
GPU parallelizable
sketch-and-precondition
Tyler Chen

Disclaimer

This presentation was prepared for informational purposes by the Global
Technology Applied Research center of JPMorgan Chase & Co. This paper is not a
merchandisable/sellable product of the Research Department of JPMorgan Chase
& Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates makes
any explicit or implied representation or warranty and none of them accept any
liability in connection with this paper, including, without limitation, with respect to
the completeness, accuracy, or reliability of the information contained herein and
the potential legal, compliance, tax, or accounting effects thereof. This document
is not intended as investment research or investment advice, or as a
recommendation, offer, or solicitation for the purchase or sale of any security,
financial instrument, financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction.

2 / 32

Paper

GPU-Parallelizable Randomized Sketch-and-Precondition for Linear Regression
using Sparse Sign Sketches

Tyler Chen, Pradeep Niroula, Archan Ray, Pragna Subrahmanya, Marco Pistoia,
Niraj Kumar

https://arxiv.org/abs/2506.03070

3 / 32

Linear Regression

We are interested in solving the least squares problem

min
x∈Rn

‖b− Ax‖, A ∈ Rm×n, b ∈ Rm, m � n � 1.

Classical factorization methods (e.g. Householder QR):

– require O(mn2) arithmetic operations

– do not take advantage of sparsity inA
Classical iterative methods (e.g. LSQR):

– require O(cond(A) nnz(A) log(1/ε)) arithmetic operations

– intractable ifA is ill-conditioned.

4 / 32

Sketch-and-precondition

Wewill construct a preconditionerM ∈ Rn×n and solve

min
x∈Rn

‖b− (AM)y‖, x = My.

IfAM is well-conditioned, then the convergence of iterative methods is fast!

In general, finding a good preconditionedM can be hard. However, using
RandNLA, we can efficiently (whenm � n) construct an excellent preconditioner
(e.g. for which cond(AM) ≤ 10).1

1Rokhlin and Tygert 2008; Avron, Maymounkov, and Toledo 2010.
5 / 32

Comment onmeasuring error

Lots of times, papers give the gurantees like

‖b− Ax̂‖2 ≤ (1+ ε)‖b− Ax?‖2.

This is equivalent to a characterization in terms of theATA-norm error:

‖b− Ax̂‖2 = ‖b− A(x? + x̂− x?)‖2

= ‖ b− Ax?︸ ︷︷ ︸
∈span(A)⊥

−A(x? − x̂)︸ ︷︷ ︸
∈span(A)

‖2

= ‖b− Ax?‖2 + ‖A(x? − x̂)‖2.

Rearranging, we find that

‖A(x? − x̂)‖2 = ‖b− Ax̂‖ − ‖b− Ax?‖2 ≤ ε ‖b− Ax?‖2.

6 / 32

Example

Legend: Error as a function of time for direct solver (), iterative method without a preconditioner (),
and sketch-and-precondition ().

7 / 32

Subspace embedding

Definition. Let V ⊂ Rm be a subspace. We say S ∈ Rd×m is an subspace
embedding for V with distortion η if

∀z ∈ V : (1− η)‖z‖ ≤ ‖Sz‖ ≤ (1+ η)‖z‖.

If we get a subspace embedding for range(A,b) then we can efficiently construct:
– a good preconditionerM

– a good initial guess x0
Together, these will let us apply LSQR for a small number of iterations.

For this to be efficient we need:

– d � m (so that SA is easier to process thanA)

– S is efficient to generate and apply
8 / 32

More precise statement

If S is a subspace embedding forAwith distortion η. Then,

cond(AM) ≤ 1+ η

1− η

whereM is such that SAM has orthonormal columns. Moreover, if S is a subspace
embedding for (A,b)with distortion η, then (coarse bound)

‖A(x? − x0)‖ ≤
(

2η
1− η

)1/2

‖b− Ax?‖,

where x0 is the solution to the sketched problemminx ‖Sb− SAx‖.

So, we can set η as something constant (e.g. η = 1/2)!

9 / 32

How does embedding dimension relate to distorition?

LetV be an onb for V. Subspace embedding:

∀c ∈ Rn : (1− η)‖Vc‖ ≤ ‖SVc‖ ≤ (1+ η)‖Vc‖

So we care about

max
c∈Rn

‖SVc‖
‖Vc‖

= max
c∈Rn

‖SVc‖
‖c‖

= σmax(SV), min
c∈Rn

‖SVc‖
‖Vc‖

= min
c∈Rn

‖SVc‖
‖c‖

= σmin(SV).

If S is Gaussian, then so is SV (by orthogonal invariance). Up to scaling,

σmax(SV) ≈ 1+
√
d/n, σmin(SV) ≈ 1−

√
d/n.

Many “mixing” sketches behave like Gaussians, so η ≈
√
d/n is good reference.

10 / 32

Sketch and precondition

This gives the sketch-and-precondition algorithm (Rokhlin and Tygert 2008).

