approximate the partial trace of matrix func-
tions.
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4.2 Analysis

A simple approach to analyzing the protoalgorithm is to separately analyze
the errors due to randomness in quadratic trace estimators from the error in

approximating quadratic forms. Specifically, we have

IN

[ ra(e-qui)

[ra(@- )| +| [ racces - qwge)

=| [ raco-ce) +U £ AW~ (%29

IN

[ra@-qem|+(| [ racwe-tw)

>. (4.1)

The first term in (4.1) is controlled by the convergence of (¥,) to ® (as n, — o).
Since

[ ra(@=(w9)| = It () - (A,

it can be analyzed in terms of bounds for quadratic trace estimators. Next, for

each ¢, the second term is controlled by the quality of the approximation of ¥,
by [¥,]; (as s — oo). Since

Hfd(q’e— [¥,]5%)

7

= | [~ av,

we can analyze this term bounds for Krylov subspace methods for quadratic
forms.

4.2.1 Uniform unit test vectors

Definition 4.1. The complex unit hypersphere S™ is the set of unit vectors; i.e.
sti={u: |w|, = 1}.
In this section, we analyze the weighted CESM when v is drawn from the

uniform distribution on $"!. In the case that A is symmetric, similar results
hold for uniform vectors drawn from the real unit hypersphere; see [CTU22].

Lemma 4.2. Supposev ~ Unif(S"™) and, for any t € R, define m(x) = n®(x). Then,

¥(x) ~ Beta (m(x),n—m(x)).
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Proof. Let U = [uy,...,u,], where u, is the i-th normalized eigenvector of A.
Since U is unitary, by the invariance of Unif(S"™!) under orthogonal transforms,
we have that UMv ~ Unif(S" ).

We may therefore assume U"'v dist. x/||x||,, where x ~ ComplexNormal(0, I).

Recall that the i-th weight of ¥ is given by w; = |v"'u,|%. Thus, the w; have joint
distribution given by,

2 _ [ /
> [x]

[x];

1%l

dist.
-

fori =0,1,...,n—1.

Write, for notational convenience, m = m(x) = n®(x). Then,

& W dlst , 0 |[X] |2

= Col[x]if2

It is well known that for independent chi-square random variables Y ~ y2 and
Z ~ )(,% (see, for example, [JKB94, Section 25.2]),

Y B
v+z ~ Beta (2 z)

Thus, since Z:":_Ol I[x]);/* and Z?:n |[x];/* are independent chi-square random
variableswith 2m and 2(n—m) degrees of freedom (because we are using complex
normal random variables) respectively, ¥(x) is a beta random variable with
parameters m and n — m. O]

Definition 4.3. A random variable X is o*-sub-Gaussian if
A2o?
E[ exp(A(X — E[X]))] < exp (T) , VAeR.

Lemma 4.4. Suppose X is o*-sub-Gaussian. Let X, ..., X, 1 be iid samples of X. Then
foralle > 0,

P[(X;) — E[X]| > €] < 2 exp (-2’(';262) .

Proof. We follow a standard argument; see for instance [Verl8]. WLOG assume
E[X] = 0. Then,

P[ny(X;) > ne] = Plexp(An(X;)) > exp(Anye)]
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< exp(-n,Ae)E[exp(An, (X)) (Markov)
= exp(-n,Ae)E[exp(AX)]™ (iid)
< exp(-n,Ae) exp(n,A%c?/2) (sub-Gaussian)
= exp(-nyAe + n,A%02/2).

This expression is minimized when A = t/o? from which we obtain,

P[(X;) > t] < exp (—2 v t2> . O

Theorem 4.5. [MA17, Theorem 1] Suppose X ~ Beta(a, B). Then, E[X] = a/(a+ B),
and X is (4(a + B + 1)) ' -sub-Gaussian. Ifa = P, then there is no smaller o'* such that X
is 0'>-sub-Gaussian.

With these results in place, the following theorem for spectrum approximation

is straightforward.

Theorem 4.6. Given a positive integer n,, suppose {v,}," 01 id Unif(S"™). Then, for all
£>0,

max P [|(x) — (¥y(x))| > ] < 2exp (-2ny(n+1)e?).
Xe
P [rileal\Rx |D(x) — (Wy(x))] > s] < 2nexp (-2n,(n+1)e?).
Proof. First note that the maximums exist because ® and (¥;) are right continu-

ous and piecewise constant except at {A,[A]} ;.

For any t,let m = m(x) = n®(x). Using Theorems 4.2, 4.4 and 4.5 we have that

for anyt,

P[|®(x) — (¥;(x))| > €] < 2exp ( A+ (nn_" S TE ez> :

We also have

sup |[9(x) = (¥,(x))| = max_ [O(L[A]) ~(¥(A[A])]

xeR

The second result follows by applying a union bound to the events that the
maximum is attained at A; for eachi = 0,1,...,n — 2 (note since ||v[l, = 1, ®
and ¥, agree atA,_,). O
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This result can be used to obtain a bound for quadratic trace estimation.

Theorem 4.7. Setn, > 1 and sample {v,};" ¢ Unif(S"1). Then
P [|n7! tr(A) = (vi'AVy)| > &(Apax — Amin) | < 2nexp(=2(n + 1)n,€?).
Proof. Since (¥,) and ® are both constant on each of (—oo, A,;;,) and (A,,,,, ),
(@, W) = [ 17~ (¥ dx < Ao = Aaia) ¥ = (L
Using Theorem 4.6, we find that
P[dw(®,{¥s)) > &(Amay — Amin) | < 2nexp(—2(n + 1)n.%).
Thus, using Lemma 2.9 and the fact that x is 1-Lipshitz,

P

U xd® - J x d(‘Pe))‘ > &(Apax — /\min)] < 2nexp(=2(n+ 1)n,€?).

Next, recall that [ xd® = n' tr(A) and [ x d(¥,) = (v)'Av,). Thus, we obtain a

bound for the quadratic trace estimator:

P [|n" tr(A) = (Vi'AVE)| > &(Apax — Amin) | < 2nexp(=2(n + 1)n,?). O

This can be restated in terms of matrix functions.

Corollary 4.8. Suppose f is bounded between f;, and f, .. on the spectrum of A. Set
n, > %(fmax — Fin)?(n+ 1) &2 In(2ny7") and sample {v,}y s 1 Unif(S"1). Then

P

() - [ )| >e| <.

Aswe remarked in Section 4.1, bounds similar to Theorem 4.7 have been studied
for other distributions for v. The best bounds are for Gaussian and Rademacher
vectors, which have independent entries. For such distributions, the best bounds
depend on ||A||2 rather than n|A |3 and are therefore significantly stronger than
Theorem 4.7 when the stable rank |A[2/||A||3 is small. It is likely that the bounds
in Theorem 4.7 can be improved by a more careful analysis of Beta random
variables. In particular, while the sub-Gaussian constant from Theorem 4.5 is
sharp when a = §, it can be improved whena = O or = 0[ZZ20].
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4.3 Numerical experiments

4.3.1 Approximating sparse spectra

If the spectrum of A is S-sparse; i.e., there are only S distinct eigenvalues, then
the s-point Gaussian quadrature rule will be exactly equal to the weighted CESM
for all s > S, at least in exact arithmetic. Thus, the runtime required by SLQ
is determined by S and the number of samples of the weighted CESM which
are required to get a good approximation to the true CESM. The interpolation
and approximation based approaches, which are based on the orthogonal poly-
nomials of some fixed distribution function y, are unable to take advantage of
such sparsity. Indeed, unless the eigenvalues of A are known a priori, such
methods have fixed resolution ~ s~ due to the fixed locations of the zeros
of the orthogonal polynomials with respect to u. Moreover, quadrature by
approximation methods suffer from Gibbs oscillations unless a damping kernel
is used, in which case the resolution is further decreased.

10!
100
107! 4
1072 4
1073 4
1074 4
10—5 -
1076 4
1077 A
1078 4

Figure 4.2: Approximations to a sparse spectrum with just 12 eigen-
values. Legend: true spectrum ( 0 ). Gaussian quadrature approxima-
tion: k = 12 ( « ). damped quadrature by approximation: s = 500
( —— ). Takeaway: The Gaussian quadrature produces an extremely
good approximation using just 12 matrix-vector products. Even with
many more matrix-vector products, quadrature by approximation does
not have the same resolution.
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In this example, we approximate the CESM of the adjacency matrix of a Kneser

graph. The (N, K)-Kneser graph is the graph whose vertices correspond to size

K subsets of {1,2,..., N} and whose edges connect vertices corresponding to

disjoint sets. It is not hard to see that the number of vertices is (11\<J) and the
1N

number of edges is E(K)(NI_(K). The spectrum of Kneser graphs is known as well.

Specifically, there are K + 1 distinct eigenvalues whose values and multiplicities

(N-K-i N N ,
Ai=(—1)< Kei ) m"‘(i>_(i—1)’ i=0,1,..K

We conduct a numerical experiment with N = 23 and K = 11, the same values
used in [Ada+18]. This results in a graph with 1,352,078 vertices and 8,112,468
edges. Thus, the adjacency matrix is highly sparse. We compare the Gaussian

are:

quadrature approximation with the damped quadrature by approximation. In
both cases we use a single random test vector v. For the Gaussian quadrature,
we set k = 12. For the damped quadrature by approximation we set s = 500
and use Jackson damping with y = pf,, wherea = -11.1and b = 12.1. The
results are shown in Figure 4.2. Note that the Gaussian quadrature matches
almost exactly despite having used only k = 12 matrix-vector products. On the
other hand, even after k = 250 matrix-vector products, the damped quadrature

by approximation has a much lower resolution.

Remark 4.9. There are sublinear time algorithms for approximate matrix-
vector products with the (normalized) adjacency matrix. Specifically, in a com-
putational model where it is possible to (i) uniformly sample a random vertex
in constant time, (ii) uniformly sample a neighbor of a vertex in constant time,
and (iii) read off all neighbors of a vertex in linear time, then an ¢, -accurate
approximate to the a matrix-vector product with the adjacency matrix can be
computed, with probability 1 — 5, in time O(n(e,,,) > In(n™!)). For dense graphs,
this is sublinear in the input size O(n?) of the adjacency matrix. See[BKM22] for
an analysis in the context of spectrum approximation. A

4.3.2 Approximating “smooth” densities

There are a range of settings in which the spectral density of A is close to a
smooth slowly varying density. In such cases, we may hope that our approxi-

mation satisfies certain known criteria. For instance, that the approximation
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is also a slowly varying density, that the behavior of the approximation at the
endpoints of the support satisfies the right growth or decay conditions, etc. In
this example, we consider how parameters in Algorithm 4.1 can be varied so that

the resulting approximation enjoys certain desired properties.

One setting in which A may have a slowly varying density is when A is a large
random matrix. We begin this example by considering a sample covariance

matrix
1

N = _zl/Zxtzl/Z
m

A

where X is random and ¥ is deterministic. Specifically, we fix constants o > 1
andd € (0, 1), define m = n/d, and take X to be a n x m matrix with iid standard
normal entries and X a diagonal matrix with 1/m as the first n/2 entries and o'/m
as the last n/2 entries.

In the limit, as n — oo, the spectral density d®,/dx of A, is convergent to a
density d¥ . /dxsupported on two disjoint intervals [a;, b;|U[a,, b,], wherea; <
b, < a, < by, with equal mass on each [BS98]. The spectral edges are equal to the

1 d 1 1
t”‘?+z(t+—1+m)

attains at its local extrema. Moreover, it is known that d¥_ /dx has square root

values at which

behavior at the spectral edges.

Because we know the support of the desired density, and because we know
the behavior at the spectral edges, a natural choice is to use quadrature by
approximation with

1 1
W= SHayp, + 5Hayn,

where u7} is the weight function for the Chebyshev polynomials of the second

dugy, 4 Jl‘( 2 x_b+a)
dx — m(b-a) b—a” b-a)

This will ensure that the Radon-Nikodym derivative d¥ . /du is of order 1 at
the spectral edges which seems to result in better numerical behavior than if we

kind given by

were to use a KPM approximation corresponding to a density which explodes at

the spectral edges.

To compute the Jacobi matrix for u, we apply the Stieltjes procedure using
a slight modification of the Vandermonde with Arnoldi approach [BNT21]. In
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order to apply the Stieltjes procedure, we must be able to integrate polynomials
against u. Observe that the product

1 1
fpdu = Efpdué’l,bﬁzfpdﬂi,hz

can be computed exactly by applying a sufficiently high degree quadrature rule to
each of the right hand side integrals. If we aim to compute the s x s Jacobi matrix
associated with y the maximum degree polynomial we will integrate will be of
degree 2s — 1 when we orthogonalize xp,_; against p, ;. Therefore, it suffices to
use the degree s Gaussian quadrature rules for ygllbl and y}jpbz for all of the first s

iterations of the Stieltjes procedure.

One simple approach to running the Stieltjes procedure in this manner is to
place the quadrature nodes on the diagonal of a matrix N and the corresponding
weights on a vector w. Then the weighted CESM corresponding to N and w is
a quadrature rule which integrate polynomials of degree up to 2s — 1 against
p exactly. The tridiagonal matrix obtained by the Lanczos algorithm run for s
iterations will be exactly the upper s x s block of the Jacobi matrix M(u). Some
potentially more computationally efficient approaches are outlined in [FG91].

0.6
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Figure 4.3: Approximations to a “smooth” spectrum using quadrature
by approximation with various choices of u. Legend: p = ,ugl,hz (—)
u = %ygl,hl + %yf{p,,z ( —— ). Takeaway: A priori knowledge about the
spectrum allows for better choices of parameters such as u.
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We conduct a numerical experiment with n = 10* and d = 0.3. We use
s = 60 and average over 10 trials, resampling A, in each trial. To generate an
approximation to the density we expand the support of the limiting density by
0.001 on endpoint to avoid eigenvalues of A, lying outside the support of u. In
Figure 4.3 we showthe approximationswithu = yfl]l/bz andy = %y,ﬁ]hbﬁ%ygz,hz. As
shown in the inset image of Figure 4.3, we observe that the approximation with
u= %yf{l bt %,uf{z,bz exhibits the correct square root behavior at the endpoints as
well as fewer oscillations throughout the interior of the support of the density.

Remark 4.10. In recent work [DT21] it was shown how Lanczos performs on
such a sample covariance matrix. In particular, one sample from stochastic
Lanczos quadrature will converge almost surely, as n — oo, to the desired
distribution. In this same work another density approximation scheme was
proposed based on Stieltjes transform inversion. Analysis and comparison for
this method is an interesting open problem. A

Smoothing by convolution

The Gaussian quadrature approximation is the sum of weighted Dirac delta
functions. A simple approach to obtain a density function from a distribution
function involving point masses is to approximate each point masses with some
concentrated probability density function; e.g. Gaussians with a small variance
[LSY16; GKX19]. This is simply convolution with this distribution, and if the
smoothing distribution has small enough variance, the Wasserstein distance
between the original and smoothed distributions will be small. Specifically, we

have the following standard lemma:

Lemma 4.11. Given a smooth positive probability distribution function G,, define the
smoothed approximation Y, to Y by the convolution

Y,(x) = [ Gylt=y)dr(y).

Then, dw(Y,Y,) < dw(l[x < 0],G,)dry(Y). Moreover, if G, has median zero and
standard deviation o, then dy (Y, Y,) < odpy(Y).

It is well known that if G, is differentiable then the smoothed distribution

function Y, will also be differentiable. Thus, we can obtained a density function
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Figure 4.4: Approximations to a “smooth” spectrum using smoothed
Gaussian quadrature for various smoothing parameters . Legend: o =
3/k( — ). 0 = 8/k( — ). 0 = 15/k( — ). Takeaway: Gaussian
quadrature is not always the best choice of algorithm. Here we observe
that it is difficult to produce a density approximation using the specified
smoothing scheme.

dY,/dx even if Y has discontinuities. Moreover, the bounds obtained earlier
can easily be extended to smoothed spectral density approximations obtained
by convolution using the triangle inequality.

While the smoothing based approach has a simple theoretical guarantee in
Wasserstein distance, it does not need to provide a good approximation to the
density. Indeed, if the variance of the smoothing kernel is too small, then the
smoothed distribution will still look somewhat discrete. On the other hand, if
the variance of the smoothing kernel is too large, then the smooth distribution
will become blurred out and lose resolution. As shown in Figure 4.4, this
is particularly problematic if different parts of the spectrum would naturally
require different amounts of smoothing.

There are of course many different smoothing schemes that could be used.
These include adaptively choosing the variance parameter based on the posi-
tion in the spectrum, using a piecewise constant approximation to the density,

interpolating the distribution function with a low degree polynomial or splines,
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etc. Further exploration of these approaches is beyond the scope of this thesis
since they would likely be context dependent. For instance, in random matrix
theory, it may be desirable to enforce square root behavior at endpoints whereas

in other applications it may be desirable to have smooth tails.

We conclude with the remark that alternate metrics of closeness, such as the
total variation distance, are likely better suited for measuring the quality of ap-
proximations to “smooth” densities. However, since the actual spectral density
d¥/dxisitself the sum of Dirac deltas, some sort of regularization is required to
obtain a proper density[LSY16]which of course relates closely to what it actually
means to be “close to a smooth slowly varying density”. A rigorous exploration

of this topic would be of interest.

Handling isolated spikes

In some situations one may encounter spectra which are nearly “smooth” except
at a few points at which there are large jumps in the CESM (for instance, low
rank matrices may have many repeated zero eigenvalues).

To model such a situation, we consider a matrix

A = m1xXxH 0
0 zZI+ oD

where X is a n’ X m matrix standard normal entries and Disa (n —n’) X (n —n’)
diagonal matrix with standard normal entries. In both cases, m = n’/d for
some fixed d € (0,1). While this particular matrix is block diagonal, the
protoalgorithm is mostly oblivious to this structure and would work similarly
well if the matrix were conjugated by an arbitrary unitary matrix so that the

block diagonal structure is lost.

Whenn — oo and ¢ — 0, the spectral density d®,/dx is convergent to a
density d®_ /dx equal to the sum of a scaled Marchenko-Pastur distribution
and a weighted Dirac delta distribution. Thus, a natural approach would be to
use quadrature by approximation with

p=(L=pug,+pdx—z).

As above, we can use a modified version of the Vandermonde with Arnoldi ap-
proach to compute the orthogonal polynomials with respect to u. The resulting
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approximation to the “smooth” part of the density d®/dx is shown in Figure 4.5.

0.8

0.7 1 W
0.6 1
0.5 1
0.4 1
0.3 1 \f/
0.2 1

estimated spike mass: 0.1035

0.1 1 i‘

0.0 T T T
0.5 1.0 1.5 2.0 2.5

Figure 4.5: Approximations to a “smooth” spectrum with a spike using
quadrature by approximation with various choices of u. Legend: ab-

solutely continuous part of true limiting density ( ). quadrature
by approximation: u = (1 — p)u}, + p&(x — z) ( — ). quadrature by
approximation: up = uf, ( —— ). Takeaway: A priori knowledge of

the location of a singularity allows for a better approximation to the
absolutely continuous part of the spectrum.

Wesetn = 10° n' = n/10,d = 0.3,z = 1.5,and 0 = 107!°. As before, we
average of 10 trials where A, is resampled in each trial. For each sample, we
compute the quadrature by approximation with s = 200 foru = (1 - p)uJ, +
p&(x —z)withp = 0.2and u = pf},. The results are show in Figure 4.5.

