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Introducধon

Given an n× n symmetric matrix A, the cumulaধve empirical spectral measure
(CESM) Φ = Φ(A) : R → [0, 1] gives the fracধon of eigenvalues less than a given
threshold. That is,

Φ(x) = Φ(A)(x) :=
n∑

i=1

1

n
1[λi(A) ≤ x] = tr(n−1

1[A ≤ x]),

where 1[ · ≤ x] : R → {0, 1} is the indicator funcধon defined by 1[s ≤ x] = 1 if s ≤ x
and 1[s ≤ x] = 0 if s > x.



Applicaধons

Compuধng tr(f(A)) is an important task. This is related to the CESM because

tr(f(A)) = n
∫

f(s)dΦ(s).

So, if we can approximate Φ, we can approximate tr(f(A)).



Applicaধons

Compuধng the full CESM is expensive, but lots of applicaধons of approximate
CESMs:
1. computaধonal physics and chemistry1

2. matrix norms, log-determinants, Estrada indices, triangle counts in a graph2

3. network moধfs3

4. esধmaধng the number of eigenvalues in an interval4

5. studying properধes of Hessians during neural network training5.

1Ducastelle and Cyrot-Lackmann 1970; Haydock, Heine, and Kelly 1975; Wheeler and Blumstein 1972; Weiße et al. 2006; Covaci, Peeters, and
Berciu 2010; Sbierski et al. 2017; Schnack, Richter, and Steinigeweg 2020.

2Avron 2010; Ubaru, Saad, and Seghouane 2017; Han et al. 2017; Musco et al. 2019.
3Dong, Benson, and Bindel 2019.
4Napoli, Polizzi, and Saad 2016; Xi, Li, and Saad 2018.
5Ghorbani, Krishnan, and Xiao 2019; Papyan 2019; Yao et al. 2020.



Weighted CESM

For any unit vector v, define the weighted CESM Ψ(A,v) : R → [0, 1] by

Ψ(A,v)(x) :=
n∑

i=1

wi1[λi(A) ≤ x] = vT
1[A ≤ x]v

where wi = (vTui)
2 and ui is the eigenvector for λi(A).

Note that if E[vvT] = I then

E[Ψ(A,v)(x)] = Φ(A)(x).



Algorithm

Natural algorithm:

Φ(x) ≈ ⟨gqk(Ψi)(x)⟩ =
1

nv

nv∑
i=1

gqk(Ψ(A,vi))(x).

There are clearly two separate sources of error:
1. sample error associated with randomness in the weighted CESM Ψ(A,v)
2. approximaধon error due to using a Gaussian quadrature gqk(Ψ(A,v)) to

approximate Ψ(A,v).

Assuming the indicator of error d : (set of dists)× (set of dists) → R≥0 saধsfies the
triangle inequality, we have

d(Φ, ⟨Ψ̃i⟩) ≤ d(Φ, ⟨Ψi⟩) + ⟨d(Ψi, gqk(Ψi))⟩.



Goal

Determine the runধme (number of samples nv and the number of Lanczos iteraধons
k) required to obtain a Wasserstein distance of t between true CESM Φ and output
of algorithm.

To do this we will study
1. P [dW(Φ, ⟨Ψi⟩) > t] as funcধon of nv

2. dW(Ψi, gqk(Ψi)) as funcধon of k

Wasserstein distance of distribuধons µ and ν,

dW(µ, ν) =

∫
|µ(s)− ν(s)|ds = sup

{∫
f(s)d(µ(s)− ν(s)) : f is 1-Lipshitz

}



Weighted distribuধon
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Gaussian Quadrature/Lanczos

Let µ be a distribuধon funcধon. A (discrete) distribuধon funcধon ν corresponding to
a set of points θi and weights di, i = 1, 2, . . . , k is said to be a Gaussian quadrature
rule of degree k for µ if, for all polynomials p of degree at most 2k− 1,∫

p(s)dµ(s) =
∫

p(s)dν(s), ν(x) =
k∑

i=1

di1[θi ≤ x].

We denote such a distribuধon by gqk(µ).



Gaussian Quadrature/Lanczos

To compute a degree k Gaussian quadrature, compute upper leđ k× k principle
submatrix [T]:k,:k of Jacobi matrix for orthogonal polynomials of µ.
– nodes are eigenvalues
– weights are squares of first components of eigenvectors

If µ = Ψ(A,v), this is can be done by Lanczos with A,v Then

gqk(Ψ(A,v)) = Ψ([T]:k,:k, ê).



Sample complexity

By the unitary invariance property of Gaussian vectors UTv is distributed like v, so
vTui is distributed like [v]i, where [v]i is the i-th coordinate of v. Since v is obtained
by sampling a Gaussian vector and normalizing,

wi ∼
Xi

X1 + · · ·+ Xn
,

where X1, . . . ,Xn are iid χ2
1 random variables.

Let m = nΦ(x) (number of eigenvalues at most x). Then,

Ψ(A,v)(x) =
m∑
i=1

wi ∼
X1 + · · ·+ Xm

X1 + · · ·+ Xn
∼ Beta

(
m
2
,
n−m

2

)
.



Sample complexity

From this we obtain

P [|Φ(x)−Ψ(A,v)(x)| > t] ≤ 2 exp
(
−(n+ 2)t2

)
so

P [|Φ(x)− ⟨Ψ(A,v)(x)⟩| > t] ≤ 2 exp
(
−nv(n+ 2)t2

)
and

P [|Φ(x)− ⟨Ψ(A,v)(x)⟩| > t, ∀x] ≤ 2n exp
(
−nv(n+ 2)t2

)
.

Finally,

P [dW(Φ, ⟨Ψ(A,v))⟩ > t∥A∥] ≤ 2n exp
(
−nv(n+ 2)t2

)
.



Quadrature Error

Suppose µ and ν are two probability distribuধon funcধons supported on [a, b] whose
moments are equal up to degree k− 1. Then,

dW(µ, ν) ≤ (b− a)(1 + π2/2)k−1 < 6(b− a)k−1.

By properধes of Gaussian quadrature, Ψi and gqk(Ψi) share the 2k− 1 moments.
Thus, defining I(A) = |λmax(A)− λmin(A)|,

dW(Ψi, gqk(Ψi)) ≤ 3 I(A) k−1

By triangle inequality,

dW(⟨Ψi⟩, ⟨gqk(Ψi)⟩) ≤ 3 I(A) k−1



Puষng it together

We have obtained

P [dW(Φ, ⟨Ψ(A,v))⟩ > t∥A∥] ≤ 2n exp
(
−nv(n+ 2)t2

)
.

dW(⟨Ψi⟩, ⟨gqk(Ψi)⟩) ≤ 3 I(A) k−1

Thus, if

nv > 4(n+ 2)−1t−2 log(2nη−1), k > 4t−1

then

P [dW(Φ, ⟨gqk(Ψi)⟩) > t I(A)] < η.



An a posteriori approach

Karlin and Shapley 1972, Theorem 22.1: Suppose µ and ν are two probability
distribuধon funcধons constant on the complement of [a, b] whose moments are
equal up to degree k− 1. Define γ : [a, b] → [0, 1] by γ(x) = µ(x)− ν(x). Then γ is
idenধcally zero or changes sign at least k− 1 ধmes.



An a posteriori approach
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An a posteriori approach
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Numerical examples
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Conclusion

– If t ≫ n−1/2, then runধme is t−1(Tmv + n)
– Can prove matching lower bound for sample complexity, and in certain setups,

iteraধon complexity
– Comparison with other related algorithms worth exploring


