Analysis of stochastic Lanczos quadrature for spectrum approximation

Tyler Chen

March 29 2021

Joint work with: Tom Trogdon (UW) and Shashanka Ubaru (IBM Watson)

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. DGE-1762114. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation. Given an $n \times n$ symmetric matrix **A**, the cumulative empirical spectral measure (CESM) $\Phi = \Phi(\mathbf{A}) : \mathbb{R} \to [0, 1]$ gives the fraction of eigenvalues less than a given threshold. That is,

$$\Phi(x) = \Phi(\mathbf{A})(x) := \sum_{i=1}^{n} \frac{1}{n} \mathbb{1}[\lambda_i(\mathbf{A}) \le x] = \operatorname{tr}(n^{-1}\mathbb{1}[\mathbf{A} \le x]),$$

where $\mathbb{1}[\cdot \leq x] : \mathbb{R} \to \{0, 1\}$ is the indicator function defined by $\mathbb{1}[s \leq x] = 1$ if $s \leq x$ and $\mathbb{1}[s \leq x] = 0$ if s > x. Computing $tr(f(\mathbf{A}))$ is an important task. This is related to the CESM because

$$\operatorname{tr}(f(\mathbf{A})) = n \int f(s) \mathrm{d}\Phi(s).$$

So, if we can approximate Φ , we can approximate $tr(f(\mathbf{A}))$.

Computing the full CESM is expensive, but lots of applications of approximate CESMs:

- 1. computational physics and chemistry¹
- 2. matrix norms, log-determinants, Estrada indices, triangle counts in a graph²
- 3. network motifs³
- 4. estimating the number of eigenvalues in an interval⁴
- 5. studying properties of Hessians during neural network training⁵.

¹Ducastelle and Cyrot-Lackmann 1970; Haydock, Heine, and Kelly 1975; Wheeler and Blumstein 1972; Weiße et al. 2006; Covaci, Peeters, and Berciu 2010; Sbierski et al. 2017; Schnack, Richter, and Steinigeweg 2020.

²Avron 2010; Ubaru, Saad, and Seghouane 2017; Han et al. 2017; Musco et al. 2019.

³Dong, Benson, and Bindel 2019.

⁴Napoli, Polizzi, and Saad 2016; Xi, Li, and Saad 2018.

⁵Ghorbani, Krishnan, and Xiao 2019; Papyan 2019; Yao et al. 2020.

For any unit vector $\mathbf{v},$ define the weighted CESM $\Psi(\mathbf{A},\mathbf{v}):\mathbb{R}\rightarrow[0,1]$ by

$$\Psi(\mathbf{A}, \mathbf{v})(x) := \sum_{i=1}^{n} w_i \mathbb{1}[\lambda_i(\mathbf{A}) \le x] = \mathbf{v}^{\top} \mathbb{1}[\mathbf{A} \le x] \mathbf{v}$$

where $w_i = (\mathbf{v}^{\mathsf{T}} \mathbf{u}_i)^2$ and \mathbf{u}_i is the eigenvector for $\lambda_i(\mathbf{A})$.

Note that if $\mathbb{E}[\mathbf{v}\mathbf{v}^{\mathsf{T}}] = \mathbf{I}$ then

 $\mathbb{E}[\Psi(\mathbf{A},\mathbf{v})(x)] = \Phi(\mathbf{A})(x).$

Algorithm

Natural algorithm:

$$\Phi(x) \approx \langle gq_k(\Psi_i)(x) \rangle = \frac{1}{n_{\mathbf{v}}} \sum_{i=1}^{n_{\mathbf{v}}} gq_k(\Psi(\mathbf{A}, \mathbf{v}_i))(x).$$

There are clearly two separate sources of error:

- 1. sample error associated with randomness in the weighted CESM $\Psi(\mathbf{A},\mathbf{v})$
- 2. approximation error due to using a Gaussian quadrature $gq_k(\Psi(\mathbf{A}, \mathbf{v}))$ to approximate $\Psi(\mathbf{A}, \mathbf{v})$.