Clearly, accounting for the spike explicitly results in a far better approximation
to the density. Note that this approach does not require that the mass of the
spike is accurately matched. For instance, in our example, we estimate the spike
mass to be 0.2 while the actual mass is 0.1. On the other hand, if the location
of the spike is misestimated, then the approximation to the density may have
massive oscillations. In our example the spike has width roughly 1071° which
does not cause issues for the value of s used. However, if s is increased, the
width of the spike is increased, or the location of the estimate of the spike is
offset significantly, then the existing oscillations become large. Approaches for

adaptively finding the location of spikes would an interesting area of further
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study.

4.3.3 Energy spectra of small spin systems

The quantum Heisenberg model can be used to study observables of magnetic
systems [Wei+06; SS10; SRS20; Sch+21; SRS22]. For a system with N spins of
spin number S, the Heisenberg spin Hamiltonian is an operator on a Hilbert

space of dimension (2S + 1)N given by

N-1 N-1
H = Z i s¥s] + [ ],]s,s}+[lz],]zz)
i=0 j=0
Here s gives the component spin operator for the i-th spin site and acts trivially
on the Hilbert spaces associated with other spin sites but as the (2S+1) x (2S+1)
component spin matrix s’ on the i-th spin site. Thus, s can be represented in
matrix form as
s =I®--@Ie®s"®I® --x1I.
i terms N—i—1 terms

The CESM of H gives the energy spectrum of the system and can be used to
compute many important quantities. For instance, given an observable O (i.e.
a Hermitian matrix), the corresponding thermodynamic expectation of the
observable in thermal equilibrium at inverse temperature f is given by

tr(O exp(—pH))
tr(exp(-pH)) -

Quantities depending on observables which are matrix functions H can be writ-
ten entirely in terms of matrix functions of H. For instance, the system heat
capacity is given by

C() _ tr ((BH)* exp(-pH)) | tr (B exp(-pH)) |*

ks~ tr(exp(-pH)) tr (exp(-BH))

Thus, for fixed finite temperature, evaluating the heat capacity amounts to

evaluating several matrix functions.

In some cases, symmetries of the system can be exploited to diagonalize or block
diagonalize H [SS10]. Numerical diagonalization can be applied to blocks to
obtain a full diagonalization. Even so, the exponential dependence of the size of
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Figure 4.6: Heat capacity as a function of temperature for a small spin
system. Legend: exact diagonalization ( ), Gaussian quadrature
( — ), quadrature by approximation ( -——— ), and damped quadrature
by approximation ( —— ). Takeaway: While damping produces a phys-
ical result, the resulting ghost bump may be more difficult to identify
than the nonphysical ghost dip obtained without damping.

H on the number of spin sites N limits the size of systems which can be treated
in this way. Moreover, such techniques are not applicable to all systems. Thus,
approaches based on Algorithm 4.1 are widely used; see [SRS20] for examples
using a Lanczos based approach and [Sch+21] for examples using a Chebyshev
based approach.

In this example, we consider a Heisenberg ring ([J*];; = [J’l;; = [J’];; =
1[li = j| = 1 (mod N)])with N = 12 and S = 1/2. Similar examples, with
further discussion in the context of the underlying physics, are considered in
[SRS20; Sch+21]. We take k = 50 and n, = 300 and compute approximations to
the heat capacity at many temperatures using Gaussian quadrature, quadrature
by interpolation, and damped quadrature by interpolation. For the latter two
approximations we use yu = . , where a and b are chosen based on the nodes of
the Gaussian quadrature. Note that averages over random vectors are computed
for each trace rather than for C(f), and that we use the same vectors for all four

traces. The results are shown in Figure 4.6.



chapter 4 page 69

We note the presence of an nonphysical “ghost dip” in the quadrature by inter-
polation approximation. If the approximation to the CESM is non-decreasing,
the Cauchy-Schwarz inequality guarantees a positive heat capacity. Thus, when
we use Jackson's damping, the heat capacity remains positive for all temper-
atures. However, as noted in [Sch+21], this is not necessarily desirable as the
ghost dip is easily identifiable while the ghost peak may be harder to identify.

We conclude with the remark that it would be interesting to provide bounds for
the accuracy of the approximations to the quantity tr(O exp(—fH))/ tr(exp(—fH))
forall > 0.
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Chapter 5

Optimal rational matrix function
approximation

We now shift gears a bit and consider methods for approximating f(A)v from
Krylov subspace K, = span{v, Av, ..., A¥"lv}. The most ideal Krylov subspace
method for this task would output iterates alg, satisfying

alg, = argmin [|f(A)v —x].

xek,
The above condition guarantees the algorithm produces approximations with
smaller error (in the given norm) than any other Krylov subspace method.
Moreover, under the assumption || - | is induced by a positive definite matrix
with the same eigenvectors as A, Lemma 10.1implies the iterates satisfy a bound

A)v —-al < min A)v—p(A)v|| < min - v|.
If(A)v ~algyl < min |f(A)v~p(A)v] < min f ~pl,Iv]

In other words, the iterates satisfy a minimax bound on the eigenvalues of A. As
we saw in the introduction, a bound on the eigenvalues can be substantially
stronger than a bound on an interval containing the eigenvalues.

A number of well-known algorithms, including the conjugate gradient (CG),
minimum residual (MINRES), and quasi-minimum residual (QMR) algorithms,
are standard methods for solving linear systems of equations Ax = v;i.e. for
approximating A~lv. Each of these methods is optimal for a certain norm and
for certain classes of matrix A. Moreover, such methods can be implemented in
such a way that the amount of storage they use does not grow with the number
of iterations k.
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In this chapter, we describe the Lanczos method for optimal rational matrix
function approximation (Lanczos-OR). When f is a rational function, Lanczos-
OR outputs the optimal (in a certain norm) approximation to f(A)v from K,
using slightly more than k matrix-vector products. We provide a practical im-
plementation of Lanczos-OR that only requires storing a number of vectors of
length n proportional to the degree of the denominator in the rational function.
Therefore, for a fixed rational function, the storage costs do not grow with
the iteration k. The approach used to derive this implementation of Lanczos-
OR can also be used for computing the Lanczos-FA approximations to rational
matrix functions, avoiding storage costs growing with k in that widely used
method.

Lanczos-OR is closely related to existing methods for linear systems. In par-
ticular, if f = 1/(x — z), then, depending on the choice of z, the CG, MIN-
RES, and QMR iterates can all be obtained as special cases of Lanczos-OR. The
Lanczos-OR iterate is mathematically equivalent to an optimal Galerkin projec-
tion method as described in [LS06, Section 4], provided the denominator matrix
is positive definite. However, this method was mostly viewed as of theoretical
interest since it could be used to help explain the behavior of Lanczos-FA. On
the other hand, we show that such approximations can be computed efficiently.
Our approach is also somewhat more general in that it works with any rational

function.

5.1 A bit of notation

To simplify analysis, it will be useful to consider the recurrence that would
obtained if the Lanczos algorithm were run to completion. In exact arithmetic,
for some K < n, fx.; = 0 in which case the algorithm terminates. Then,
the final basis Q := [qy, ..., qx_,] and symmetric tridiagonal T with diagonals

[ag, ..., ax_;] and off diagonals [B, ..., Bx_,] satisfy a three-term recurrence
AQ = QT. (5.1)

We emphasize that the algorithms we discuss do not require Lanczos to be run to
completion; the introduction of Q and T is for analysis purposes only. We note
thatQ = [6]:,:1«’, andT = [T]:k/:k. Since the columns of Q are orthogonal, we have
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that

T = Q"AQ,
from which we easily see that, after any number of iterations k, T = Q"AQ.
Note also that, for any shift z € C,

(A-zI)Q = Q(T - zI).

In other words, the Krylov subspaces generated by (A, v) and (A—zI, v) coincide,
and the associated tridiagonal matrices are easily related by a diagonal shift.
This shift invariance of Krylov subspaces is critical in a number of Krylov

subspace methods.

5.2 Existing algorithms

It is well known that when A is positive definite, CG minimizes the A-norm of
the error over the Krylov subspace; i.e., the CG approximation cg, is given by

cg, := argmin |A™lv — x| .
xeK;,

Since Q is a basis for K}, we can equivalently write

cg, = Qargmin |AY2(A"'v - Qc)|, = Qargmin [|A™/2v — AY2Qc|,.

ceRk ceRk

The solution to this least squares problem is
Cgk — Q(QHAI/ZAI/ZQ)—IQHAI/ZA—I/ZV — QT_leo-

Here we have used that Q"AQ = T and that Q"'v = |lv|,e, = e, (since we are
assuming [[v|, = 1).

If A is indefinite, then the A-norm of the error is not well defined and the
CG iterates need not be optimal. A common alternative to CG for indefinite
systems is MINRES, which minimizes the A*-norm of the error (the 2-norm of
the residual) over the Krylov subspace; i.e., the MINRES approximation mry is
given by

mr, := argmin [A~v — x| ,, = argmin ||v — Ax||,
xeK;, xeK,



chapter 5 page 73

Now note that

AQ = [AQ]:,:k = [QT]:,:k = [Q]:,:k+1[T]:k+l,:k'

Therefore, since T is symmetric and Q has orthonormal columns,
mr, = QQ"AAQ)Q"AV = Q([ Tl s1[T]sr,) " Teo.

More generally, suppose z is an arbitrary complex number. Then a special
case of the quasi-minimum residual method (QMR) [Fre92] can be used to
compute the optimal (A% + |z|*I)-norm approximation to (A — zI)lv; i.e., the
QMR approximation qmr,(z) is given by

amr,(z) := argr]r<1in (A —zI)tv - x||(A2+|z|21)
xeKj,

= argmin [|(A - ZI)V2(A — zI)V2v — (A - ZI)V2(A — z)Y%x[,.  (5.2)

xeK,

Herewe have used that A%+|z|*I = (A-ZI)(A—zI). Next, using the shift invariance

of Krylov subspace, we see that

qmry(z) := Q(Q"(A ~ZI)(A - 21)Q) ' QH(A — 21)v.
= Q(Q(A? +1221)Q") ' Q"(A ~ Z)v
([ lie, k+1[ Liest e + |2l 1) (T —ZD)e,

At first glance, CG, MINRES, and QMR all require the matrix Q which is of
size nk. However, by taking advantage of the tridiagonal structure of T, each
of these algorithms can be implemented in a way which require storing just
a few vectors of length n. In particular, the algorithms work by implicitly
forming LDL" factorization of T [PS75; Fre92; LS13b; ST21]. The low-memory
implementations for Lanczos-OR and Lanczos-FA that we derive in Section 5.5
are based on this idea.

5.3 Optimal rational function approximation

We now describe an optimal iterate for approximating r(A)b when r is an arbi-
trary fixed rational function. We will describe a low-memory implementation
of this algorithm in Section 5.5. Our low-memory implementation can also be
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used to compute the Lanczos-FA approximations to r(A)b without doubling the

number of matrix-vector products.

Definition 5.1. Letr : R — R be a rational function decomposed asr = M/N, where
N : R — Risa polynomial with leading coefficient oneand M : R — R is a polynomial
which does not divide N. For any polynomial R : R — R, defineM = MR and N = NR.
Then the Lanczos-OR iterate is defined as

lan-ORy(r, R) := Q([N(T)L4,4) " [M(T)1 €.

Those familiar with CG, MINRES, and the version of QMR for shifted Hermitian
systems will note that these optimal algorithms are each obtained as special
cases of Lanczos-OR. Specifically, when A is positive definite, CG is obtained
withr(x) = 1/xand R(x) = 1, MINRES is obtained withr(x) = 1/xand R(x) = x,
and QMR is obtained if r(x) = 1/(x — z) and R(x) = (x —Z). In fact, we have a
more general optimality result for Lanczos-OR:

Theorem 5.2. Given a rational function r(x) = M(x)/N(x) as in Theorem 5.1, choose a
polynomial R so that H = N(A) = N(A)R(A) is positive definite. Then lan-OR,(r, R) is
the H-norm optimal approximation to r(A)v from K.

A simple way to ensure H is positive definite is to take R(x) = N(x) so that H =
N(A)2. However, in some situations, we may be able to get away with a lower
degree choice for R. For instance, in the case of symmetric linear systems, while
one can alwaysuse MINRES (r(x) = 1/xi,R(x) = x),if Ais positive definite, then
one may hope to use CG (r(x) = 1/x, R(x) = 1). A simple way to obtain a lower

degree choice of R is to only take the terms in N which are indefinite.

Definition 5.3. Given a rational functionr = M/N as in Theorem 5.1, factor

-1 dy-1

NGe) = ([ Jo=20 ) ([ Joe- 20t

i=0 i=0
where z; # Z; foralli,j = 0,1,...,d; — 1 withj # i. Then R" is defined by

where, fori = 0,1,...,q—1,a; = 0ifz; € R\ Ianda; = 1 otherwiseand & € {+1}is
chosen so that R*(A,;,)N(A i) > O.
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Lemma 5.4. Given a rational functionr = M|/N as in Theorem 5.1, choose R* as in
Theorem 5.3. Then H = N(A)R*(A) is positive definite.

Proof. Clearly H?:()l(x —z'))(x—2;) > 0forallx € R,and forz; € R\ I, (x — 2;)
does not change signs over I. The choice of £ ensures that N(A,,;,) > 0, and by
assumption N(A) # O for all A € A so that that N(A) # 0 for all A € A. It follows
that N(1) > 0 for all A € A; i.e. that H = N(A) is positive definite. O

Proof of Theorem 5.2. Sincey € K, we havey = Qc for some vector c. Thus, we

can consider the problem

argmin |r(A)v — Qcly = argmin [HY?r(A)v — HY/2Qc|,.

ceRk ceRk
But this is just a standard least squares problem which has solution
¢ = ((H'2Q)"(H! Q)" (HY2Q)"(H!r(A)v).
Thus, we see that the optimal iterate has the form

Q(Q"HQ)'Q"Hr(A)v.

Next, since Q consists of the first k columns Q,
QHAqQ = [QHAqQ]:k,zk = [Tq]:k,:k

so since H is a linear combination of powers of A we obtain
Q"HQ = Q"N(A)Q = [N(T)], -

The result follows by combining and rearranging the above expressions. O]

As we noted at the beginning of this chapter, the optimality of Lanczos-OR
implies an a priori scalar polynomial error bound on the eigenvalues of A
analogous to the well known minimax bounds for CG, MINRES, and QMR
[Gre97].
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Theorem 5.5. Given a rational functionr = M/N as in Theorem 5.1 and a polynomial
RsothatH = N(A) = N(A)R(A) is positive definite,

[r(A)v —lan-ORy(r, R) | < min max|r(d) - p(d).
”V”H deg(p)<k AeA

Proof. Sincelan-OR,(r, R)is the H-norm optimal approximation over the Krylov
subspace, we have

[r(A)v —lan-ORy(r, R)|g = m}(n [r(A)Vv —x|yg = 01min [r(A)v —p(A)Vv|y
xeK;, eg(p)<k

Next, using the fact that A and H'?2 commute, we note that,
Ir(A)v = p(A)vlg = I(r(A) - p(A)H>v] < [Ir(A) = p(A) ] IV]|g.
Finally, using the definition of the spectral norm,

I7(A) = ()] = (= p)(A) | = max|r(1) - p(A).

The result follows. O

Itis not yet apparent that the iterate can be computed efficiently. Indeed the ex-
pression involves the terms [N(T)]:k,:k and [M(T)]:k,:k, and computing T requires
running Lanczos to completion. However, since T is tridiagonal, these terms
can be computed without much more information thanisin T and the Lanczos-
OR iterate can be computed with only a few more matrix vector products than

required to compute the Lanczos-FA iterate.

Lemma 5.6. Suppose p is a polynomial with q := deg(p) > 0. Then [p(T)]:k/:k can be
computed using the coefficients generated by k+| (q—1)/2 | iterations of Lanczos. Moreover,
ifk' :=k+|q/2], then

[P(T)L e = [P([T Lok t0) o e

Proof. Note that after k + d iterations of Lanczos, one obtains [T]:kmﬂ/:km. The
result then follows immediately as a special case of Corollary 10.4. O]
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5.3.1 Relation of Lanczos-OR to QMR on inverse quadratics

The Lanczos-OR approximation to r(x) = 1/(x* + |z|?) is closely related to the
approximation of two linear systems by QMR.

Lemma 5.7. Suppose z € R and definer = 1/(x* +|z|*), R* = x + iz, andr* = 1/R*.
Then, forallk > 1,

lan-OR(r, 1) = i (amr,(=iz) — gmr,(iz)) .

Proof. Observe that
lan-ORy(r*, R¥) = Q([T? + |2|*1] 4 ) [T F izI],; .xe0
so that
amr,(—iz) — amr,(iz) = 2izQ([T? +|2°I], ..) ‘ey = 2izlan-ORy(r, 1).

The result is then obtained by rearranging the above expression. O

Whether it is better to use Lanczos-OR with r and R = 1 or with r* and R* (i.e.
QMR) is somewhat unclear. The Lanczos-OR based approach avoids the need
for complex arithmetic, which simplifies implementation slightly. However,
since QMR has been studied longer, it is likely to have more practical low-
memory implementations.

5.4 Error estimates for Lanczos-OR

We now describe an approach for estimating the Lanczos-OR error. This ap-
proach has been widely studied for estimating the A-norm of the error in CG,
and we refer to [ST02; MT18; EOS19; MPT21] and the references within for more
details. Note that several of these works also study whether such estimates are
still reasonable in finite precision arithmetic as well as how to derive estimates
for other norms such as the 2-norm.

Theorem 5.8. Letr be a rational function and R a polynomial. Writer(x) = M/N where

N has leading coefficient one and M does not divide N and defineM = MR and N = NR.
Suppose H = N(A) is positive definite. Then the Lanczos-OR iterates satisfy,

n—1

[r(A)v —lan-ORy(r, R)|4 = Z [lan-OR(r, R) —lan-OR,,(r, R)|I%.
i=k
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Proof. Let {p,;}’=} be an H-orthonormal set satisfying

span{py, ..., pi} = Kiy

foralli =0,1,...,n—1,and decompose r(A)v as

n—1
v = E ¢ipi-
i=0

Theorem 5.2 asserts that lan-OR,(r, R) is the H-norm optimal approximation to

r(A)v from K. Thus, forallj = 0,1,...,n—1,
j-1
lan-OR;(r, R) = c;p;-
i=0
This implies that
k-1 n-1
r(A)v—1an-ORy(r,R) = r(A)v— > c¢;p; = c;p;-
i=0 i=k
so that, by the H-orthonormality of the {p,}'=%,
n-1
Ir(A)v —lan-ORy(r, R)|F = ) 2

But we also have
Ian'ORi(r, R) - |an-ORl~+1(r, R) = _Cipi

so that
[lan-OR;(r, R) — lan-OR,; (r, R)[|% = c?. O

Note that Theorem 5.8 implies that
k+d—1
[r(A)v —lan-ORy(r, R)|4 > Z [lan-OR(r, R) —lan-OR,(r, R)Il%. (5.3)
i=k
While this is a lower bound, if we assume that
n—1
Ir(A)v —lan-ORy4(r, R)I = > _ [lan-OR;(r, R) - lan-ORy, (r, R) 4
i=k+d

is negligible compared to |[r(A)v—lan-OR,(r, R)|%, then (5.3) becomes an approx-
imate equality.