Algorithm:
1. Generate S (choose hyperparameters)

2. Compute SA, Sb

3. FactorQR = SA (or SVD)

4. Get initial guess x0 = R−1QTSb

5. PreconditionerM = R−1

6. Run preconditioned iterative method

11 / 32

Sparse sign sketch

Definition: We say S ∈ Rd×m is a sparse sign sketching matrix with sparsity
parameter ζ if

S =

√
m
ζ

[
s1 s2 · · · sm

]
,

where each column si is independent and consists of exactly ζ random signs
situated in uniformly random coordinates.2

Theorem (Cohen 2015): Subspace embedding with distortion η if
d = O(n log(n)/η2) and ζ = O(log(n)/η).

Other sparse sketches: More at the end..

2This is often called CountSketch when ζ = 1.
12 / 32

Sparse sign sketch

Illusration of sparse sign matrix with d = 10, m = 30, and ζ = 3:

Legend: gold/light entries= +1, blue/dark entries= −1

13 / 32

Sparse sign sketch quality

Sparse sign sketches (even with small ζ) behave similarly to Gaussian sketches.

Legend: ζ = 2 (), ζ = 4 (), ζ = 8 (), ζ = 12 (), ζ = 24 ()
14 / 32

Generating sparse sign sketches

It is straightforward to sample the values of the ζmnonzero entries of S, which are
independent random (scaled) signs.

The more involved task is determining, in each column, which of the ζ rows will be
nonzero. This task is equivalent to sampling a ζ ×mmatrix

C =

c1,1 c1,2 · · · c1,m
...

...
...

cζ,1 cζ,2 · · · cζ,m

 ,

where each column of C independently contains exactly ζ numbers drawn from
[d] = {1, . . . ,d}without replacement.

A CSC sparse representation can then easily be constructed.

15 / 32

High-level implementation

Wewant a high-level implementation for generating C.
– If we can offload costly operations to low-level primitives, then we get an
effecient platform agnostic implementation.

– Efficiently generating sparse sign sketches in python/MATLAB/etc. is
non-trivial.

We are unaware of any existing efficient high-level implementations!

Since the columns of C are iid, (mathematically) we can consider a single column.
However, we should keep in mind that we will want to be able to easily parallelize
over columns.

16 / 32

Shuffling algorithms

Naive: Permute {1,2, . . . ,n} and take first ζ entries.

Fisher–Yates:
1. sample an integer x uniformly from [d− j]

2. let δ be the number of numbers in C less than or equal to x

3. append x+ δ to C

Naieve implemention requires O(ζ2)work per column to check inclusion.

Fisher–Yates (inplace): (used by Murray et al. 2023 for RandLAPACK)
1. initialize list [1, . . . ,m]

2. sample an integer x uniformly from [d− j]

3. swap indices from j and x

This now requires O(ζ)work per column (but O(m)working space).
17 / 32

Our approach

Rejection sampling: (used by Epperly 2024)
1. Generate x uniformly from [d]

2. If x is not contained in C append it, else resample

Cost depends on number of rejections, but typically ζ � d.

Our implementation: we use a vectorized version of rejection sampling:
1. sort along axis

2. compare neighbors

3. resample bad indices

This can be efficiently implemented in high-level langauges.

18 / 32

Numerical Experiments

Choice of sketching distribution

There are lots of ways to get a subspace embedding, including oblivious methods.
Common choices include:

– Gaussian

– Fast Trigonometric

– Sparse

These “mixing sketches” all behave similar to Gaussian with respect to the
embedding dimension.

20 / 32

Comparison of generate/apply time

Legend: Generate and apply time (to dense and sparseA) for Gaussian (), subsampled trig (), and
sparse sign sketch with ζ = 8 () and ζ = 24 ().

21 / 32

Total Runtime

Legend: Total runtime of sketch-and-precondition (ζ = 12) as a function of embedding dimension () and
individual components: iteration time (), preconditioner build time (), sketch apply time (),
and sketch generate time ().

22 / 32

Embedding dimension

How should we select the embedding dimension d (which controls the subspace
embedding distorition η)?

– As η → 0 the convergence of LSQR is faster, but factoring the sketch is more
expensive.

Gaussian sketch gives η �
√
n/d, which we can use as a proxy.

23 / 32

Embedding dimension

Legend: Total runtime of sketch-and-precondition (ζ = 12) as a function of embedding dimension () and
individual components: iteration time (), preconditioner build time (), sketch apply time (),
and sketch generate time ().

24 / 32

Multi-GPU computations

We study the behavior of sketch-and-precondition with sparse sketches when we
have multiple GPU devices (8 A100 GPUs on a single node).

Parallelize across long axis (dimension m vectors): Specifically, partition {1, . . . ,m}
to I1, . . . , Ip. Each GPU holds some rowsA[I`, ·] of the data-matrix.