Assuming the indicator of error d: (set of dists) \times (set of dists) $\rightarrow \mathbb{R}_{\geq 0}$ satisfies the triangle inequality, we have

$$d(\Phi, \langle \tilde{\Psi}_i \rangle) \leq d(\Phi, \langle \Psi_i \rangle) + \langle d(\Psi_i, gq_k(\Psi_i)) \rangle.$$

Determine the runtime (number of samples n_v and the number of Lanczos iterations k) required to obtain a Wasserstein distance of t between true CESM Φ and output of algorithm.

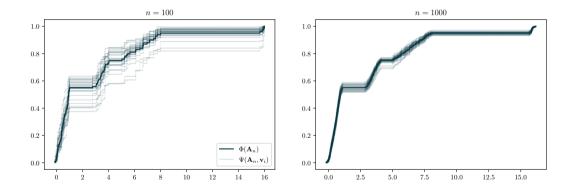
To do this we will study

- 1. $\mathbb{P}[d_{\mathrm{W}}(\Phi, \langle \Psi_i \rangle) > t]$ as function of $n_{\mathbf{v}}$
- 2. $d_{\mathbf{W}}(\Psi_i, gq_k(\Psi_i))$ as function of k

Wasserstein distance of distributions μ and ν ,

$$d_{\mathbf{W}}(\mu,\nu) = \int |\mu(s) - \nu(s)| ds = \sup\left\{\int f(s)d(\mu(s) - \nu(s)) : f \text{ is } 1\text{-Lipshitz}\right\}$$

Weighted distribution



Let μ be a distribution function. A (discrete) distribution function ν corresponding to a set of points θ_i and weights d_i , i = 1, 2, ..., k is said to be a Gaussian quadrature rule of degree k for μ if, for all polynomials p of degree at most 2k - 1,

$$\int p(s) \mathrm{d}\mu(s) = \int p(s) \mathrm{d}\nu(s), \qquad \qquad \nu(x) = \sum_{i=1}^{\kappa} d_i \mathbb{1}[\theta_i \le x].$$

.

We denote such a distribution by $gq_k(\mu)$.

To compute a degree k Gaussian quadrature, compute upper left $k \times k$ principle submatrix $[\mathbf{T}]_{:k,:k}$ of Jacobi matrix for orthogonal polynomials of μ .

- nodes are eigenvalues
- weights are squares of first components of eigenvectors
- If $\mu = \Psi(\mathbf{A}, \mathbf{v})$, this is can be done by Lanczos with \mathbf{A}, \mathbf{v} Then

 $\operatorname{gq}_k(\Psi(\mathbf{A},\mathbf{v})) = \Psi([\mathbf{T}]_{:k,:k}, \hat{\mathbf{e}}).$

By the unitary invariance property of Gaussian vectors $\mathbf{U}^{\mathsf{T}}\mathbf{v}$ is distributed like \mathbf{v} , so $\mathbf{v}^{\mathsf{T}}\mathbf{u}_i$ is distributed like $[\mathbf{v}]_i$, where $[\mathbf{v}]_i$ is the *i*-th coordinate of \mathbf{v} . Since \mathbf{v} is obtained by sampling a Gaussian vector and normalizing,

$$w_i \sim \frac{X_i}{X_1 + \cdots + X_n},$$

where X_1, \ldots, X_n are iid χ_1^2 random variables.

Let $m = n\Phi(x)$ (number of eigenvalues at most x). Then,

$$\Psi(\mathbf{A}, \mathbf{v})(x) = \sum_{i=1}^{m} w_i \sim \frac{X_1 + \dots + X_m}{X_1 + \dots + X_n} \sim \text{Beta}\left(\frac{m}{2}, \frac{n-m}{2}\right)$$

.