Typically d can be taken as a small constant, say d = 5, so the extra work
required to obtain these estimate is not too large.
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Remark 5.9. As shown in [ER21], a similar approach can be used for general

matrix functions. In particular,

[r(A)v —alg,|l < [Ir(A)v —algy, [ + alg,, — alg,ll = [alg,,,—alg,l

provided that [[r(A)v—-alg,, |l < [lr(A)v—alg,|. Note, however, that in situations
where the convergence of alg,, is oscillatory, it may be hard to guarantee ||r(A)v—
alg, 4| < r(A)v —alg,|, evenif dislarge. A

5.4.1 Numerical experiment

We choose A with eigenvalues from the model problem (10.1) with n = 300,
p = 0.8, and x = 1000 and b with equal projection onto each eigencomponent.
We set r(x) = 1/(x*+ 1), and run Lanczos-OR using R = 1 with and without
reorthgonalization. In each case, we compute (5.3) with d = 4.

The resulting estimates, shown in Figure 5.1, are accurate for most iterations,
with larger error in initial iterations where the true Lanczos-OR erroris not de-
creasing as quickly as in later iterations. Interestingly, the bound seems to work
well in finite precision arithmetic. Understanding this further is of interest. In
particular, a unified analysis of Lanczos-OR could provide more information
about MINRES, for which existing bounds in finite precision arithmetic are

somewhat weaker than CG.

5.5 Implementing Lanczos-OR using low memory

We now describe a low-memory implementation of Lanczos-OR which is sim-
ilar in spirit to CG, MINRES, and QMR.

For convenience, we will denote M := [M(T)],;, ., and N := [N(T)],, ;4 so that the

Lanczos-OR output is given by QN"*Me,. Then, at a high level, our approach is
to:

— Take one iteration of Lanczos to generate one more column of Qand T

- Compute one more column of each of M and N
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Figure 5.1: Error estimates for Lanczos-OR for r(x) = 1/(x?* + 1) and
R(x) = 1. Legend: Lanczos-OR error with reorthogonalization ( —— )
and corresponding estimate (5.3) with d = 4 ( ). Lanczos-OR error
without reorthogonalization ( —— ) and corresponding estimate (5.3)
with d = 4 ( —< ). Takeaway: The error estimates are remarkably
accurate, even in finite precision arithmetic.

- Compute one more factor of L™! = L,_; --L;L, and one more entry of D
where L and D are defined by the LDL factorization N = LDL"

- Compute one more term of the sum:
k-1
QN'Me, = QLD 'L"Me, = )
i=0

[L™"Mey];

[D] [QL_ ]:,i

ii

There are two critical observations which must be made in order to see that this
gives a memory-efficient implementation. The first is that, since T is tridiago-
nal, M, N, and therefore L are all of half-bandwidth q := max(deg(M), deg(N)).
This means that it is possible to compute the entries of D and the factors of
L' = L, --L,L, one by one as we get the entries of T. The second is that
because L is of bandwidth ¢, we can compute [QL™]. ; without saving all of Q.
More specifically, [L"'Me,]; and [QL™].; can respectively be computed from
L, - L,LoMej and QLGLY --- L;!; and can therefore be maintained iteratively
as the factors of L™ are computed. Moreover, because of the banded structure
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of the factors L;, we need only maintain a sliding window of the columns of
QL' which will allow us to access the relevant columns when we need them and
discard them afterwards.

For clarity of exposition, we only describe how to compute M and N in the case
that M and N are degree at most two. The rest of the subroutines are fully
described for any degree. The syntax we use follows Python and other object
oriented languages closely.

5.5.1 Computing LDL factorization

For the time being, we will assume that we can sequentially access the rows of
M and N. Our first step is to compute an LDL factorization of N. A LDL fac-
torization can be computed via a symmetrized version of Gaussian elimination
and is guaranteed to exist if N is positive definite [Hig02]. Gaussian elimination
can be viewed as transforming the starting matrix N, = N to a diagonal matrix

N,_; = Dvia a sequence of row and column operations
— H
Niyp = LNL;

where

NI~ N

i

AP Nl 1"
Li:: Ik+1,-e:-*, l:= 0,"',0,—[ I]H—l,l [ z]k—l,z )

i
i,i

i+1 zeros

Note that the entries of L; are chosen to introduce zeros to the i-th row and
column of N; such that [N;,;];;; ;1 is diagonal. Therefore, if the algorithm
terminates successfully, we will have obtained a factorization

D= (Lk—l LlLo)N(LSL'f L,'?_l)

where D is diagonal and each L; is unit lower triangular. To obtain the factoriza-
tion N = LDL", simply define L := (L,_; --- L,L,)™ and note that

We remark that that1,_, is the zeros vector and is only included in sums for ease
of indexing later on. For further details on LDL factorizations, we refer readers
to[Hig02].
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To implement a LDL factorization, observe that the procedure above defines a

recurrence
j-1
[D];; = [N];,; = > [L;e]*[Dlq,
=0
j-1
[L];; = [D_l]” ([N]i,j - ;[L]j,B[L]i,B[D]M) , i>j.

We therefore have Algorithm 5.1.

Algorithm 5.1 LDL factorization

1: procedure LDL(N)

22 forj=0,1,..,k—1do

5 [D]); = [NJj; — S o[l "[Dleg
4: [L]j,j =1
5
6

fori =j+1,j+2,...,k—1dq
[L];; = (1/[D]; )(IN];; — Yj=o[L]; e[L]; o[D]ee)

7. returnL,D

Streaming version

The fact that L has the same half bandwidth as N allows a more efficient im-
plementation of Algorithm 5.1 where terms which are known to be zero are not
computed and only the important diagonals of L are stored. Moreover, Algo-
rithm 5.1 already only accesses N one column at a time so it is easily converted
to a streaming algorithm. Making these changes gives the implementation
Algorithm 5.2 which is fed a stream of the columns of N in order, as shown in
Figure 5.2a. Here the diagonal of D is stored as d and the (j + 1)-st diagonal of L

is stored as [L]; .. Thus, L; ; = [L] aslongasi—je0:q+1.

i—j-1j
5.5.2 Inverting the LDL factorization

Once we have computed a a factorization N = LDL", we can easily evaluate
QL 'D'L™Me, using the fact that L* = L,_; ---L,L,. Moreover, because the
L; can be computed one at a time, there is hope that we can derive a memory

efficient implementation.
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]HI

IDDHH
8

(a) Pattern for N in Algorithm 5.2.

(b) Pattern for T in Algorithm 5.5.

0
|IDD

OOCC=I=1e]

nl

(c) Pattern for Q, L, d, M in Algorithm 5.3.

]

Figure 5.2: Access patterns for inputs to streaming functions used in
low-memory implementations of Lanczos-OR and Lanczos-FA. Indices
indicate what information should be streamed into the algorithm at the
given iteration.
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Algorithm 5.2 Streaming LDL factorization

1: class STREAMING-LDL(q, k)

2. stream: [N]o 0.1, [N]1,1:442/ -/ [Nkt k-1:q4-1

3 L = ZEROS(q, k)

4: d = zEROS(k)

5. j«0

6: procedure READ-STREAM(n)

7 [dly < [m)o= X haxo,jq L -e1eldle

8: fori = j+1,j+2,...,min(j—q,n—1)do

0 (L 515 = (/0Al)(0)g = o man(o g Llie-1elLlje1 eldle)
10: jej+l

Towards this end, define y; := L;_; -- L;LoMeg and X; := QLGL{ -~ Li!;. Then,
setting y, = Me; we have that

Viu = Ly; = I+Lel)y; = y; + (ef'y))L;.
Similarly, setting X, = Q we have that
— H _ Hy H

Then QL'D'L™Me,; = X,D'y, can be computed accessing L, and therefore
N, column by column.

Streaming version

Recall that [1]. pis zeroif £ < i or £ > i 4 q. Since [1;]; is zero, we have

ly;]; = [Yj+(e}_|yj')lj]j = [yjulj = = [v];
and
[X;].; = [xj+xjej1}-|]:,j = [Xjnlj = = [X]. )
We therefore have that

k-1

k-1 ) .
XDy, =) %[xk]u => [[g’]]_’_[xj]z,,-.
j:() )]

j=0
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Algorithm 5.3 Streaming banded product

1: class STREAMING-BANDED-PROD(n, k, q)

—
@

11:
12:

13:
14:
15:
16:
17:

18:

stream:

X_ < ZEROS(n,q+1)

y_ < ZEROS(q+1)

out < ZEROS(n)

je-1

procedure READ-STREAM(V, 1,d, y,)
if j = -1 then

[X_]:,:q =V

else

if i = -1 then

Y- < Yo
out « out +([y_Jo/d)[X_].0
[y_lq < [yl —[y_lol

Similarly, since [1;];,4,1. is zero,

and

[Yj]j+q: = [Yj—l + (e;'—IYj—l)lj—l]jm: = [Yj—l]j+q: == [YO]j+q:

(X1 jig: = K + X000 g = (Xl jig = = = [Xol. jig-

By definition, y, = Mey and X, = Q. Thus, we see that it is not necessary to

know the later columns of X; immediately.

We can define a streaming algorithm by maintaining only the relevant portions

of the X; and y;. Towards this end, define the length g + 1 vector y; := [y;];,jq11

the n x (¢ + 1) matrix X; = [X;]. ;;,441- Using the above observations, we see that

these quantities can be maintained by the recurrences

J

}—,] — |:[S’]—01]1

+[¥j-1olllj+1:j4q41
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and
[Xj]:,:q = [Xj—l]:,lz + ([Xj—l]:,l)([lj]j+l:j+q+l)H/ [Xj]:,q = [Q]j+q'

Note then that,
k-1 [—
_ vl <
X Dly = +[Xj]:,1'

=0 [D]j+1,j+1

This results in Algorithm 5.3 whose streaming pattern is outlined in Figure 5.2c.

Algorithm 5.4 Streaming banded inverse

1: class STREAMING-BANDED-INV(n, k,q)

2:  stream:

3.  LDL « STREAMING-LDL(k, q)

4: QO « zEROS(n,q)

5. j«0

6: procedure READ-STREAM(q, 1, Y)

7: if j < g then

8: [Q0].; < v

9: if j = g—1then
10: b-prod « STREAMING-BANDED-PROD(n, k, q)
11: b-prod.READ-STREAM(VO, none, none, none)
12: else

13: LDL.READ-STREAM(n)

14: b-inv.READ-STREAM(q,—[LDL.L].; ., [LDL.d]; ,, yo)
15: jej+l

5.5.3 Computing polynomials in T

The last major remaining piece is to construct M = M(T) and N = [N(T)]:k/:k.
Recall that we have assumed M and N are of degree at most two for convenience.
In iteration £ of Lanczos, we obtain a, and f3,. Observe that T? is symmetric and
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that, defining B_; = B, = 0, the lower triangle is given by

Blatoi+Bf j=i
(@ +o)B  j=i-1
:Bj:Bj+1 j=i-2

0 O.W.

[Tz]i,j =

We can use this to implement the streaming algorithm, Algorithm 5.5, for

computing the entries of T2. Rather than being fed the entire tridiagonal matrix

T, Algorithm 5.5 is fed a stream of the columns of T in order, as shown in

Figure 5.2b. The algorithm respectively stores the j-th diagonals of T and T?
as [T]; . and [Tp2]; ..

Algorithm 5.5 Streaming tridiagonal square

1: class STREAMING-TRIDIAG-SQUARE(k)

10:
11:

2
3
4
5:
6
7
8
9

stream: (&g, Bo), --- , (e—1, Br-1)
T « ZEROS(2,k)

Tp2 « ZEROS(3, k)

j<0
procedure READ-STREAM(q, fB)
[T]O,j =a
[T]l,j = B
if i = O then
[TPQ]O,J' - [T]%,j + [T]%,j
else

Since we maintain the columns of T? with Algorithm 5.5, we can easily compute
M and N using Algorithm 5.6.



chapter 5 page 88

Algorithm 5.6 Get polynomial of tridiagonal matrix

1: procedure GET-POLY(P, STp2,k, j)
22 a,b,c = P(0),P'(0),P"(0)

3 p < ZEROS(3)

4 [pls < a[STp2.Tp2],;

5. [ply < b[STP2.T] ;

6: [pli«c

5.5.4 Putting it all together

With this algorithm in place, putting everything together is straightforward,
and the full implementation is shown in Algorithm 5.7.

This can be incorporated into any Lanczos implementation and used to compute
the Lanczoz-OR iterates. For concreteness, we show this with the implemen-
tation of Lanczos from Algorithm 1.1. We call the resulting implementation

Lanczos-OR-Im.

We can easily obtain an implementation of Lanczos-FA, which we call Lanczos-
FA-lm, by replacing 8,_; with 0 in the final iteration of the loop.

5.5.5 Some comments on implementation

Our main goal is to describe how to implement Lanczos-FA and Lanczos-OR
in a way that requires k matrix-vector products and O(n) storage, when M and
N are each at most degree two. As mentioned, the approach can be extended to
any constant degree. There are a range of improvements to our implementation
which may be useful in practice.

First, the amount of storage used can be reduced somewhat. Indeed, the im-
plementation described above saves T, T2, L, and d, but only accesses a sliding
window of these quantities. We have chosen to save them for convenience since
they require only O(k) storage. However, storing only the relevant information
from these quantities would result in an implementation with storage costs
independent of the number of iterations k. In this vein, a practical implemen-
tation would likely determine k adaptively by monitoring the residual or other
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Algorithm 5.7 Streaming banded rational inverse

1: class BANDED-RATIONAL(n, k, M, N)
b-inv < BANDED-INV(n,k, 2)
STp2 « STREAMING-TRIDIAG-SQUARE(k)

j<0

if j < kthen
STp2.READ-STREAM(q, f)

2

3

4

5. procedure READ-STREAM(q, @, ff)
6

7

8 b-inv.READ-STREAM(

9

q
10: GETPOLY(N,STp2,k,j—1)if j > 2 else none,
11: GETPOLY(M, STp2,k, j — 1) if j = 2 else none,
12: )
13: LDL.READ-STREAM(n)
14: je—j+1
15  procedure FINISH-UP()
16: fori = k,k+1do
17: b-inv.READ-STREAM(none, GETPOLY(N, STp2,k, j —1),none)

18:  procedure GET-OUTPUT()

19: return b-inv.b-prod.out

measures of the error. Improvements to the number of vectors of length n may
be possible as well. For example, storage could possibly be reduced somewhat
by incorporating the Lanczos iteration more explicitly with the inversion of the

LDL facorization, much like the classical Hestenes and Stiefel implementation
of CG [HS52].

As with other short-recurrence based Krylov subspace methods, the behavior
of Lanczos-FA-Im and Lanzos-OR-Im in finite precision arithmetic may be
different than in exact arithmetic. However, with the exception of the Lanczos
algorithm, the other aspects of our algorithm are essentially backwards stable.
It is therefore more or less clear that Lanczos-FA-Im and Lanczos-OR-lm will
accurately compute the expressions QN(T)*M(T)e, and Q([N(T)].;, ..) "M (T)e,
provided that M(T) N(T), [N(T)]:k,:k are reasonably well conditioned. Indeed, in
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Algorithm 5.8 Lanczos-OR (low memory)

1: procedure LANCzOs-OR-LM(A, v, k, M, N)

10:
11:
12:

13:

2
3
4
5:
6
7
8
9

q-1 = 07B—1 = 0;‘10 =V
Set M and N as in Theorem 5.1
lam-1m < BANDED-RATIONAL(n, k, M, N)
forj =0,1,...,k—1do
4j1 = Aqj— 1951
@ = {Qj;1,9;)
qj:1 = Qj41 — 49; '
optionally, reorthogonalize g;,; against {qi}f;lo
B = Idul
qj+1 = Qj11/B;
lam-1lm.READ-STREAM(qj, @;, B))

lam-1m.FINISH-UP()

practice solving linear systems by symmetric Gaussian elimination is accurate;

see for instance [Hig02, Chapter 10]. Thus, such bounds and techniques can be

applied to Lanczos-FA-Im and Lanczos-OR-Im.
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Chapter 6
General matrix function approximation

We now consider Krylov subspace methods for approximating f(A)v for more
general f. In Section 6.2 we discuss the Lanczos method for matrix function
approximation (Lanczos-FA), which is probably the most widely used algorithm
for this task. Then, in Section 6.3, we discuss how Lanczos-OR iterates can be
used to generate approximations to a wide range of functions.

6.1 Explicit polynomial methods

A simple approach to approximating f(A)v is to compute

[flE1(A)V € K,

where [f];F; is some polynomial chosen to approximate f. For instance, the
Chebyshev semi-iterative method mentioned in the example from Chapter 1
falls into this category of algorithms.

If |[f-[f]:2,|is not strongly correlated with the eigenvalues of A, we might expect

If(A)v = [FIE (A > ellf = [FIE v

for some reasonable constant c.

Like mentioned in our discussion of algorithms for quadratic forms in Sec-
tion 3.4, one nice property of explicit polynomial methods is the lack of inner
products, which can be expensive on supercomputers. In addition, explicit
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polynomial methods for f(A)v do not require storing a basis for Krylov sub-
space.

6.2 Lanczos-FA

Early uses of Lanczos-FA were focused primarily on computing matrix expo-
nentials applied to a vector; i.e. f = exp(tx). As far as we can tell, Lanczos-
FA was introduced in [NW83] and first used for general f in [Vor87]. Soon after
Lanczos-FA was first used, a number of papers studying the algorithm and
its convergence properties were published [PL86; DK88; DK89; GS92; Saa92].
These early works were followed by a number of papers demonstrating the ef-
fectiveness of Lanczos-FA in finite precision arithmetic [DK91; DK95; DGK98],
a topic we discuss further in Chapter 8.

Definition 6.1. The k-th Lanczos-FA approximation to f(A)v is

lan-FA,(f) := Qf(T)e,.

Remark 6.2. If A is positive definite, then the Lanczos-FA approximation to
f = 1/x coincides with the CG iterate defined in Section 5.2. Even when A
is indefinite, we can use the Lanczos-FA iterate as an approximation to A~lv.
However, the resulting algorithm is not guaranteed to be optimal, and if T has
an eigenvalue near to or at zero then T™! will be poorly conditioned or even
undefined. Even so, the overall convergence of the Lanczos-FA iterate is closely
related to the convergence of MINRES. We described this phenomenon in detail
in Section 7.4. A

A basic property of the Lanczos-FA iterate is that polynomials are applied

exactly. More precisely, we have the following, well known, theorem.
Theorem 6.3. Suppose deg(p) < k. Then,

lan-FA,(p) = p(A)v.

Proof. Using Corollary 10.3 we have

A% = A%Qe, = QT%, = QT7%,.
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This theorem implies that, whenpu = ¥,

lan-FA(f) = T2, (A)v.

In other words, the Lanczos-FA iterate is obtained by interpolating f at the
eigenvalues of T with a degree k — 1 polynomial.

6.2.1 A priori error bounds on an interval

AKkin to the bounds we saw in Section 3.3, we can derive a bound based on best
approximation on an interval.