Ax =

A[I1, ·]...
A[Ip, ·]

 x =

A[I1, ·]x...
A[Ip, ·]x



ATy =

A[I1, ·]...
A[Ip, ·]


T y[I0]...

y[Ip]

 = A[I1, ·]Ty[I1, ·] + · · ·+ A[Ip, ·]Ty[Ip].

25 / 32

Scaling Experiments

Legend: Total runtime of sketch-and-precondition (ζ = 12) as a function of embedding dimension () and
individual components: iteration time (), preconditioner build time (), sketch apply time (),
and sketch generate time ().

26 / 32

Conclusions

– Sparse sketches seem to outperform other sketching types in most
computational settings

– Sparse sign sketches can be efficiently generated in a high-level language
(but it requires some work)

– Sparse sign sketches and sketch-and-precondition have very good
performance on one andmultiple GPU devices (for tall problems)

– Practical implementations of sketch-and-precondition should aim to
adaptively determine the embedding dimension

27 / 32

Other sparse sketches

Definition: We say S ∈ Rd×m is a sparse stack sketching matrix with sparsity
parameter ζ if

S =

√
m
ζ

S1...
Sζ

 ,

where each Si ∈ Rd/ζ×m is an independent CountSketch matrix.

Theorem (Chenakkod, Dereziński, and Dong 2025):3 Subspace embedding with
distortion η if d = O(n/η2) and ζ = O(log(n)/η).

Question: Why did sparse sign sketches get popularized instead of sparse stack
sketches? Are there any settings where we should prefer sparse sign sketches?

3up to sub-polylog factors.
28 / 32

Other iterativemethods

We often have a good idea of the spectrum ofAM.
– We can use Chebyshev iteration and get essentially the same convergence
rate as LSQR, while avoiding inner products.

– However, on “hard problems”, the sketch may not behave like a Gaussian

0.06 0.08 0.10 0.12

10 11

10 9

10 7

10 5

10 3

er
ro

r

typical

0.06 0.08 0.10 0.12

hard

time (s)

Legend: Error as a function of runtime for various iterative methods: LSQR (), Gradient Descent (),
and Heavy ball momentum ().

29 / 32

Dedicated sketch-apply primitives?

We are using cuSPARSE to apply the sparse sign sketches as generic CSC
matrices. However, sparse sketch matrices have a lot of special structure.

– There are only two nonzero values (which we can assume are±1). So we can
apply the sketch without float multiplication/division.

– Since the nonzeros are distributed in a very particular way, might be more
efficient ways to access memory.

Some recent work on fine-grained implementation for CountSketch (ζ = 1).4

4Higgins, Boman, and Yamazaki 2025.
30 / 32

References I

Avron, Haim, Petar Maymounkov, and Sivan Toledo (Jan. 2010). “Blendenpik: Supercharging

LAPACK’s Least-Squares Solver”. In: SIAM Journal on Scientific Computing 32.3, pp. 1217–1236.

ISSN: 1095-7197. DOI: 10.1137/090767911.
Chenakkod, Shabarish, Michał Dereziński, and Xiaoyu Dong (2025). Optimal Subspace Embeddings:

Resolving Nelson-Nguyen Conjecture Up to Sub-Polylogarithmic Factors. arXiv: 2508.14234
[cs.DS].

Cohen, Michael B. (Dec. 2015). “Nearly Tight Oblivious Subspace Embeddings by Trace Inequalities”.

In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms.

Society for Industrial and Applied Mathematics, pp. 278–287. DOI:

10.1137/1.9781611974331.ch21.
Epperly, Ethan N. (Oct. 2024). “Fast and Forward Stable Randomized Algorithms for Linear

Least-Squares Problems”. In: SIAM Journal on Matrix Analysis and Applications 45.4,

pp. 1782–1804. ISSN: 1095-7162. DOI: 10.1137/23m1616790.

31 / 32

https://doi.org/10.1137/090767911
https://arxiv.org/abs/2508.14234
https://arxiv.org/abs/2508.14234
https://doi.org/10.1137/1.9781611974331.ch21
https://doi.org/10.1137/23m1616790

References II

Higgins, Andrew J., Erik G. Boman, and Ichitaro Yamazaki (2025). A High Performance GPU

CountSketch Implementation and Its Application toMultisketching and Least Squares Problems.

arXiv: 2508.14209 [math.NA].
Murray, Riley et al. (2023). Randomized Numerical Linear Algebra : A Perspective on the Field With

an Eye to Software. arXiv: 2302.11474 [math.NA].
Rokhlin, Vladimir andMark Tygert (Sept. 2008). “A fast randomized algorithm for overdetermined

linear least-squares regression”. In: Proceedings of the National Academy of Sciences 105.36,

pp. 13212–13217. ISSN: 1091-6490. DOI: 10.1073/pnas.0804869105.

32 / 32

https://arxiv.org/abs/2508.14209
https://arxiv.org/abs/2302.11474
https://doi.org/10.1073/pnas.0804869105

	References