From this we obtain

$$\mathbb{P}\left[\left|\Phi(x) - \Psi(\mathbf{A}, \mathbf{v})(x)\right| > t\right] \le 2\exp\left(-(n+2)t^2\right)$$

SO

$$\mathbb{P}\left[\left|\Phi(x) - \langle \Psi(\mathbf{A}, \mathbf{v})(x)\rangle\right| > t\right] \le 2\exp\left(-n_{\mathbf{v}}(n+2)t^2\right)$$

and

$$\mathbb{P}\left[\left|\Phi(x) - \langle \Psi(\mathbf{A}, \mathbf{v})(x)\rangle\right| > t, \ \forall x\right] \le 2n \exp\left(-n_{\mathbf{v}}(n+2)t^2\right).$$

Finally,

$$\mathbb{P}\left[d_{\mathbf{W}}(\Phi, \langle \Psi(\mathbf{A}, \mathbf{v})) \rangle > t \|\mathbf{A}\|\right] \le 2n \exp\left(-n_{\mathbf{v}}(n+2)t^2\right).$$

Suppose μ and ν are two probability distribution functions supported on [a, b] whose moments are equal up to degree k - 1. Then,

$$d_{\rm W}(\mu,\nu) \le (b-a)(1+\pi^2/2)k^{-1} < 6(b-a)k^{-1}.$$

By properties of Gaussian quadrature, Ψ_i and $gq_k(\Psi_i)$ share the 2k - 1 moments. Thus, defining $l(\mathbf{A}) = |\lambda_{\max}(\mathbf{A}) - \lambda_{\min}(\mathbf{A})|$,

 $d_{\mathrm{W}}(\Psi_i, \mathrm{gq}_k(\Psi_i)) \leq 3 \, l(\mathbf{A}) \, k^{-1}$

By triangle inequality,

$$d_{\mathrm{W}}(\langle \Psi_i \rangle, \langle \mathrm{gq}_k(\Psi_i) \rangle) \leq 3 \, l(\mathbf{A}) \, k^{-1}$$

We have obtained

$$\mathbb{P}\left[d_{\mathrm{W}}(\Phi, \langle \Psi(\mathbf{A}, \mathbf{v}) \rangle > t \|\mathbf{A}\|\right] \le 2n \exp\left(-n_{\mathbf{v}}(n+2)t^{2}\right).$$

$$d_{\mathrm{W}}(\langle \Psi_{i} \rangle, \langle \mathsf{gq}_{k}(\Psi_{i}) \rangle) \le 3 \, l(\mathbf{A}) \, k^{-1}$$

Thus, if

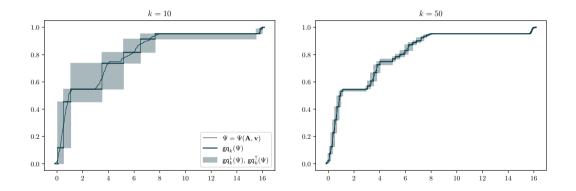
$$n_{\mathbf{v}} > 4(n+2)^{-1}t^{-2}\log(2n\eta^{-1}), \qquad \qquad k > 4t^{-1}$$

then

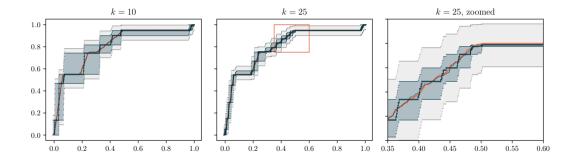
 $\mathbb{P}\left[d_{\mathrm{W}}(\Phi, \langle \mathrm{gq}_k(\Psi_i)\rangle) > t\,l(\mathbf{A})\right] < \eta.$

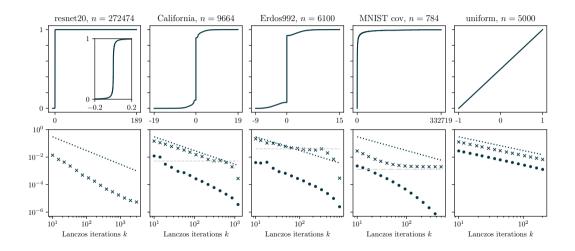
Karlin and Shapley 1972, Theorem 22.1: Suppose μ and ν are two probability distribution functions constant on the complement of [a, b] whose moments are equal up to degree k - 1. Define $\gamma : [a, b] \rightarrow [0, 1]$ by $\gamma(x) = \mu(x) - \nu(x)$. Then γ is identically zero or changes sign at least k - 1 times.

An a posteriori approach



An a posteriori approach





- If $t \gg n^{-1/2}$, then runtime is $t^{-1}(T_{mv} + n)$
- Can prove matching lower bound for sample complexity, and in certain setups, iteration complexity
- Comparison with other related algorithms worth exploring