Theorem 6.4. The Lanczos-FA iterate satisfies

IF(A)y — lan-FA)|
M S il

Proof. For any polynomial p with deg(p) < k,

If(A)v —lan-FA(f) < If(A)v = p(A)v]l + [lan-FA,(p) — lan-FA.(f)l
= [(f(A) - p(A)vIl + 1Q(p(T) - £(T))Q"v]
< 1f(A) = p(A)l V] + 1Q(p(T) - £(T))Q" [, IIvll
< (IF(A) =p(A)lz + [p(T) = £(T)l) v Il-
= (If = pls+1f = plam)IvI.

Then, optimizing over polynomials of degree less than k,

If(A)v —lan-FA.(f)[ < Jmin (Ilf pla+1f=plam) IVl (6.1)

Finally, using that A, A(T) c I, we obtain the result. [

As we will discuss in Chapter 8, bounds for Lanczos-FA based on polynomial
approximation on I still hold, to close approximation, in finite precision arith-

metic.

6.2.2 Two-pass Lanczos-FA

A major downside of Lanczos-FA compared with explicit polynomial ap-
proachesisthat asimple implementation requires that Q be stored. Fortunately,
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this storage cost can be avoided by incurring additional computational cost. In
particular, we can use an implementation called two pass Lanczos-FA [Bor00;
FSO8a]. On the first pass, the tridiagonal matrix T is computed using the
short-recurrence version of Lanczos; i.e., without storing all of Q. Once T has
been computed, f(T)e, can be evaluated using O(k?) storage. Lanczos is then
run again and the product Qf(T)e, is computed as the columns of Q become
available. Note that on the second run, the exact same Lanczos vectors (even
in finite precision arithmetic) can be computed without any inner products by

using the values computed in the first run and stored in T.

Such an approach can be generalized by re-generating the Lanczos recurrence
from multiple points simultaneously on the second pass [Li22]. Specifically, on
the first pass, vectors q; and q;_; can be saved for j = 0,d, 24, .... Then, on the
second pass, the rest of the Lanczos vectors can be constructed by continuing
the three-term Lanczos recurrence (1.3) from each of the roughlyn/d start points
in parallel. Thus, the number of matrix-loads is reduced by a factor of roughly
d at the cost of storing roughly 2n/d vectors. The case d = n gives the original

two-pass approach.

6.3 Lanczos-OR based methods

We can use integral representations of functions to derive algorithms based on
Lanczos-OR iterates. For concreteness, we consider the case of the matrix-sign
function and rational functions in partial fraction form. It’s clear that a similar
approach can be applied to other functions, and further study of the resulting
algorithms would be interesting.

6.3.1 The matrix sign function

We begin by noting that, for anya > 0,

dz.

— 2
Ja J; a+ z2
Thus, if f = sign = x/|x| = x/\/x2, we have

2 j A2+221 ly dz.
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The Lanczos-OR approximation to A(A%+2z21) v is Q([T?];, .. +22I) ' Tey, which
is optimal over Krylov subspace in the (A% + z*I)-norm. This yields the approx-
imation )
2 (*° = _ = -1/2
- Jo Q([T?] e+ 2°) ' Tepdz = Q ([Tz]:k,zk) Te,.
Thus, we can define the induced iterate as
. ~ -1/2 ~ ~ -1/2
sign—OR, := Q([T?]44) = Teo = Q([Tlwsr[Tlire)  Teo  (62)

Relation to Lanczos-FA

The Lanczos-OR and Lanczos-FA iterates for a given rational matrix function
are clearly related. In particular, N(T) and [N(T)],, ¢ differ only in the bottom
rightmost (§—1) x (9—1) principle submatrix, where ¢ = deg(N). Using this fact,
it can be shown that the Lanczos-OR and Lanczos-FA iterates “tend to coalesce
as convergence takes place” [LSO6, Proposition 5.1]. We now show that a similar
phenomenon occurs with the induced Lanczos-OR approximation to the sign
function and the Lanczos-FA approximation.

Theorem 6.5. The Lanczos-FA and induced Lanczos-OR approximations to the matrix

sign function satisfy

Ilan-FA(sign) — sign — OR, ||, < Bz 12” (ﬁ;

where 0., (T) and o ;. (T) are the largest and smallest singular values of T respectively.

Proof. Let N = x*+z%>and M = x. Note that N(T) = [N(/T\)]:k,:k — B2 le,_jel | so,
M(T)eq = ([N(T)], . — Bi-1€k-1€f-))N(T) " M(T)e,

Thus, rearranging terms and multiplying by ([N(T)]:,e,:k)‘1 we find that

N(T)"'M(T)eo = ([N(T)],+)'M(T)eq
1(

[N
= Bia(IN(T) L 4) "1l N(T)'M(T)eg
After left multiplying with Q, this implies that

lan-FA,(r) ~ 1an-ORy(r, 1) = B 1 Q(IN(T)] +) " er1ef s N(T)'M(T)e,
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Now, suppose that f = sign and set diff;, := lan-FA,(sign) —sign — OR, as above.
Then, since the Lanczos-FA approximation can also be induced by an integral
over z € [0, o), we have that,

‘ 2 (% ~a - -
diff, = Bf—gt L Q([T?]g, 4 + 2°T) ' epr e}y (T? + 2°I) ' Tegdz.

Note that [TZ]:k,jk —~T? = B2 |e,_;el | is positive semidefinite. Therefore, using
that Umin([TZ]:k,:k) > Gmin(Tz) = Gmin(T)Zr

Idiffell, = Biy Q(Z I ([T e+ 2°T) Mgyl y (T + zZI)‘ldz>Te0
0

w

2

2 (% e - -
< Ba( 2 [ IO 20T 2z ) Tl

< B 2 [ oD+ 22 (T 2212 )4 5

_p BR .
Tk 2O'min(T):" .

Since |B,_,| tends to decrease as the Lanczos method converges, this seemingly
implies that the induced Lanczos-OR iterate and the Lanczos-FA iterate tend to
converge in this limit. However, recall that T = [T],; ., changes at each iteration
k. In particular, there is the difficulty that T may have an eigenvalue near zero,
in which case the preceding bound could be useless.

It is known that T cannot have small eigenvalues in two consecutive iterations,
provided the eigenvalues of A are not small [GDK99], a result we will recall in
Theorem 7.16. Since f,_; has little to do with the minimum magnitude eigen-
value of T (recall that the Lanczos recurrence is shift invariant), we expect that
the “overall” convergence of the induced Lanczos-OR iterate and the Lanczos-
FA iterate will be similar as Lanczos converges.

6.3.2 Rational function approximation

We can use a similar approach to derive (non-optimal) approximations to ra-
tional matrix functions r(A)b. In many settings, particularly when the rational
function r is used as a proxy for a function f, this approach is more natural than
computing the Lanczos-OR approximation to the rational function directly. The



chapter 6 page 97

convergence of such methods is closely related to the quality of the (scalar)
rational function approximation as well as the quality of the approximation
to the rational matrix function. Specifically, for any output alg(r) meant to

approximate r(A)b, we have the following bound:

If(A)b —alg(r)]| < [f(A)b—r(A)b] + r(A)b—alg(r)|
< [f(A) =r(A)l2lb] + [r(A)b —alg(r)]|
< [bl max[f(4) - r()| + [r(A)b —alg(r)|

< bl max |f(0) - r()| + Ir(Ap-alg()] . (63)
approximation error application error

In many cases, very good or even optimal scalar rational function approxi-
mations to a given function on a single interval are known or can be easily
computed. Thus, the approximation error term can typicallybe made small with
a rational function of relatively low degree [Trel9; NST18].

Of course, this bound is only meaningful if the approximation error term is
small relative to the application error. Indeed, we also have

If(A)b—alg(r)ll > [If(A)b—r(A)b] - [Ir(A)b - alg(r)]] (6-4)

This shows that the size of || f(A)b—alg(r)| is rouhgly the size of ||f(A)b—r(A)b|
when alg(r) is a good approximation to r(A)b.

As we noted, rational function approximations commonly are obtained by dis-
cretizing an integral representation using a numerical quadrature approxima-

tion. For instance, the matrix sign function may be approximated as

q-1

r(A)V =) wAA+ 1) v (6.5)
i=0
where z; and w; are appropriately chosen quadrature nodes and weights
[HHTO8].

We can of course writer, = M,/N,,soit’s temptingtoset R, = 1and H, = N,(A)
and then use Lanczos-OR to compute the H,-norm optimal approximation.
However, while r, is convergent to f as ¢ — oo, N, := ﬂ?;g(xz + z?) is not
convergent to any fixed function. In fact N, will increase in degree and H,

will be increasingly poorly conditioned. This presents a numerical difficulty in
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computing the Lanczos-OR iterate in this limit. More importantly, it is not clear
that it is meaningful to approximate a function in this way. Indeed, it seems
reasonable to expect that, for fixed k, as ¢ — o0, our approximation should
be convergent to something. However, we cannot guarantee lan-ORy(M,, N,) is

convergent in this limit.

On the other hand, akin to our approach for approximating the integral de-
scribed in the previous subsection, we can compute the term-wise optimal approx-
imations to each term in the sum representation of r, and output

q-1
Z W Q[T+ 271) ' Tey.
i=0

In this case, as ¢ — oo, the approximation is convergent to the integral output.
It would be interesting to understand when a term-wise optimal approximation

behaves nearly optimally.

6.4 Numerical experiments

6.4.1 The matrix sign function

We now provide several examples which illustrate various aspects of the con-
vergence properties of Lanczos-OR and Lanczos-OR based algorithms, and
show when these new methods can outperform more standard techniques like
the classic Lanczos-FA.

As we noted in Section 6.3.1, Lanczos-OR can be used to obtain an approxima-
tion to the matrix sign function. A related approach, which interpolates the sign
function at the so called “harmonic Ritz values”, is described in [Esh+02, Section
4.3]. The harmonic Ritz values are characterized by the generalized eigenvalue
problem

[TZ]:k,:ky = 0Ty

and are closely related to MINRES in the sense that MINRES produces a poly-
nomial interpolating 1/x at the harmonic Ritz values [PPV95]. Finally, a stan-
dard approach is using Lanczos-FA (or equivalently, Gaussian quadrature) as
described in Chapters 3 and 4.
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Spectrum approximation

In this example, we show the spectrum approximations induced by the al-
gorithms described above. We now set A to be a diagonal matrix with 1000
eigenvalues set to the quantiles of a Chi-squared distribution with parameters
a = land f = 10. We set k = 10 and consider approximations to the function
¢ = Vv"1[A < c]v for a range of values c. Here 1[x < ¢] = (1 —sign(x —¢))/2 is
oneif x < c and zero otherwise. We pick v as a unit vector with equal projection
onto each eigencomponent so that vF'1[A < c]v gives the fraction of eigenvalues
of A belowc. Inthe n — oo limit, this function will converge pointwise to the
cumulative distribution of a Chi-squared random distribution with parameters

a = 1 and B = 10. The results are shown in Figure 6.1.

Note that the Lanczos-FA based approach is piecewise constant with jumps at
each eigenvalue of T. On the other hand, the harmonic Ritz value and Lanczos-
OR based approaches produce continuous approximations to the spectrum. In
this particular example, the spectrum of A is near to a smooth limiting density,
so the harmonic Ritz value and Lanczos-OR based approaches seem to produce
better approximations. Note that these approximations differ from the KPM
approximations in Chapter 4 in that, like Gaussian quadrature, they adapt
automatically to the spectrum of A.

We note that it is not typically possible to pick v with equal projection onto
each eigencomponent since the eigenvectors of A are unknown. However, by
choosing v from a suitable distribution, it can be guaranteed that v has roughly
equal projection onto each eigencomponent. This is discussed thoroughly in
Chapter 4.

Quality of approximation

We now study how the number of matrix vector products impact the quality of
approximation for a fixed sign function.

We construct a matrix with 400 eigenvalues, 100 of which are the negatives of
the values of a model problem (10.1) with parameters k = 10% p = 0.9, and
n = 100 and 300 of which are the values of a model problem with parameters
k = 10° p = 0.8, n = 300. We then compute the Lanczos-OR induced
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Figure 6.1: Comparison of Lanczos-based spectrum approximation
algorithms.  Legend: Lanczos-OR induced approximation ( — ),
Lanczos-FA (GQ) ( -—— ), harmonic Ritz values based approximation
( —— ), and limiting density ( ). Takeaway: The Lancos-OR and
harmonic Ritz value based approximations produce smooth approxi-
mations to the spectral density.

approximation, the Lanczos-FA approximation, the harmonic Ritz value based
approximation from [Esh+02], and the optimal A%-norm approximation to the
matrix sign function. The results are shown in Figure 6.2. In all cases, we
use the Lanczos algorithm with full reorthogonalization. Because eigenvalues
of T may be near to zero, Lanczos-FA exhibits oscillatory behavior On the
other hand, the Lanczos-OR based approach and the harmonic Ritz value based
approach have much smoother convergence. Note that the Lanczos-OR induced
approximation is not optimal, although it seems to perform close to optimally

after a few iterations.

6.4.2 Rational matrix functions

We now illustrate the effectiveness of the Lanczos-OR based approach to ap-

proximating rational matrix functions described in Section 6.3.2.
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Figure 6.2: Optimality ratio for A%-norm errors for approximat-
ing sign(A)v. Legend: Lanczos-OR induced approximation ( —— ),
Lanczos-FA (GQ) ( —=— ), harmonic Ritz values based approximation
( —— ) optimal ( ). Takeaway: The Lanczos-OR induced approxi-
mation to the matrix sign function performs well.

Sign function

In this example, we use the same spectrum as in the first example. However,
rather than approximating the sign function directly, we instead use Lanczos-
OR to approximate each term of a proxy rational function of the form (6.6).
In particular, we consider the best uniform approximation' of degree (39, 40)
to the sign function on [-10%,1] U [1,10%]. Such an approximation is due
to Zolotarev [Zol77], an can be derived from the more well known Zolotarev
approximation to the inverse square root function on [1, 10°]. Our implementa-
tion follows the partial fractionsimplementation in the Rational Krylov Toolbox
[BEG20] and involves computing the sum of 20 terms of degree (1,2). The/
results are shown in Figure 6.3.

Note that the eigenvalues of A live in [-10%,—-1] U [1, 10%], so we could have used an asym-
metric approximation to the sign function. This would reduce the degree of the rational function
required to obtain an approximation of given accuracy, but the qualitative behavior of Lanczos-
OR-1m would not change substantially.
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Figure 6.3: A%-norm error in Lanczos-OR-Im based rational approx-
imation to matrix sign function. Legend: Lanczos-OR-lm based ap-
proximation of matrix sign function with ( —— ) and without ( —— ),
reorthogonalization. Lanczos-OR-lm based approximation of proxy
rational matrix function with ( ) and without ( —— ) reorthogo-
nalization Takeaway: Lanczos-OR-lm can be applied to each term of a
proxy rational function approximation of the sign function.

At least while while the application error for the Lanczos-OR approximation
to the proxy rational matrix function is large relative to the approximation
error, then as seen in (6.3), the error in approximating the matrix sign function
is similar to the error in approximating the proxy rational matrix function.
However, as seen in (6.4), the final accuracy of approximating the matrix sign
function is limited by the quality of the scalar approximation.

We also note that it really only makes sense to use Lanczos-OR-1lm with a short-
recurrence version of Lanczos, in which case the effects of a perturbed Lanczos
recurrence are prevalent. In particular, as we noted in Chapter 1 and discuss
in detail in Chapter 8, the algorithm encounters a delay of convergence as

compared to what would happen with reorthogonalization.
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6.4.3 Lanczos-FA vs Lanczos-OR vs CG

We now illustrate the effectiveness of the Lanczos-OR based approach to ap-
proximating rational matrix functions described in Section 6.3.2. Then we com-
pare an existing low-memory approach, called multishift CG, to the analogous

approaches based on Lanczos-OR-lm and Lanczos-FA-Im.

Throughout this example, we will assume that ris a rational function of the form

Ax +Bix+C;
r= Z a;x2 +bx+c (6.6)

so that r(A)b has the form

m
r(A)b = Z(A,.A2 +BA +Cl)x;,
i=1

where x; is obtained by solving the linear system of equations (a;A% + b;A +
c;I)x; = b. This is relatively general since any real valued rational function
r : R - R with numerator degree smaller than denominator degree and only
simple poles can be written in this form (in fact, this would be true even if
A; = 0). Arange of rational functions of this form appear naturally; for instance
by a quadrature approximation to a Cauchy integral formula representation of
f [HHTO8]. Similar rational functions are seen in [Esh+02; FS09] and in the
rational approximation tot the sign function given described in (6.5).

In certain cases, the shift invariance of Krylov subspace can be used to si-
multaneously compute all of the x; using the same number of matrix-vector
products as would be required to approximate a single x;. Specifically, suppose
(a;A%+b;A+c1)'v canbewritten as B+zIforalli = 1,..., m. Then K,(B—z1,v)) =
K,(B, v), so by constructing a single Krylov subspace K, (B, v), one can compute
all of the x; and therefore r(A)v. The resulting algorithms are typically called
multishift-CG or multishift-MINRES [Esh+02; FSO8a; FS08a; GS21; Ple+20].
However, such an approach only works when a; = Oora; = aandb; = b,
and in the latter case, matrix-vector products with B require two matrix-vector
products with A and convergence depends only on the properties of A? rather
than A.

Instead, we might apply Lanczos-FA-Im to compute individual terms of r(A)v.
However, if (a;,A% + b;A + ¢;]) is indefinite, then Lanczos-FA may exhibit os-
cillatory behavior due to eigenvalues of (a,T? + b;T + ¢;I) near zero. This may
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resultin a breakdown of Lanczos-FA-lm similar to the breakdown which may be
encountered by standard implementations of CG on indefinite linear systems.
Lanczos-OR-Im avoids such issues.

To highlight some of the tradeoffs between the algorithms, we construct sev-
eral test problems by placing eigenvalues uniformly throughout the specified
intervals. In all cases, v has uniform weight onto each eigencomponent. The
outputs are computed using standard Lanczos, but we note that the spectrum
and number of iterations are such that the behavior is quite similar to if full
reorthgonalization were used. In particular, orthogonality is not lost since no

Ritz value converges. The results of our experiments are shown in Figure 6.4.

102

100 ~ .
1072 .

107 + .

1076 + . .
1078 + . .
10—10 _ - -

10712 4 - -

1071 4 T T T T T T T T
0 25 50 0 25 50 0 25 50

number of matvecs: k number of matvecs: k number of matvecs: k

Figure 6.4: Comparison of (A2 + cI)-norm errors for CG and Lanczos-
FA for computing (A% + cI)'v with ¢ = 0.05. Here CG works with
A? + cI and requires two matrix-vector products per iteration whereas
Lanczos-FA works with A and requires just one. Legend: Lanczos-OR
( —— ), Lanczos-FA ( —— ), and CG on squared system ( —— ). Left:
eigenvalues on [1, 10]. Middle: eigenvalues on [-1.5,-1] U [1, 10]. Right:
eigenvalues on [-10,-1] U [1,10]. Legend: Optimal algorithms have
many nice convegence properties.

We consider approximations to r = 1/(x*+ 0.05) with eigenvalues spaced with
increments of 0.005 throughout [1,10], [-1.5,-1] U [1,10], and [-10,-1] U
[1,10] respectively. For each example, the condition number of A% + 0.05I is
roughly 100 and the eigenvalues of A%+ 0.05I fill out the interval [1,100.05].
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As such we observe that multishift CG converges at a rate (in terms of matrix

products with A) of roughly exp(—k/{k(A2)) = exp(—k/v100) on all of the
examples.

In the first example, A is positive definite. Here Lanczos-FA and Lanczos-OR
converge similarly to CG on A at a rate of roughly exp(—2k/ m), where k is the

number of matrix-vector products with A.

In the next example A is indefinite. The convergence of CG is unchanged,
because CG acts on A%+cl, it is unable to “see” the asymmetry in the eigenvalues
of A. While the convergence of Lanczos-FA and Lanczos-OR is slowed consid-
erably, both methods converges more quickly than CG due to the asymmetry
in the intervals to the left and the right of the origin. The convergence of
these methods is at a rate of roughly exp(—k/\/ﬁ), although the exact rate is
more complicated to compute [Fis96; Schll]. We also note the the emergence
of oscillations in the error curve of Lanczos-FA.

In the third example, the asymmetry in the eigenvalue distribution about the
originisremoved, and Lanczos-FA and Lanczos-OR converge at a rate very sim-
ilar to that of multishift CG. Note that Lanczos-FA displays larger oscillations,
since the symmetry of the eigenvalue distribution of A ensures that T has an
eigenvalue at zero whenever k is odd. However, the size of the oscillations is
regularized by the fact that ¢ > 0.
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Chapter /

Spectrum dependent bounds and
a posteriori error estimates

Thus far, we have not rigorously justified why Lanczos-FA and other non-
optimal Lanczos-based methods typically outperform explicit polynomial
methods. In Sections 7.1 to 7.3, we describe a general technique for bounding
the error of Lanczos-based methods for matrix functions via a reduction to the
error of Lanczos-FA used to solve a certain linear system of equations. Since the
error of Lanazos-FA on linear systems is well studied, this approach can be used
toderive a priori error bounds as well as a posteriori error bounds and estimates
for general functions. The effectiveness of our approach is demonstrated by a
range of numerical experiments. Finally, in Section 7.4, we discuss the error of
Lanczos-FA on indefinite linear systems where Lanczos-FA is not optimal. These
bounds explain why Lanczos-FA performs well in theory.

7.1 An integral representation of the Lanczos-FA error

Assuming f : C — C is analytic in a neighborhood of the eigenvalues of
A and T is a simple closed curve or union of simple closed curves inside that
neighborhood and enclosing the eigenvalues of A, the Cauchy integral formula
states that

=5 9@ f(2)(A -zl lvdz. (7.1)
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If T also encloses the eigenvalues of T we can similarly write the Lanczos-FA

approximation as
lan-FA(f fﬁ F(2)Q(T - 21)'Qv dz. (7.2)

Observing that the integrand of (7.1) contains the solution to the shifted linear
system (A — zI)x = v while (7.2) contains the Lanczos-FA approximation to the

solution, we make the following definition.

Definition 7.1. For z € C, define the k-th Lanczos-FA error and residual for the linear

system (A — zI)x = vas,

—z2I)lv - Q(T - zI)'Qy,

ern(z, A, v) := (A
resy(z, A, v) := v— (A -zI)Q(T — zI)'Q"'v.

As with the Lanczos-FA approximation, we will typically omit the arguments A and v, and
in the case z = 0, we will often write err;, and res,,.

With Theorem 7.1in place, the error of the Lanczos-FA approximation to f(A)v

can be written as

F(A)Y = lan-FA(f) 39 Flz)erry(z (1.3)

Therefore, if for every z € I we are able to understand the convergence of
Lanczos-FA on the linear system (A — zI)x = v, then this formula lets us
understand the convergence of Lanczos-FA for f(A)v. To simplify bounding
(7.3), we will write err,(z) for all z € I in terms of the error in solving a single
shifted linear system.

To do this, we use the fact that the Lanczos factorization (1.3) can be shifted, even

for complex z, to obtain

(A—-zI)Q = Q(T —zI) + B, qre}1.- (7.4)

That is, Lanczos applied to (A, v) for k steps produces output Q and T satisfying
(1.3) while Lanczos applied to (A — zI, v) for k steps produces output Q and T —zI
satisfying (7.4). Using this fact, we have the following well known lemma.

Lemma 7.2. For all zwhere T — zl is invertible,

k-1
resy(z) = [vl, (det l—l )
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Proof. From (7.4), and the fact that Q’s first column is v/|v|,, it is clear that,
(A -zI)Q(T - zI)'Q"v = (A - 2I)Q(T - zI) }||v| e,
= Qlvl,eo + Brarei (T — 21) vl e
= v+ pareil (T — 21) v e

Using the formula (T — zI)™* = (1/det(T - zI)) adj(T — zI), we see that

" ~ -1 k-1 k-2
ei(T—2I)"ey = de(t(T—)—zI) l_[Bj'

j=0
The result then follows by combining these expressions.
We use Lemma 7.2 to relate err,(z) to err,(w) for any z, w € C.

Definition 7.3. Forw, z € Cdefineh,,,: R - Candh,: R — Cby

hys(x) = X9 p ) o= 2

x—2z' x—z

Corollary 7.4. Forall z,w € C, where A — zI and A — w1 are both invertible,

errk(z) = det(hw,z(T)) hw,z(A) errk(w)
= det(h,,,

res,(z) (hy, -(T)) resy(w).

Proof. By Lemma 7.2,

det(T — zI) res;(z) = det(T — wl) res,(w).
Thus,
_ det(T —wI)

res,(z) = det(T—20) res,(w) = det(h,, ,(T)) res,(w).

Noting that res,(z) = (A — zI)err,(z) and res,(w) = (A — wl) err,(w), we obtain
the relation between the errors,

erry(z) = det(h,, ,(T))(A - zI)" (A — wl) err,(w)
= det(h,, ,(T)) h,, ,(A) err,(w). O
In summary, combining (7.3) and Corollary 7.4 we have the following corollary.

This result is by no means new, and appears throughout the literature; see for
instance [FS09] and [FGS14b, Theorem 3.4].
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Corollary 7.5. Suppose A is a Hermitian matrix and f : C — C is a function analytic in
a neighborhood of the eigenvalues of A and T, where T is the tridiagonal matrix output by
Lanczos runon A, v for k steps. Then, if T is a simple closed curve or union of simple closed
curves inside this neighborhood and enclosing the eigenvalues of A and T and w € C is such
thatw ¢ A(T) U A,

S8 = 1an-FA( 1) = (=57  S16)detlh (1)) () dz ) err).

7.1.1 Avreduction to linear system error

Our mainresult is a flexible bound for the Lanczos-FA error, obtained by bound-
ing the integral in the right-hand side of Corollary 7.5. As we will see in Sec-
tion 7.2, we can instantiate this theorem to obtain effective a priori and a poste-

riori error bounds in many settings.

Theorem 7.6. In the setting of Corollary 7.5, if for some S, S, ..., S,_; c R we have
A c Sy and A(T) € S;fori =0, ..., k— 1, then

| (A)v — lan-FA(f (Zﬂﬂgv (ﬂnhw )nhwnsmzo Jerr(w)l.

integral term linear system error

Analogously, we have a bound for Gaussian quadrature

Theorem 7.7. In the setting of Corollary 7.5, if for some S, S,, ..., S,_; < R we have
A c Syand A(T) e S;fori =0,...,k—1, then

VA [ fdpe Zkl_(%rggv (]’[nhwz )uh ||s|dz|) Iresy(w)l3.

integral term linear system error

The above bounds depend on our choices of I', w, and the sets S, S, ..., S,_;, which
must contain the eigenvalues of A and T,. ThesetsS, S, ..., S,_; should be chosen
based on the information we have about A and T,. For example, we could take all
these sets to be the eigenvalue range I(A). If we have more information a priori
about the eigenvalues of A, we can obtain a tighter bound by choosing smaller
S, with correspondingly lower |h,, ,[|s. For an a posteriori bound, we can simply
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setS; = {A;(T)}, fori = 0, ...,k — 1. This gives an optimal value for |, ,[s. Both
approaches are detailed in Section 7.2.

We emphasize that, in both bounds, the integral term and linear system error
term in the theorem are entirely decoupled. Thus, once the integral term is
computed, bounding the error of Lanczos-FA for f(A)v is reduced to bounding
|err,(w)|, and if the integral term can be bounded independently of k, Theo-
rem 7.6 implies that, up to a constant factor, the Lanczos-FA approximation to
f(A)v converges at least as fast as ||err,(w)].

Note that Theorem 7.6 depends on |[lerr,(w)| whereas Theorem 7.7 depends on
[res(w)l|3. Thus, heuristically, we can expect the quadratic form to converge at a
rate twice that of the norm of the error of the matrix function. This is exacted as
Gaussian quadrature is exact for polynomials of degree 2k—1 whereas Lanczos-
FA is exact for polynomials of degree k — 1. In the case that the contour I' does
not pass through I, the bound of Theorem 7.7 is essentially as easy to compute
as that of Theorem 7.6. However, if the contour passes through I at w, to ensure
thatSdoes not contain pointsin the contour, it must be chosen as aset other than
I. This set must contain all of A’s eigenvalues and we must bound its distance to

the contour (in particular, to w).

Proof of Theorem 7.6. We begin by taking the norm on both sides of Corollary 7.5.
Applying the triangle inequality for integrals and using the fact that | - || is
induced by a matrix with the same eigenvectors as A (see Lemma 10.1) we have

7Y =lan-FA)] < ( o5 G et Ty ()l ) lerywl. (75
Next, since A ¢ Sthen
”hw,z(A)llz = i:g,l..z.i,)rf—l |hw,z(Al(A))| < ”hw,z”S/

and similarly, if A;(T) € S;fori =0, ..., k—1, then

|det(h,, .(T))| =

k-1
[ Jw-A(T))
i=0

k-1
< [ [kl (7.6)
i=0

Combining these inequalities yields the result. O]
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Proof of Theorem 7.7. Recall

vMilan-FA,(f) = vM'Qf(T)Q"v = |Iv[3 : el f(T)ey = jfd[f]§2—1~

Since A is Hermitian, (A — zI)" = A —ZI. Thus, since
vi(A —zI)? = (A -ZI)v)" = (lan-FA(hs) + err(z))v)"
we can expand the quadratic form error as
vherr,(z) = vM(A — zI) res,(z) = (lan-FA(h;)) + erry(z))" res,(z).

Now, by definition, lan-FA,(hz(x)) = Qhs(T)Q"v and by Lemma 7.2 res,(z) is
proportional to q;,;. Thus, since, at least in exact arithmetic, q,,, is orthogonal

toQ,

vierr,(z) = erry(2)"res,(z) = ((A —zZI) 'res,(z)) res,(z).

Next, using Corollary 7.4 and the fact that h,, ,(x)h,, z(x) = |h,, ,(x)|* forw,x € R,

vHerry(z) = |det(h,, ,(T))[*res,(w)"(A — zI)*res,(w).

We then have,
[vHerry(z)| < |det(h,, ,(T))*lI(A = zI) 7| ,[Ires,(w) 3.

Applying the Cauchy integral formula we therefore obtain a bound for the
quadratic form error analogous to Theorem 7.6 we obtain the result. O]

7.1.2 Comparison with previous work

Our framework for analyzing Lanczos-FA has four properties which differenti-
ate it from past work: (i) it is applicable to a wide range of functions, (ii) it yields
a prioribounds dependent on fine-grained properties of the spectrum of A such
as clustered or isolated eigenvalues, (iii) it can be used a posteriori as a practical
stopping criterion, and (iv) it is applicable when computations are carried out in
finite precision arithmetic. To the best of our knowledge, no existing analysis
satisfies more than two of these properties simultaneously. In this section, we
provide a brief overview of the most relevant past work.
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Most directly related to our framework is a series of works which also make
use of the shift-invariance of Krylov subspaces when f is a Stieltjes function!
[FGS14a; FS15; ITSO9] or a certain type of rational function [Fro+13; FSO8b;
FS09]. These analyses are applicable a priori and a posteriori and in fact allow
for corresponding error lower bounds as well. However, these bounds cannot
be applied to more general functions, and the impact of a perturbed Lanczos

recurrence in finite precision is not considered.

The most detailed generally applicable analysis is [MMSI18], which extends
[DK91; DK95] and studies Theorem 6.4, the classical bound for Lanczos-
FA based on polynomial approximation on I, when Lanczos is run in finite
precision arithmetic. However, as we have seen throughout this thesis,
Theorem 6.4 is often too pessimisticin practice as it does not depend on the fine-
grained properties about the distribution of eigenvalues. Another generally
applicable analysis is [HLS98], which suggests replacing err,(z) with res,(z) in
(7.3). Since resy(z) can be computed once the outputs of Lanczos have been
obtained, the resulting integral can be computed (or at least approximated by a
quadrature rule). However, this approach does not take into account the actual
relationship between res,(z) and err,(z), and therefore gives only an estimate of
the error, not a true bound. Another Cauchy integral formula based approach is
[HL97] which shows that Lanczos-FA exhibits superlinear convergence for the

matrix exponential and certain other specific analytic functions.

There are a variety of other bounds specialized to individual functions. For
example, it is known that if A is nonnegative definite and t > 0, then the error
in the Lanczos-FA approximation for the matrix exponential exp(tA)v can be
related to the maximum overs € [0, t] of the error in the optimal approximation
to exp(sA)v over a Krylov space of slightly lower dimension [DGK98]. More
recent work involving the matrix exponential are [JL14; JAK19; Jaw21]. There
is also a range of work which analyzes the convergence of Lanczos-FA and re-
lated methods for computing the square root and sign functions [Bor99; Bor03;
Esh+02].

'A function f defined on the positive real axis is a Stieltjes function if and onlyif f(x) > 0 for
all x € R and f has an analytic extension to the cut plane C \ (—oo, 0] satisfying Im(f(x)) < O for
all x in the upper half plane [Ber07, Theorem 3.2][AK65, p. 127 attributed to Krein].
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7.2 Applying our framework

We proceed to show how to effectively bound the integral term of Theorem 7.6,
to give a priori and a posteriori bounds on the Lanczos-FA error, assuming
accurate bounds on |err,(w)| are available. Throughout this chapter, we assume
w € R and we do not discuss in detail how to bound this linear system error
— there are many known approaches, both a priori and a posteriori, and the
best bounds to use are often context dependent. Some of these approaches are
similar to those used for Lanczos-OR in Section 5.4.

To use Theorem 7.6, we must evaluate or bound |h,, ,[s. Towards this end, we
introduce the following lemmas, which apply when §; is an interval. These
lemmas are also useful when S, is a union of intervals - in that case |h,, [, is
bounded by the maximum bound on any of these intervals. i

Lemma 7.8. Forany interval[a,b] c R,ifz € C \ [a,b]and w € R, we have

(i

sl = max {4

ifx* € [a,b] elseO)}

—z!'|b-z Im(z )
where
. _ Re(2)*+Im(z)® —Re(z)w
X" =
Re(z) —
Proof. Note that forx € R,
2

"~ (x—Re(2))2 +Im(z)?’

|x w (X—W)

and

d (|h (x)|2) _ [(x— Re(z))2 + Im(z)Z]Z(x —w)—(x— W)ZZ(x —Re(2))

dx T - [(x —Re(z))2 + Im(2)2]2 .
Aside from x = w, where h,, (x) = O, the only value x € R for which
% (|hW,z(x)|2) = 0is x*. This implies that the only possible local extrema of

|h,, ,(x)| on [a,b] are a, b, and x* if x* € [a,b]. Substituting the expression
for x* into that for |h,, ,(x*)|, one finds, after some algebra, that |h,, ,(x*)| =
|z—w|/| Im(z)|. O
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Lemma 7.9. Fixr > 0, let J(c, t) be the disc in the complex plane centered at c with radius

t > 0, and define
_ |x—w|)
Xx.= || D (x, = ).

x€[a,b]

Then for z € C \ X,, we have

”hw,z”[a,b] <r.

In particular, if z is on the boundary of X,, then ||h,, , ||, ;) = T-

Proof. Letz € C \ X, and pick any x € [a,b]. Since z ¢ IJ(x, |x — w|/r) it follows
that [z—x| > [x—w|/r and therefore |h,, ,(x)| = [x—w|/|x—z| < r. Maximizing over

x yields the result.
If z is on the boundary of X,, then for some x € [a,b], |z— x| = |x — w|/r, which
means that for this x, |h,, ,(x)| = r. O

Note thatif r < 1andw € R \ [a,b], then the region described in Lemma 7.9 is
simply a disc about b if w < a or a disc abouta if w > b. If r > 1 and w is real,
then the region described is that in the discs about a and b and between the two

external tangents to these two discs.

Similar to Lemma 7.8 we have the following bound on ||, s, when S, is an
interval. This allows a bound on Theorem 7.7 analogous to (7.5).

Lemma 7.10. For any interval[a,b] c R,ifz € C \ [a,b], we have

1/|Im(z)] Re(z)eI
Ih.lapy = 11/la—z] Re(z)<a
1/[b—z| Re(z)>b

7.2.1 A priori bounds

We can use Theorem 7.6 to give a priori bounds, as long as we choose S and §;,
i =0,...,k—1independently of b (and in turn T).

The simplest possibility is to take S = S; = I. In this case, as an immediate
consequence of Theorem 7.6 and Lemma 7.9 we have the following a priori
bound,
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Corollary 7.11. Suppose that for some w < A, f is analytic in a neighborhood of
D (Apaxs Amax — W). Then, taking T to be the boundary of this disk,

max’/

Iy = lan-Fdf)l < ( 5§ el o)
< (Amax = w) max If(@)]) lerry(w)1l

Proof. To obtain the first inequality observe that Lemma 7.9 with [a,b] = I
implies ||h, ,[; = 1 on this contour. The second inequality follows since the
length of T'is 27(A,,,, — W). O
This bound is closely related to [FGS14a, Theorem 6.6]which bounds the errorin
Lanczos-FA for Stieltjes functions in terms of the error in the Lanczos approx-

imation for a certain linear system.

Corollary 7.11 provides simple reductions to the error of solving a positive def-
inite linear system involving A — wl using Lanczos. However, these bounds
may be a significant overestimate in practice. In particular, for any & > 1,
(7.6) cannot be sharp due to the fact that [, ,[; = sup |k, ,(x)| cannot be
attained at every eigenvalue of T. In fact, for most values A;(T) and most points
z € T, we expect |h,, ,(A;(T))| < ||, .. Figure 7.1 shows sample level curves for
Ik, .ll/| det(hw,z(T))|1/k which illustrate the slackness in the bound.

To derive sharper a priori bounds, there are several approaches.

First, if more information is known about the eigenvalue distribution of A, then
the S; can be chosen based on this information. For example, it is possible to
exploit the interlacing property of the eigenvalues of T.

Example 7.12. Suppose A has eigenvalues in [0, 1] with a single eigenvalue at
k > 1. Assume w < 0. Then there is at most one eigenvalue of T in [1,x] so in

Theorem 7.6 we can pick S; = [0, 1]fori =0,...,k—2andS,_; = [0,k]. We have

k-1
|det (”hw,z”[O,l]) ”hw,z”[O,K]'

i=0

If zis near to  then |h,, ,[|; ;) may be much smaller than [|h,, .o -

Second, the contour I' can be chosen to try to reduce the slackness in (7.6).
Intuitively, the slackness is exacerbated when z € T is close to §; but far from
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Figure 7.1: Contour plot of |h,, .|z/Idet(h,, ,(T))|"/* as a function of z €
C for a synthetic example with w = 0 (top) and w = 1 (bottom), I =
[0.5,3],and A(T) = {0.5,0.8,1.2,1.5,3} (k = 5). Larger slackness in (7.6)
corresponds to darker regions. Legend: Here w is indicated by the white
diamond ( ¢ ). and the eigenvalues of T are indicated by white x'is ( & ).
Takeaway: Slackness exchibits structure; in particular, it is lower far from
A.
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A;(T). For instance, for any k > 1,

N L. S
lzl=o0 | det(h,, ,(T))| ’ z—A |det(h,, ,(T))|

This behavior is also observed in Figure 7.1.

These observations suggest that we should pick I to be far from the spectrum
of A. Of course, we are constrained by properties of f such as branch cuts
and singularities. Moreover, certain contours may increase the slackness in
Theorem 7.6 itself. These considerations are discussed further in Section 7.3.1.

7.2.2 A posteriori error bounds

After the Lanczos factorization (1.3) has been computed, T is known and A(T)
can be cheaply computed. Thus, in Theorem 7.6 we can take S; = {A;(T)} fori =
0,...,k—1,which is the best possible choice. In this case (7.6) is an equality and
det(h,, ,(T)) = det(T—w)/ det(T—z) can be computed via tridiagonal determinant
formulas rather than using the eigenvalues of T.

If I is not known, the extreme Ritz values A,,;,(T) and A_,,,(T) can be used to
estimate the extreme eigenvalues of A [KW92; PSS82]. All together, this means
that it is not difficult to efficiently obtain accurate estimates of the bound from
Theorem 7.6.

7.2.3 Numerical computation of integrals

Typically, to produce an a priori or a posteriori error bound, the integral term
in Theorem 7.6 must be computed numerically. Consider a discretization of the

integral

F(A) = §S F(2)(A = 21)Ndz

2mi
using nodes z; and weights w;, i = 0,1,...,q — 1. This yields a rational matrix

function

)= - 2mz:vu,f )(A = zI)™

Using the triangle inequality, we can write

If(A)v —lan-FA,(f)]
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< [f(A)v =1 (A)v] + lIr,(A)v —lan-FA(r,) |l + [lan-FA(r,) — lan-FA,(f)]

<2 (x;g}%) fx) - rq(x)l) vl + lIr,(A)v — lan-FA(r, ). (7.7)

Now, observe that analogous to Theorem 7.6,

lry(A)v —lan-FA(r )l

-1 k=1
< (%r va If(z)l (l_[ IIhW,zllsi) ”hw,z”SO) lerry(w)]. (1.8)

i=0 i=0

If we use the same nodes and weights to evaluate the integral term in Theo-
rem 7.6, we obtain exactly the expression on the right hand side of (7.8). Thus,
this discretization of Theorem 7.6 is a true upper bound for the Lanczos-FA
error to within an additive error of size equal to twice the approximation error
of r(x) to f(x) on A U A(T) times ||v|l. In many cases, we expect exponential
convergence of r, to f, which implies that this term can be made less than any
desired value ¢ > 0 using a number of quadrature nodes that grows only as the
logarithm of e~ [HHTOS8; TW14].

We note that fast convergence of r, to f suggests that, instead of applying
Lanczos-FA, we can approximate f(A)v by first finding r, and then solving a
small number of linear systems (A —zI)x; = v to computer,(A)v. Solving these
systems with any fast linear system solver yields an algorithm for approximat-
ing f(A)v inheriting, up to logarithmic factors in the error tolerance, the same
convergence guarantees as the linear system solvers used. A recent example of
this approach is found in [JS19] which uses a modified version of stochastic vari-
ance reduced gradient (SVRG) to obtain a nearly input sparsity time algorithm

for f(A)vwhen f corresponds to principal component projection or regression.

A range of work suggests using a Krylov subspace method and the shift in-
variance of the Krylov subspace to solve these systems and compute r,(A)b
explicitly. This was studied in [Fro+13; FS09] for the Lanczos method, and
in [Ple+20] for MINRES, the latter of which uses the results of [HHTO08] to
determine the quadrature nodes and weights. However, as the above argument
demonstrates, the limit of the Lanczos-based approximation as the discretiza-
tion becomes finer is simply the Lanczos-FA approximation to f(A)v. Therefore,
there is no clear advantage to such an approach over Lanczos-FA in terms of the

convergence properties, unless preconditioning is used. .
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On the other hand, there are some advantages to these approaches in terms of
computation. Indeed, Krylov solvers for symmetric/Hermitian linear systems
require just O(n) storage; i.e. they do not require more storage as more iterations
are taken. A naive implementation of Lanczos-FA requires O(kn) storage, and
while Lanczos-FA can be implemented to use O(n) storage by taking two passes,
this has the effect of doubling the number of matrix-vector products required.
See [GS21] for a recent overview of limited-memory Krylov subspace methods.

7.3 Examples and numerical verification

We next present examples in which we apply Theorem 7.6 to give a posteriori
and a priori error bounds for approximating common matrix functions with
Lanczos-FA. These examples illustrate the general approaches to applying The-
orem 7.6 described in Section 7.2. All integrals are computed either analytically

or using SciPy’s integrate. quad which is a wrapper for QUADPACK routines.

In all cases, we exactly compute the [err,(w)| term in the bounds. In practice,
one would bound this quantity a priori or a posteriori using existing results on
bounding the Lanczos error for linear system solves. By computing the error
exactly, we separate any looseness due to our bounds from any looseness due to
an applied bound on [lerr,(w)]|.

7.3.1 Choice of contour

Let A be positive definiteand f(x) = Vx. Perhaps the simplest bound is obtained
by using Theorem 7.6 with w = 0,S; = I and I chosen as the boundary of
the disk D(A,,,, A
bound may be loose — note that except through |[err,(w)|, it does not depend on

).We then obtain a bound via Corollary 7.11. However, this

max’/ “"max

the number of iterations k. Thus it cannot establish convergence at a rate faster
than that of solving a linear system with coefficient matrix A.

Keeping w = 0, we can obtain tighter bounds by letting I be a “Pac-Man” like
contour that consists of a large circle about the origin of radius R with a small
circular cutout of radius r that excludes the origin and a small strip cutout to

exclude the negative real axis. That is, as shown in Figure 7.2b, the boundary of
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(a) circle contour (b) Pac-Man contour (c) double circle contour

Figure 7.2: Circle, Pac-Man and double circle contours described in
Sections 7.3.1 and 7.3.2 respectively. All three figures showI( = )and
w(o).

the set,
D(0,R) \ ({z: Re(z) < 0,|Im(z)| < r} U D(O,r)).

As the outer radius R — oo, the integral over the large circular arc goes to 0
since [k, ,I; = O(R™), If(z)] = O(RY?), and the length of the circular arc is
on the order of R. Thus, the product f(Z)([|hw,z||1)k+l goesto 0 as R — oo, for all
k > 1. Similarly,asr — 0, the length of the small arc goes to zero. Therefore, we
need only consider the contributions to the integral on [-R + ir, +ir] in the limit

R — oo, r - 0.

In this case, when S; = I for all i, we can compute the value of the integral term
in Theorem 7.6 analytically. We have

1 (° .
1)y —lan-FA < (o5 [ 10/ Iy il d ) ey

1 0 ] Amax A k+1
_ (er e 02y (A()—)x)k+1 dx ) lerr,

1/\ Ak+1 = y1/2 d
= (Rl [ Gty )t

— Arzr{z%xr(k_l/z) ||err ”
T\ 27 T(k+1) ks

where we have made the change of variable y = —x. Note that

. T(k—1/2)
3/2 _
L VY

This proves that lan-FA,(/-) converges somewhat faster than the Lanczos algo-
rithm applied to the corresponding linear system Ax = v.
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Figure 7.3: A-norm error bounds for f(x) = V/x where A hasn = 1000
eigenvalues spaced uniformly in [1072,10%] and T is a circular contour
(left) or Pac-Man contour (right). Legend: Lanczos-FA error ( —— ), a
prioribounds obtained by using Theorem 7.6 withS = §; = I( )and
S =358 = I(A) = [Anin/2, 2Aax] ( —— ), a posteriori bounds obtained

by using Theorem 7.6 with § = I ( —— ). Takeaway: The a posteriori
bounds tend to be quite accurate. The choice of contour impacts the
quality of the bounds, particuarly the a priori bounds.

In Figure 7.3 we plot the bounds from Theorem 7.6 for the circular and Pac-
Man contours described above. For both contours we consider S; = I for all
i, as well as bounds based on an overestimate of this interval, S; = I(A) where
I(A) = [Anin/2, 2A,a5)- This provides some sense of how sensitive the bounds
are to the choice of S; when §; is a single interval. For a posteriori bounds, we set
S;i to {A,(T})} fori > 0.

We remark that the bounds from Theorem 7.6 are upper bounds for (7.5) which
implies that the slackness of (7.5) is relatively small. This suggests that the
roughly 2 orders of magnitude improvement in Theorem 7.6 when moving from
the circular contour to the Pac-Man contour is primarily due to reducing the

slackness in (7.6), aligning with our intuition.
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7.3.2 Piecewise analytic functions

We now discuss the application of Theorem 7.6 to piecewise analytic functions.
Functions of this class have found widespread use throughout scientific com-
puting and data science but have proven particularly difficult to analyze using
existing approaches [NPS16; Fro+16; JS19; Esh+02].

Let f(x) be one of |x — al, step(x — a), or step(x — a)/x for a € I, where, for
z € C we define step(z) := 0 for Re(z) < 0 and step(z) := 1 for Re(z) > O.
Note that the latter two functions correspond to principle component projec-
tion and principle component regression respectively. In the case of principle
component regression, we assume A is positive semi-definite. The step function
is also closely related to the sign function, which is widely used in quantum

chromodynamics to compute the overlap operator [Esh+02].

We take w = a and define I'; and I, as the boundaries of the disks
Dl = D<Aminlw _Amin - 8) and DZ = D(Amaxl /\max —w- 8)/

for some sufficiently small ¢ > 0. To extend |x — a| to the complex plane, we
replace [x —a| by z — a if Re(z) > a and by a — zif Re(z) < a. Then f is analytic

in a neighborhood of the union of these two disks, so assuming none of the
eigenvalues of A or T are equal to a, we can apply Lemma 7.9.

fx) fz)z€Qr f(z),2€Qy 5= 37 ITjImax,er |f(2)

|x—a| a—2z zZ—a 2(‘1_Amin)z'l'z(Amax_a)2
step(x—a) O 1 (Amax —a)
step(x—a)/x 0O 1/z (Amax—a)/a

Table 7.1: Values of the factor in parentheses on the right-hand side of
(7.9) (ignoring ¢) for several common piecewise analytic functions.

Note that |h, [ — 1asz — w from outside [a,b], avoiding a potential
singularity which would occur if the contour I' passed through I at any other
points. In fact, ignoring the contribution of ¢, |, ,[; = 1forall z € I'; and for



chapter 7 page 123

all z € T'y. Thus, Corollary 7.11 can be written as

I£(A)v —lan-FA,(f) ( Z|I‘|max|f )IIerrk(w)H. (7.9)

The values of this bound for all three functions are summarized in Table 7.1.

If w € I we note that |err,(w)|| corresponds to the indefinite linear system
(A —wI)x = v, so standard results for the Conjugate Gradient algorithm are
not applicable. However, the residual of this system can still be computed
exactly once the Lanczos factorization (1.3) has been obtained, and as we discuss
in Section 7.4, a priori bounds for the convergence of MINRES [CG96] can be
extended to the Lanczos algorithm for indefinite systems. It is also clear that,
at the cost of having to compare against the error of multiple different linear
systems, functions which are piecewise analytic on more than two regions can
be handled.

In Figure 7.4, we plot the bounds from Theorem 7.6 for the contour described
above for principle component regression with f(x) = step(x —a)/x. Here we
use the same model as in Section 4.3.2. In particular, we set n = 2000,d = 0.3,
and o = 8 and take

A= 21/2XXH21/2

where m = n/d, X is a n X m matrix with iid standard normal entries, and X a
diagonal matrix with 1/m as the first n/2 entries and o/m as the last n/2 entries.
As discussed in Section 4.3.2, in the large n limit, the spectrum of such matrices
is supported on intervals [a;, b,] U [a,, b,], sowe takea = (b, + a,)/2and S =
S; = [a; —0.1,b, + 0.1] for a priori bounds and S = [a; — 0.1,b, + 0.1 for a
posteriori bounds. Thus, f(x) corresponds to solving a linear system involving
the eigenmodes of the right cluster of eigenvalues supported on [a,, b, ].

7.3.3 Quadratic forms

Let f(x) = step(x—a) fora € I, and set w = a. Similarly to the previous example
we use Theorem 7.7 to obtain a bound for the quadratic form error |[v"f(A)v —
vilan-FA,(f)|. However, since |, |ls, has singularities at each point in S;, we must
have S; avoid where I crosses the real axis.
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Figure 7.4: (A — wI)®-norm error bounds for f(x) = step(x —a)/x where
A is a random matrix whose limiting density is supported on [a;,b;] U
[ay, by],a = (b1+a;)/2,and T is a double circle contour. Legend: Lanczos-
FA error ( —— ), a priori bounds obtained by using Theorem 7.6 with
S =8, = [a; —0.1,by, + 0.1] ( —— ) and (7.9) with the values from
Table 7.1 ( ) a posteriori bounds obtained by using Theorem 7.6 with
S =[a;—0.1,by+0.1] ( — ). Takeaway: The bounds work well, even
for pieceiwise analytic functions.

Suppose A% (A)and A%, (A) are consecutive eigenvalues of A so that A% (A) <

w < A" (A). Then we can define

min

L,(A) = [Apin, Ai(A)] U [A550(A), A

min

1)} can be computed using

min// max

In this case, ”hz”Iw(A) = max{”hz”[,\mim;ﬂm‘gx ”h ” [AgE A
Lemma 7.10. We can then apply Theorem 7.7 to obtain a bound for the quadratic
form error [v" f(A)v — v"lan-FA,(f)|. A priori bounds are obtained with S, S; =
I,(A) while a posteriori bounds are obtained with S = I,,(A) and S; = {A,(T)}.

w

In Figure 7.5 we use the same matrix as in Section 7.3.2. This time, however, we
useS = §; = [a; —0.1,b; +0.1] U [a, — 0.1, b, + 0.1] for a priori bounds and
S=1[a;-0.1,b;+0.1]U[a,—0.1,b,+0.1] for a posteriori bounds. Note that the
squared error || f(A ) — lan-FA,(f)|I* is close to that of the quadratic form error

|VHf ffd 2k1
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Figure 7.5: Quadratic form error bounds for f(x) = step(x — a) where
A is a random matrix whose limiting density is supported on [a,,b;] U
[ay, by],a = (b1+a;)/2,andT is a double circle contour. Legend: Lanczos-
FA quadratic form error ( —— ), squared Lanczos-FA 2-norm ( ), a
priori bounds obtained by using Theorem 7.6 with S = S; = [a;-0.1,b; +
0.1] U [a; —0.1,b, + 0.1] ( —— ) a posteriori bounds obtained by using
Theorem 7.6 with § = [a; —0.1,b; + 0.1] U [ay — 0.1,b5 + 0.1] ( —— ).
Legend: The bounds are applicable to quadratic forms.

7.4 Error bounds for Lanczos-FA on indefinite systems

In this section, we review several results which rigorously justify the claim
that, for any choice of w with A — wl invertible, |err,(w)| satisfies a spectrum-
dependent error bound.

Note that on indefinite problems, the standard implementation of CG (or the
LDL version on which Lanczos-OR is based) may fail in such situations since T
can be singular in which case the inversion will break down. As a result, in such
situations, it is standard practice touse MINRES or other related algorithms. On
the other hand, the Lanczos algorithm does not break down if T is singular, and
so the Lanczos-FA approximation to A™'v can be computed whenever T is non-
singular, even if it was singular at earlier iterations. Interestingly, however, the
“overall” convergence of the algorithm tends to be comparable to MINRES in
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the sense that at many iterations the error is quite similar.

The first result we remark on was first proved in [CG96] compares the residual
norms of Lanczos-FA and MINRES.

Theorem 7.13. Let A be a nonsingular Hermitian matrix and define ! as the MINRES
residual at step k; i.e.

r) := v-Ay, y = argmin ||v — Ay/|,.

yek,

Then, assuming that the initial residuals in the two procedures are the same,

Iresell, _ — leg'llo/ Il

resoll, 2
Iresollz /3 (e e 1)

Therefore, we see that if MINRES makes good progress at step k (i.e. [[eM|,/[xM, [,
is small), then Theorem 7.13 implies [res||,/[resoll, = [leM|,/xd!l,. Thus, since

MINRES converges at a linear rate, there must be iterations where the MINRES

residual norm decreases enough that the Lanczos-FA residual norm is similarly

small. This is made precise in [Che+22, Corollary A.2] which demonstrates the

iteration complexity of Lanczos-FA on indefinite systems is nearly the same as

that of MINRES.

In fact, stronger results are known. In particular, it is known that Lanczos-FA
process iterates whose residuals satisfy a minimax bound on the eigenvalues of
A, atleastateveryotheriteration[GDK99]. While not well known, the argument
proving this claim is amazingly simple, so we provide proofs for the exact
arithmetic case. These results hold to close approximation in finite precision
arithmetic; see [GDK99] for the statements and proofs in this setting.

We begin with several lemmas.

Lemma 7.14. Suppose O is an eigenvalue of T with eigenvector s and y is an eigenvalue of

[T].;_1,-1 With eigenvector v. Then,

— Bealsle-1[V]i2

O-u sHv

where V is v with a zero appended at the bottom.
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Proof. Observe that
0"V = s"TV = s"(u¥ + 5[], _re1) = ps™ + By [s]ia[V]eo:
The result follows by rearranging the above expression. O]

Lemma 7.15. Suppose O is an eigenvalue of T with eigenvector s. Then

gnin 10— Al < [Br-i[s]eal-
<ikn

Proof. Using the Lanczos recurrence (1.3) and the eigendecomposition A =
UAU" we find,

Be_19:e} 15 = AQs —QTs = AQs — 6Qs = U(A — 61)U"Qs.
Rearranging and taking norms on both sides we then have

1=[Qs| = ”Bk—lU(A_61)_1qke|l:—1s||2 < |Bk—1[s]k—1|“(A_91)_1”2

where we have used that |U|, = 1 and |Qs|, = 1. The result then follows from
the fact that

— _1 _1_ o — _1 _1_ 1 . —
I(A- 617! = (max|A;-6I™) " = min|A; -6 O

The first main result of [GDK99] asserts that eigenvalues of T are bounded away
from zero at least at every other iteration, provided A is not singular.

Theorem 7.16. Suppose 0 is an eigenvalue of T and p is an eigenvalue of [T];_; ;.

Then
max{(6] ju} _

N

Proof. Applying Lemma 7.15to T and [T],,_; .,_; and then using Lemma 7.14 and
the fact that [s|, = [v|, = 1 we have

0[lul < BroBr-1[8)e-1[V]e—2 = Bk—1|9—H|SH‘A7 < Pr110—ul.

Let r := max{|6|, |ul}. Then |6 —u| < 21, |6] > 0, — 7, and |u| > o, — . This
implies that
(Omin—=7)* < 61l < Byl —pl < 2Byt
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Solving for r we find

2
T O'min

2 >
Omin + Be1 + \/ Bo1+ 2B 10min 2t V3

where, in the final inequality, we have use the fact that both f,_; and o, are
bounded above by [A[,. O

We are nearly ready to show that the Lanczos-FA iterate satisfies a minimax
bound on A. First, however, we require the following lemma relating the bottom
left entry of T~! to the norm of T~

Lemma 7.17.
el T eol < [IT7V, min _, Ip(T)eyllz.
deg(p)<k,p(0
Proof. Write p = 1 —xq for some g with deg(q) < k— 1. Then e}! ;q(T)e, = 0so
ei 1T 'eg = ey (T™ —q(T))ey = e, T~'p(T)e,.
Now, applying a submultiplicative bound, we find

el T eol < 1T, Ip(T)ey .

The result follows by optimizing over p. O]

Proving a minimax bound for the Lanczos-FA residual is now straightforward.

Theorem 7.18. At least at every other iteration,

Ires;[l; < _, Iplla

\/— deg(p) <k p
Proof. From Lemma 7.2 we see have that
Iresell, = |Be-1e5T "eql-

The result then follows immediately from Lemma 7.17 and Theorem 7.16. O]
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Interestingly, it is known that T cannot have eigenvalues near zero in two
successive iterations, at least assuming that the eigenvalues of A are not too
close to zero. Specifically, [GDK99, Equation 3.10] asserts that

min(A)2 .
(2 + \/E)HAHZ

Thus, as noted in Theorem 6.2, we might still use the Lanczos-FA approximation
to A7 lv.

(o}

Max{0 in ([T e-1,:0-1)s Omin(T)} > (7.10)
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Chapter 8
Finite precision arithmetic

As mentioned in the introduction and observed in the many numerical exper-
iments throughout this thesis, even in finite precision arithmetic, Lanczos-
based methods for matrix functions tend to perform at least as well as their ex-
plicit polynomial counterparts. In fact, they often perform significantly better.
Thisisin direct conflict with the widespread notion that costly reorthogonaliza-
tion schemes are necessary for Lanczos-based methods [JP94; Aic+03; Wei+06;
UCS17; GWG19].

In this chapter, we provide an overview of several existing theoretically rigorous
results which explain this phenomenon. We also prove that the reduction tech-
nique from Chapter 7 still works in finite precision arithmetic. Itis our hope that
our treatment of this topic will provide an accessible starting point for those
outside of numerical analysis to better understand the impact of finite precision
arithmetic on Lanczos-based methods. Thus, while this chapter consists mostly
of exposition on existing results, we believe it to be it to be one of the more
important contributions of this thesis.

In this chapter, we will use || - || rather than || - ||, to denote the operator 2-norm
of matrices and Euclidean norm of vectors. We will also make the simplifying

assumption that A is real symmetric.
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8.1 Preliminaries

Almost all of modern scientific computing involves computations in finite pre-
cision arithmetic, and specifically, floating point arithmetic. The introduction
of rounding errors can have potentially large impacts on the output of an
algorithm, so accounting for these errors is important. In fact, this is one of the
main goals of the field of numerical analysis.

There are many possible implementations of floating point arithmetic and
other low-level math kernels. For instance, the number of bits of precision
may vary, the rounding scheme may vary, the way basic functions such as the
square root and logarithm are implemented may vary, etc. To avoid the need for
a separate analysis of each implementation, it is standard to work in a model of
computation which captures the essential qualities of a broad number of basic

math routines.

Perhaps the most commonly studied model of finite precision computing as-

sumes that basic operations are carried out to relative accuracye aconstant

mach»
referred to as the machine precision. For floating point numbers « and 8 and
standard binary arithmetic operations o € {+,—,x,+}, these assumptions take

the form
pr(aoﬂ)_aoﬁ| S emach|a°B|-

Similar assumptions are also made for unary operations such as the square root,
|fp(‘/&) - ‘/a| < emachl\/a |

Assuming overflow and underflow do not occur, the above assumptions are
satisfied for IEEE 754 floating point arithmetic[ieee_19]. Since the vast majority
of modern computers use IEEE 754 floating point arithmetic, such assumptions
are relatively safe.!

Under the above assumptions, the accuracy of basic linear algebraic primitives

can be bounded. For instance, for floating point vectors x, y, floating point

't is worth noting, however, that the above bounds do not necessarily hold for other number
systems. Notable examples include Cray supercomputers prior to the mid 1990s as well as a
number of other early computers [Hig02]. In fact, with the recent rise in low precision number
formats and custom hardware acceleration methods, the above bounds cannot be universally
assumed [Fas+21].
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number «, and floating point matrix A, reasonable implementations of basic
linear algebraic tasks [Hig02] will satisfy

Ifp(x + ay) — (x + ay)|| < €mnacn (IxI + 2lallly])

Ifp((x, ¥)) = %, ¥)I| < €macn 1 [x [yl
Ifp(Ax) - Ax|| < eqacn ¢ [IAN %]

Here ¢ < n3/?

is a dimensional constant depending on the method of matrix
multiplication and the sparsity of A which is often written in terms of the ratio
of the norm of the absolute value of A and the norm of A. These results can then

be applied to analyze linear algebra routines.

8.2 Three term recurrences

The Lanczos algorithm as well as the explicit polynomial methods Algo-
rithms 1.1 and 3.2 from Chapter 3 compute q;,; by a symmetric three term

recurrence of the form
1
qi1 = E (Aq; - &;q; = Bi-19i-1) -

In Algorithms 3.1 and 3.2 the coefficients are predetermined, whereas Lanczos
chooses the coefficients adaptively in order to enforce orthogonality. Regard-
less, in finite precision arithmetic, we will instead have a perturbed recurrence

oy

i

Qi1 = Aq,—a,9; - Bi19;1) + £ia

where f;,; accounts for local rounding errors made in the computation of q;,;.
These simple arithmetic computations are all stable in the sense described
above, so f;,; is small (on the order of ¢, |Al) relative to the involved quan-
tities.

While q;,; = pi;1(A)v in exact arithmetic, this is no longer the case in finite
precision arithmetic. Indeed, the difference between q;,, and p;,;(A)v depends
on the associated polynomials of the recurrence applied to the f;'s; see for in-
stance [MeuO6]. In the case of the Chebyshev polynomials of the first kind,
the associated polynomials are well behaved on [-1, 1]?, so it can be shown that

%In fact, the associated polynomials are the Chebyshev polynomials of the second kind.
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Qis1 = Pis1(A)v. Here “<” means the error has a polynomial dependence on k
and a linear dependence on the machine precision, along with other reasonable
dependence on the dimension and matrix norm. This can be easily seen by
performing an analysis similar to that in the proof of Theorem 8.4 found later

in this section.

As such, the computed modified moments for 4 = p., can be expected to
be near to the true modified moments and Lemma 3.16 can be expected to
hold to close degree as long as I c [a,b]. On the other hand, for different
{a;}2 and {B;}2,, for instance those generated by the Lanczos algorithm, the
associated polynomials may grow exponentiallyin I and the modified moments
obtained from the finite precision computation may differ greatly from their
exact arithmetic counterparts unless very high precision is used. In fact, this
situation includes y} , if a and b are not chosen so that I c [a, b].

8.2.1 The Lanczos algorithm

In the case of Lanczos, the coefficients are computed adaptively and therefore
depend on q;_;, q;, and q;;;. It is well known that even if the f;’s are small,
the coefficients produced by Lanczos run in finite precision arithmetic may
differ greatly from what would be obtained in exact arithmetic and the Lanczos
vectors {q; f:ll need not be orthogonal. Moreover, the tridiagonal matrix T
from the finite precision computation may have multiple “ghost” eigenvalues
near certain eigenvalues of A, even when the eigenvalues of T would have been
well separated in exact arithmetic. In this sense, the algorithm is notoriously

unstable, and such instabilities can appear even after only a few iterations.

A great deal is known about the Lanczos algorithm in finite precision arith-
metic; see for instance [Gre97; MS06; MeuO6]. In this section, we summarize
the content needed to understanding why Lanczos-based methods for matrix
functions still work in finite precision arithmetic. A fully rigorous and self-
contained treatment of the topic would be very long and exceedingly technical,
and such a treatment would not improve understanding of the big-picture (in
fact, it might do exactly the opposite). As such, we aim to provide an overview

of existing theory which provides an intuitive understanding.

Throughout the next several sections the symbol “<” suppresses absolute con-
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stants (e.g. 5, 12, and 1/10) and higher order terms in the machine precision,
€mach (€-8- €2,ach)- The results in the literature typically state explicit constants for
terms linear in €, ., but such a precise analysis is not necessary to understand

the intuition we wish to convey.

We will write the matrix-form of the perturbed Lanczos recurrence as
AQ = QT +f;_1q,ej_ +F. (8.1)
We denote by R the strictly upper triangular part of Q'Q; i.e.
Q'Q=R+R"+D.
It can then be shown that
TR = RT - B, ,Q'q,ej_; + H

for some upper triangular perturbation term H which is 0 in exact arithmetic;
see for instance [Pai76, Equation 41]. We will also denote by 1 the minimum

value so that
A(T) c [Amin =1, Amax + i’]]

The first work which truly explained why the Lanczos algorithm was still useful
as an eigenvalue algorithm was the PhD thesis [Pai71] of Paige (and the technical
reports leading up to the thesis). The results in [Pai7l] were subsequently sim-
plified and extended in [Pai72; Pai76; Pai80]. The main result we need is [Pai76,
Theorem 1] which we have simplified to the needs of this chapter.

Theorem 8.1. Suppose the implementation of the Lanczos algorithm given in Algo-
rithm 1.1 is run in finite precision arithmetic with machine precision €, ,. Then, fori < k,
under some mild technical assumptions on €, 4, the following quantities

D=1, [Fl,  [H], 7n

are bounded by O(k“nP|| A |l€ach) for small constants a, B.

Remark 8.2. The full version of Theorem 8.1 from [Pai76]is significantly more
precise than our above statement might suggest. In particular, the above quan-
tities (and several others) are each explicitly bounded to first orderine,,,,, with
the constants and the dependence on k, n, and ||A| stated explicitly for each
quantity. A
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In exact arithmetic, Lanczos-based approaches such as Gaussian quadrature
and Lanczos-FA apply sufficiently low degree polynomials exactly. We will now
show that, even in finite precision arithmetic, these approaches apply (appro-
priately scaled) Chebyshev polynomials accurately. For functions which have a
Chebyshev expansion with bounded coefficients, this implies that Lemma 3.16
and Theorem 6.4 holds to close degree. Thus, Lanczos-based approaches should
be expected to perform at least as well as explicit polynomial approaches for
most reasonable functions f.

For convenience, from this point to the end of the chapter, we will assume that
A has been shifted and scaled so that A and A(T) are each contained in [-1, 1].

Recall that the Chebyshev polynomials of the first kind satisfy the recurrence
T, = 2xT;_; — Ty, T, =x, T, = 1.

and that the Chebyshev polynomials of the second kind satisfy the recurrence
Uy = 2xU_, - U_,, U, = 2x, Up=1.

We have the following, well known, bound.

Lemma 8.3. Forallj > 0, |T;[_; 1; < 1and |Ul|-; 1y < j+ 1.

For notational brevity, fori > 1, introduce the vectors

t; = T(A)v, t; = T(T)e,, P =t,-Qt.

8.3 Lanczos-FA

To the best of our knowledge, the result in this section first appeared in [DK9],
Section 4]; see also[MMSI8, Lemma 10].

Theorem 8.4. Foralli =0,1,...,k—1,
IT;(A)v — QT;(T)eyl, < k*|F|.

Proof. Using (8.1) and Corollary 10.3, observe that for i > 1, the d; satisfy a

perturbed three term recurrence

P, = (2At; —t,) - (2QTt_, - Qt.,)
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= 2(At_; — (AQt_; + Brqi1ef 1t +Ft ) -,
= 2A¢,; — P, +2Ft,,.

By direct computation, we also have ¢, = 0 and §; = F{,. Then, it’s easy to see
that

di = Ui—l(A)FEO + 2 Z Ui—j—l(A)F{j‘
j=1

We now use Theorem 8.3 to obtain

1

i-1 -1
Il <2 U (A)IFIET < 2> (- j)IF] < 2[F]. O

j
8.4 Gaussian quadrature

The results in this section are summarized from [Kni96]. Interestingly, this
work seems to be relatively unknown, despite its significance given the
widespread use of Lanczos-based quadrature methods. It is our hope that
the resurfacing of these results will help assuage some of the hesitancy to use
Lanczos-based quadrature methods without reorthogonalization.

We begin with several lemmas.

Lemma8.5. Foralli = 0,1, ..., k-1,

IRT(T)eo|l < k*|H].

Proof. Write A; = RT;(T)e,. Using Section 8.2.1 and Corollary 10.3, for i > 1,

analogous to Theorem 8.4, the A, satisfy the perturbed three term recurrence

Ai = ZRT{i—l - R{i_z
= 2(TRE; + (B-1Q'qref 1t + HE ) —RA,
= ZTAi—l - Ai—Z + ZHE]_I

Since R is strictly upper triangular we have A, = 0 and, by direct computation,

A, = He,. This implies that

i~1
Ui_)'_l(T)Ht'.

Ai = Ui_l(T>He0 + 2 j

j=1
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We again use Theorem 8.3 to obtain

i—1 i—1
1Al < 2> U (T)HENIE] < 2 (- j)IH] < 2i2H]. =

We now state the main result.

Theorem 8.6. Foralli =0,1,...,2k—2

[VTT,(A) - e]T(T)eo| < K(IF]| + [H) + [D - 1.

Proof. Recall that the Chebyshev polynomial satisfy the identities

Ty = 2(T;)* -1, Tpi1 = 2TiTi = x.

1

It therefore suffices to bound [v'T;(A)T;(A)v — egT;(T)T;(T)e.

By definition,
t't; = (£Q"+9))(P; + Q)
Thus,
[t - Y| < [RQ'QE — ] + [PillIQE; ] + [, 11QE ] + 1 1l
By definition of R,
t/Q'Qf; = t/(R+R"+1+ (D-))i;.

Thus, applying Theorems 8.1, 8.3 and 8.5 we have

tQ'QY - Y| < [GIIRE] + [EIRE;] + D - IIIENE ] < &*[H] + D -1].
Now, observe that by Theorem 8.3

IQE I = Ip; — ;| < Il + It ]| < 1+E*[F].

Then, dropping higher order terms in €, 4,
IENIQY; < k*[F|  and [ElIQEI < k*|F].

The result follows by combining the above expressions. O]

Remark 8.7. Infact, when Lanczos is run for kiterations, Theorem 8.6 holds for
i =0,1,...,2k — 1. However, in the context of this thesis, the additional work
required to prove this more general statement is not warranted. See [Kni96] for
details. JAN
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8.5 Backwards stability of the Lanczos algorithm

The Lanczos method is clearly far from forward stable in the sense that the Q
and T output are far from what would be produced in exact arithmetic. The
work of Greenbaum [Gre89] shows that the matrix T in a perturbed Lanczos
recurrence of the form (8.1) can be viewed as the output of the Lanczos algorithm
run in exact arithmetic on a certain “nearby” problem, provided the conclusions
of Theorem 8.1 are satisfied; i.e. it shows that Lanczos is backwards stable. In
particular, [Gre89] shows that if these conditions are satisfied, there exists a
NxNmatrix A and vector v such that Lanczos run on A, v in exact arithmetic for
k steps produces T (i.e., in the notation from Chapter 3, that ¥y, = [¥5 ;5};)
and , that

(i) Eigenvalues of A are clustered near to those of A: foranyj €0,1,..., N-1,
there existsi €0,1,...,n—1such that

](j(A) = A(A).

1

(ii) The sum of squares of first components of eigenvectors corresponding
to eigenvalues or clusters of eigenvalues of A approximately equal tot
he squares of the projections of v onto the eigenvectors of A: for an
eigenvalue A;(A)

jes
where S; is the set of indices such that A;(A) = A;(A) forall j €.

Together, these conditions imply that

,V

(8.2)

s

8.5.1 Anew approach

While the analysis of [Gre89] provides a backwards stability result, the proofs
are highly technical. We now show how the result of [Kni96] implies a simple
backwards stability result.
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Towards this end, denote by {0, }%_, and {p,,}s—, the Chebyshev moments of
¥, vand Y1, respectively;i.e.

= ij d¥,, and p, = ITm d¥p e, -
Now define the distribution function

& = dg _ duliy =
Y=V¥,,+E where = dx Z(pm—o‘m)Tm.

m=0

By construction, form = 1,2,...,2k—1,

jT‘P delpAv de”

2k-1
0'm+Z —0y) jT Tydpl,
=0
= Ot (P =)

Thus, the modified moments {,,}%°_, of ¥ satisfy

1 - m=0,1,...,2k-1
:j T,d¥ = Pr .
-1 o, m=2k2k+1,..

Now, observe that
2k-1

dw(¥,P) = j |E(x)|dx < lem

The Chebyshev polynomials are bounded by one on [-1, 1], so

f Tdﬂll

J T, dM11|<J duly; = 1.

Thus, assuming |p,, — 0,,| < €(k),

2k-1

dw(¥,P) < > 20— 0] < dhe(k)
m=0

The distribution function ¥ is near to ¥ Ay inthe sense of Wasserstein distance,
and T, is produced when the Stieltjes algorithm is applied. However, there are
two shortcomings. First, the support of ¥ is all of [-1,1] as E is absolutely
continuous on (—1,1). Second E is not necessarily increasing, and so ¥ is not

necessarily increasing.
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8.6 CIF bounds Finite precision

While the tridiagonal matrix T and the matrix Q of Lanczos vectors produced
in finite precision arithmetic may be very different from those produced in
exact arithmetic, we now show that our error bounds, based on the T and
Q actually produced by the finite precision computation, still hold to a close
approximation. First, we argue that Lemma 7.2 holds to a close degree provided
F is not too large. Towards this end, note that we have the shifted perturbed
recurrence,

(A-z0)Q = Q(T —zI) + B, 1 qrei s +F. (8.3)
From (8.3), it is then clear that,
(A —zI)Q(T - zI) "ey = Qe + Bi_1qrer 1 (T — zI) 'y + F(T — zI) e,
This implies that Corollary 7.4 also holds closely. More specifically,

resy(z) = det(h,, ,(T))res,(w) + fi(w, z)

d
erry(z) = det(h,, ,(T))h,, (A)err,(w)+ (A - 2I) £, (w, 2)

where
f.(w,z) := F ((T - zI)™" — det(h,, ,(T))(T - wI) ™) e,

Using this we have,
F(A)Y = lan-FA(f) 35 f)erty(z)dz - 5 99 F(2)(A = 20) Ky (w, 2) dz
which we may bound using the triangle inequality as

If(A)v =lan-FA(f)Il < %r HE](;F f(z)erry(z) dz A-zI)'f(w,2)dz

This expression differs from Theorem 7.6 only by the presence of the term
involving fi(w, z) (and, of course, by the fact that err,(z) now denotes the error
in the finite precision computation). If we take | - || as the (A — wI)?>-norm, then
this additional term can be bounded by using that

A -zl (w, z) dz

§v JII(A = wI)(A — 212, [ £(w, 2)[,ldz]

sﬁvwmwmmwwMML (8.4)
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Figure 8.1: A%-norm error bounds for f(x) = +x where A hasn = 50
eigenvalues spaced according to the model problem with p = 0.8 and
kK = 10°. We take I as a circular contour of radius A, centered at
Amax and w = 0. Computations without reorthogonalization are run
in single precision arithmetic, and error bounds are computed using
Theorem 7.6 using the finite precision quantities. Legend: Lanczos-FA
error with ( —« ) and without ( —— ) reorthogonalization, a priori
bounds with § = S; = I( —— ), and a posteriori bounds obtained by
using Theorem 7.6 with S = I ( ). Takeaway: The bounds in finite
precision arithmetic are accurate until near the ultimately attainable
accuracy.

Note that 1/(27) times (8.4) can be viewed as an upper bound of the ultimate
obtainable accuracy of Lanczos-FA in finite precision after convergence. If
the inequalities do not introduce too much slack, this upper bound will also
produce a reasonable estimate. Since [|F| is small, one may simply ignore the
contribution of (8.4), at least provided the Lanczos-FA error is not near the final
accuracy. Finally, we have worked in the (A — wI)? norm as it simplifies some
of the analysis, but in principle, a similar approach could be used with other
norms. This is straightforward, but would involve bounding something other
than [, s,
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8.6.1 Numerical experiment

To illustrate the point of above analysis, we use a setup similar to what was
used to produce Figure 7.3. However, we now use the model problem and run
Lanczos without reorthgonalization. We use the T produced in finite precision
arithmetic in our computation of the error bounds from Theorem 7.6 and report
the results in Figure 8.1. Note that we use Theorem 7.6 and therefore do not
account for the roundoff term analyzed above. However, since this term can
be expected to be on the order of machine precision, the absence of this term
in our computed bound does not significantly impact the bounds until near the
ultimately attainable accuracy of Lanczos-FA. In other words, Theorem 7.6 still

holds until the Lanczos-FA error is small.
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Chapter 9
Outlook

So, what’s next for algorithms for computing expressions involving matrix
functions? While this is far too vague a question to provide any sort of definitive
answer, I will gladly discuss several directions which I hope will be pursued
further in the near future. These topics are simply a collection of directions for
future work I personally find interesting, and they should not be viewed as any
sort of statement regarding the direction the field as a whole should move in.
Indeed, many important topics, such as algorithms for high performance com-
puting and the use of mixed precision arithmetic [Abd+21] are not discussed.

9.1 Randomization

It is now widely recognized that randomization is an extremely powerful algo-
rithmic tool in numerical linear algebra [HMTI1; MT20]. While a number of
topics have “matured”, the use of randomization in Krylov subspace methods
and related algorithms remains ripe for further study.

A big question is how to compute a low-rank approximation to f(A), given
access to products with A. Some progress on this question has been made, pri-
marily with the end goal of estimating the spectral sum tr(f(A)) [Linl6; GSOI17;
SAIl7; LZ21; CH22], but a general theoretical understanding of randomized
Krylovsubspace methods for approximating f(A)is an open problem. A natural
starting point is the analysis of block Krylov subspace methods applied to a set
of random vectors [MM15; MT20; Tro21]. However, block Lanczos methods are
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perhaps even more susceptible to the effects of finite precision arithmetic than
the standard Lanczos methods, and not much is known theoretically about their
behavior in finite precision arithmetic.

Another interesting question is how randomization can be used to speed up

computations of f(A)v.

For overdetermined linear systems Ax = v, methods such as the randomized
Kaczmarz algorithm [SV08; NSW14], accelerated coordinate descent [LS13a;
All+16], and stochastic heavy ball momentum [BCW22] can all outperform ap-
plying CG to the normal equations A"Ax = A"v. In fact, for positive definite
systems, accelerated coordinate descent methods can outperform CG applied

directly to the system of interest.

A natural way to extend these fast linear system solvers to matrix functions is
by applying them to a proxy rational function whose individual terms are each
positive definite linear systems. This technique was used in [JS19]to obtain a fast
algorithm for approximating products with the matrix sign function and related
quantities. However, this approach treats each term in the proxy rational func-
tion as independent, despite the fact that there is significant shared structure.
From a theoretical perspective this is acceptable as long as the number of terms
in the proxy rational function is logarithmic in the accuracy tolerance, which is
typically the case [GT19]. However, this is likely somewhat wasteful in practice,
so it would be worthwhile to study how such ideas can be implemented more
efficiently.

9.2 Typicality

Recall that typicality, discussed in Section 4.1.1, is essentially the physics version
of concentration of quadratic trace estimators. I find typicality fascinating for
a number of reasons. First, typicality provides a physical meaning to quadratic
trace estimators, which have become one of the most widely studied methods
in randomized numerical linear algebra. Second, the literature on typicality
has a rich history, with the earliest works dating back nearly a century. This
not only means the popular opinion on typicality has evolved, but it makes

typicality an interesting case study in the fragmentation of knowledge between
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disciplines. While several review papers have been published recently in the
physics literature [Gol+10; Jin+21], I believe a review from the perspective of nu-
merical linear algebra would yield many interesting historical insights. Indeed,
applied mathematicians have seemingly overlooked several important lines of

literature on this topic.

9.3 Accessibility to non-experts

As mentioned in the introduction, it is my sense that practitioner knowledge of
Lanczos based methods for matrix functions is limited by the lack of resources
providing easy to understand background for such methods. While I hope that
this thesis provides a more accessible introduction to the topic, by nature, a
thesis emphasizes the author’s own work and only touches on the important
work of others. A more balanced treatment of methods for matrix functions,
with a treatment of methods for non-symmetric problems as well as a further
emphasis on the important case of linear systems would be of general interest.

Separately,  hope that easy-to-use black-box versions of some of the algorithms
studied in this thesis are eventually implemented. A natural starting point
would be implementing the integral based bounds from Chapter 7 in such a way
that they could be easily integrate into existing codes. In order for such a tool
to be truly black-box would require additional study into how to choose param-
eters such as the contour of integration. However, even if some user input is
required, such a tool would help ensure more efficient resource allocation.
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Chapter 10
Notation and other reference sheets

10.1 Basic notation

Here we provide a reference for some common notation. The page number
is the first page on which the notation is used. In many cases, some of the
parameters will be suppressed for notational convince. for instance, while the
i-th eigenvalue of a matrix B is denoted A;(B), we will often write A; for the i-th

eigenvalue of A

notation description page
A n X n Hermitian matrix 1
A, A (A) i-th eigenvalue of A 1
A, A(A) set of eigenvalues of A 1
ILI(A) smallest interval containing A(A 6
f(A) matrix function 1
tr(f(A)) spectral sum 2
D, Dy cumulative empirical spectral measure (CESM) 2
Y ¥,y weighted CESM 28
Ky, Ky(A,v) dimension k Krylov subspace 3
QT Lanczos vectors and coefficients after k iterations 4

continues on next page
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notation description page
Q, T Lanczos vectors and coefficients after completion 71
1 indicator function
lglls supremumof g:C > ConS c C 5
I -1 norm induced by matrix with same eigenvectors as A 5
i non-negative unit-mass distribution function 15
OO inner product induced by u 15

i degree i orthogonal polynomial of u 15
9](.”1) j-th zero of p, 17
M, M(v) Jacobi matrix for u, v 16
ey Chebyshev distribution function on [a, b] 18
m; degree i modified moment with respect to u 16
[f];ip degree s projection of fin (., -), 18
[fIP degree s interpolation of f at zeros of p; 18
[f]f’fp degree s damped projection of fin¢:, -, ), 18
[f]d-ip degree s damped interpolation of f at zeros of p; 18
Yo damping coefficients 19
{p{}fzo Jackson’s damping coefficients 21
C.v connection coefficient matrix 31
() averageover? =0,...,n,— 1 49
st unit hypersphere on C" 55
g, CG iterate at step k 72
mry MINRES iterate at step k 73
gmr, QMR iterate at step k 73
lan-OR(r, R) Lanczos-OR iterate 74
lan-FA,(f)  Lanczos-FA iterate 92
sign—OR  Lanczos-OR induced iterate to matrix sign 95
erry(z) Lanczos-FA error at step k for for A'v 107
res,(z) Lanczos-FA residual at step k for for Av 107
h,, . h, ., = (x—w)/(x-2z) 108
h, h,=1/(x-2) 108

continues on next page
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notation description page

S,So,...,sk_l A c S, AI(T) C Si 109

10.2 Indexing for matrices

Given a matrix B, we use [B] todenote the submatrix matrix of B consisting

rir’ e’
of rows r up to (but not including) row r’ and columns c up to (but not including)
¢'. Thus, the dimension of [B],.,. ... is (r' —r) X (¢ — c). Indexing of matrices starts at
zero. If any of these indices are equal to O or the corresponding max dimension
of B, they may be omitted. If ' = r+ 1 orc¢’ = ¢ + 1, then we will simply write r

orc.

As an example, suppose

1 2 3 4
B=|5 6 7 8
9 10 11 12
Then
2
Bl..=[5 6|, [Bl,=[5 6 7 8], and [Bly;=4.
9 10

[ am sure many readers are wondering why Iwould use such a notation. Perhaps
some are even thinking of xkcd number 927, Standards.

HOW STANDARDS PROLIFERATE:
(465 A/C CHARGERS, (HARACTER ENCODINGS, INSTANT MESSAGING, ETC)
M?! RIDICULOLS!
WE NEED To DEVELOP

| | oNE UNVERSAL STANDARD )
SITUATION: THAT COVERS EVERYONE'S SITUATION:

THERE ARE USE. CASES. veRHl THERE ARE
|4 COMPETING ' 15 COMPETING

STANDPRDS. \Ei %) STANDPRDS.



https://xkcd.com/927/

chapter 10 page 149

While I do not expect this notation to become standard in linear algebra, it was
chosen intentionally after much consideration. The two primary motivations

are as follows:

— Much of this thesis relies on the theory of orthogonal polynomials, and it
isnatural for orthogonal polynomials to be indexed by their degree (which
starts at zero). It then makes sense that matrices involving orthogonal
polynomials are indexed in a way which matches the polynomials.

- This thesis is written to be as accessible as possible to practitioners, par-
ticularly those in physics and data science. Zero-indexed programming
languages are more common than one-indexed languages in these fields.
In such languages, non-inclusive endpoints are idiomatic, so that the
number of objects in a range is equal to the difference of the endpoints.!
In fact, our notation is identical to that of Python/NumPy, the language of

choice in many disciplines from these fields.

In my opinion, it would have been nice if sums were also indexed in a similar

way. However, using a notation like ) was deemed too verbose, and modi-

fying the standard notation er:_rl would have caused too much confusion.

r<i<r’

10.3 The model problem

The model problem [Str91; SG92] is a standard class of problems used in the
analysis of the finite precision behavior of Lanczos based algorithms, especially
in the context of solving linear systems of equations. This is because the expo-
nential spacing of the eigenvalues is favorable to Lanczos based linear system
solvers in exact arithmetic yet simultaneously causes the Lanczos algorithm to
rapidly lose orthogonality in finite precision arithmetic. The model problem is
parameterized by the dimension n, the condition number k, and a parameter p
controlling the rate of growth of eigenvalues. Specifically,
Ao=1, A=k A=A+ (ﬁ) (k=1)-p",  i=1,...,n-1. (10)
!The reason many languages use such conventions is perhaps due in part to Dijkstra’s 1982

letter, Why numbering should start at zero, which advocates for indexing to start at zero and for ranges
to include the start point but not the end point.
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10.4 Some basic properties

Lemma 10.1. Let || - || be a norm induced by a positive definite matrix with the same

eigenvectors as A. Then
lg(A)vll < llg(A)l2lv].

Proof. Let B® be the matrix inducing | - ||. By assumption A and B commute, so

lg(A)vl = [Bg(A)vl, = llg(A)Bvll; < llg(A)l.IBvl, < lg(A)l2lvl. O

We now provide a number of useful facts about powers of tridiagonal matrices.
To simplify our proofs, we recall the following fact.

Lemma10.2. Foranyq>O0andky, k, =0,1,...,n-1,

n-1 n-1 n—1
[Aq]ko,kq = Z [A]ko,kl[A]kl,kz [A]kq,l,kq-
k1=0ky=0  k,_,=
Proof. This is the definition of matrix multiplication applied g times. O]

Note that if T is tridiagonal, then [T} ,,, = Owhenever |k, —ky,| > 1. Thus, the
product

[Tl [Tl [T i, (102)

isnonzero, if and onlyif |k,—k,, ;| < 1forall . Thus, assuming (10.2) is nonzero,
we can view {k,} as a walk on {0, 1, ..., n — 1}, starting from k, and ending at k,,
where, at each iteration ¢, we stay put or move to an adjacent index. Clearly

ko — ky| + |ky — Ryl + -+ + [ky_y — k| < g.

In other words, the total distance moved during the walk is at most g.

Using this perspective, we immediately find that powers of tridiagonal matrices
are banded.

Corollary 10.3. Suppose T is a tridiagonal matrix and q > 0 an integer. Then, foralli, j
with |i — j| > g,
[Tq]l’/}' = 0.
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Proof. Consider a nonzero term (10.2). If |i—j| > g, then it is not possible to move
from i to j in q steps. Ol

More generally, we find that the entries of powers of a tridiagonal matrix
depend only on nearby entries of the base tridiagonal matrix. We consider the
symmetric case for simplicity.

Corollary 10.4. Suppose T is a symmetric tridiagonal matrix and q > O an integer.
Then, forany i, j with|j —i| < g,
[T

is determined entirely by [T] ;, ., wherek = max(i, j)+|(q—I1j—il)/2]. Infact,if q—|j —i]
is even, then there is no dependence on [T],_ }_;.

Proof. Without loss of generality, we may assume i < j.

Consider a nonzero term (10.2). We require at least j — i of our allocated g
movements to move from i to j. Since we must end at j, we could move past j

atmost | (g — (j —i))/2] indices before returning.

If (9 — (j —i))/2 is an integer, then when we reach the maximum point j + (g —
(j —1i))/2 we must immediately return towards j. Thus, k, # k,,; for any ¢, and in
particular, for ¢ = j +(q—(j —i))/2. O



10.5 List of algorithms

name description reference
LaNczos Lanczos algorithm Algorithm 1.1
STIELTJES Stieltjes algorithm (naive) Algorithm 2.1
STIELTJES Stieltjes algorithm Algorithm 2.2
GET-MOMENTS Get modified moments of ¥ wrt. u Algorithm 3.1
GET-CHEBYSHEV-MOMENTS Get modified moments of ¥ wrt. ul, Algorithm 3.2
GET-CONNECTION-COEFFS Get connection coefficients Algorithm 3.3
GET-MOMENTS-FROM-CHEB Get modified moments wrt. i of weighed CESM (via Chebyshev moments) Algorithm 3.4
GET-MOMENTS-FROM-LANCZOs  Get modified moments wrt. u of weighed CESM (via Lanczos) Algorithm 3.5
GET-IQ Quadrature by interpolation Algorithm 3.6
GET-GQ Gaussian quadrature Algorithm 3.7
GET-AQ Quadrature by approximation Algorithm 3.8
GET-AAQ Approximate quadrature by approximation Algorithm 3.9
SPEC-APPROX Prototypical randomized spectrum and spectral sum approximation Algorithm 4.1
LDL LDL factorization Algorithm 5.1
STREAMING-LDL Streaming LDL factorization Algorithm 5.2
STREAMING-BANDED-PROD Streaming banded product Algorithm 5.3
STREAMING-BANDED-INV Streaming banded inverse Algorithm 5.4
STREAMING-TRIDIAG-SQUARE Streaming tridiagonal square Algorithm 5.5
GET-POLY Get polynomial of tridiagonal matrix Algorithm 5.6
BANDED-RATIONAL Streaming banded rational inverse Algorithm 5.7
LaNczos-OR-LM Lanczos-OR (low memory) Algorithm 5.8

0T J91deyd

ZST 23ed
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10.6

1.1

2.1
3.1

3.2

3.3

3.4

4.1
4.2
4.3

4.4

4.5

4.6
5.1
5.2

6.1

6.2
6.3

List of figures
CG convergence (with and without reorthgonalization) and error
bounds. . .. ... ... 8
Sample unit mass distribution functions. . . . . ... ... ... .. 13
Errors for approximating [ fd¥ = v"f(A)vwhen f(x) = 1/(1 +
16x?) for a spectrum uniformly filling [-1,1]. ... ......... 45

Errors for approximating [ fd¥ = v"f(A)vwhen f(x) = 1/(1 +
16x?) for a spectrum uniformly filling [-1,1] except for a gap
around Zero. . . . . ... i e e e 46

Errors for approximating [ fd¥ = v"f(A)v when f(x) = 1/x for

modelproblem. . .. ... ... .. .. oo oo 47
Errors for approximating [ fd¥ = v"f(A)vwhen f(x) = 1[x > c]

for MNIST covariancematrix. . .. .................. 438
CESM @ and independent 10 samples of weighted CESMV¥ . ... 50
Approximations to a sparse spectrum with just 12 eigenvalues. . . 59

Approximations to a “smooth” spectrum using quadrature by ap-
proximation with various choicesof y. . . ... ... ... .. ... 62

Approximations to a “smooth” spectrum using smoothed Gaus-
sian quadrature for various smoothing parameterso.. . . . . . .. 64

Approximations to a “smooth” spectrum with a spike using
quadrature by approximation with various choicesof y. . ... .. 66

Heat capacity as a function of temperature for a small spin system. 68
Error estimates for Lanczos-OR for r(x) = 1/(x*+ 1) and R(x) = 1. 80

Access patterns for inputs to streaming functions used in low-
memory implementations of Lanczos-OR and Lanczos-FA. In-
dices indicate what information should be streamed into the al-
gorithm at the giveniteration. . . . ... ... ... ... ...... 83

Comparison of Lanczos-based spectrum approximation algo-
rithms. ... .. ... .. . . 100

Optimality ratio for A%-norm errors for approximating sign(A)v.. 101

A%-norm error in Lanczos-OR-lm based rational approximation
tomatrixsignfunction. . . . ... ... o Lo Lo oL 102
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6.4 Comparison of (A + cI)-norm errors for CG and Lanczos-FA for

7.1
7.2
7.3

7.4

75

8.1

computing (A% +cI)vwithc =005 . . . .. ............
Contour plot of IIhWIZ||I/|det(hw,z(T))|1/k asafunctionofzeC. . ..
Circle, Pac-Man and double circle contours . . .. ... ......

A-norm error bounds for f(x) = +x where A hasn = 1000
eigenvalues spaced uniformly in [1072,10%] and T is a circular
contour (left) or Pac-Man contour (right). . . . . ... ... .. ...

(A —wI)?-norm error bounds for f(x) = step(x —a)/x where Aisa
random matrix whose limiting density is supported on [a,,b;] U
[ay, by],a = (b, +a,)/2,and I is a double circle contour. . ... ..

Quadratic form error bounds for f(x) = step(x —a) where Ais a
random matrix whose limiting density is supported on [a,,b;] U
[ay, by),a = (b, +a,)/2,and T is a double circle contour. . ... ..

A%-norm error bounds for f(x) = Jx where A hasn = 50
eigenvalues spaced according to the model problem with p = 0.8
andk =10% . . . . ...
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