GPU parallelizable
sketch-and-precondition

Tyler Chen

JPMorganChase

Disclaimer

This presentation was prepared for informational purposes by the Global
Technology Applied Research center of JPMorgan Chase & Co. This paper is not a
merchandisable/sellable product of the Research Department of JPMorgan Chase
& Co. or its affiliates. Neither JPMorgan Chase & Co. nor any of its affiliates makes
any explicit or implied representation or warranty and none of them accept any
liability in connection with this paper, including, without limitation, with respect to
the completeness, accuracy, or reliability of the information contained herein and
the potential legal, compliance, tax, or accounting effects thereof. This document
is not intended as investment research or investment advice, or as a
recommendation, offer, or solicitation for the purchase or sale of any security,
financial instrument, financial product or service, or to be used in any way for
evaluating the merits of participating in any transaction.

2/32

Paper

GPU-Parallelizable Randomized Sketch-and-Precondition for Linear Regression
using Sparse Sign Sketches

Tyler Chen, Pradeep Niroula, Archan Ray, Pragna Subrahmanya, Marco Pistoia,
Niraj Kumar

https://arxiv.org/abs/2506.03070

3/32

Linear Regression

We are interested in solving the least squares problem

min |[b — Ax||, AeR™" beR™ m>n>1.

XERN

Classical factorization methods (e.g. Householder QR):
— require O(mn?) arithmetic operations
- do not take advantage of sparsity in A
Classical iterative methods (e.g. LSQR):
- require O(cond(A) nnz(A) log(1/¢)) arithmetic operations
- intractable if A is ill-conditioned.

4/32

Sketch-and-precondition

We will construct a preconditioner M € R"*" and solve
in [[b— (AM x = My.
min |[b— (AM)y], y

If AM is well-conditioned, then the convergence of iterative methods is fast!

In general, finding a good preconditioned M can be hard. However, using
RandNLA, we can efficiently (when m >> n) construct an excellent preconditioner
(e.g. for which cond(AM) < 10).!

"Rokhlin and Tygert 2008; Avron, Maymounkov, and Toledo 2010.
5/32

Comment on measuring error

Lots of times, papers give the gurantees like

b - AR| < (14 &) b - Ax.|>

This is equivalent to a characterization in terms of the ATA-norm error:

Ib — AX||* = [|b — A(X, + X —Xx,)|?
= b—Ax, —A(x, —X)|?
S —
€span(A)+L €span(A)
= |lb — Ax,||* + [|A(x, — X)||>.

Rearranging, we find that

1A, —)| = |b — AX]|| — [[b — Ax.||* < ||b — Ax, |

6/32

Example

10 4
1075
1076 4
107 4

10

error

107 4
10-10 J

10711 4

10712 4 A

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175
time (s)

Legend: Error as a function of time for direct solver (A), iterative method without a preconditioner (—=—),
and sketch-and-precondition (—e—).

7/32

Subspace embedding

Definition. Let V ¢ R™ be a subspace. We say S € R9*™ js an subspace
embedding for V with distortion 7 if

vzeV: (1-n)lzl <|Sz| <+ n)lzl

If we get a subspace embedding for range(A, b) then we can efficiently construct:

— agood preconditioner M
- agood initial guess xo
Together, these will let us apply LSQR for a small number of iterations.

For this to be efficient we need:
- d <« m(sothat SA is easier to process than A)
- Sis efficient to generate and apply

8/32

More precise statement

If Sis a subspace embedding for A with distortion 7. Then,

—

+

3

cond(AM) <

=
3

where M is such that SAM has orthonormal columns. Moreover, if S is a subspace
embedding for (A, b) with distortion 7, then (coarse bound)

) 1/2
A~ o)l < (22) b~ Ax.|

where X is the solution to the sketched problem miny ||Sb — SAXx||.

So, we can set n as something constant (e.g. n = 1/2)!

9/32

How does embedding dimension relate to distorition?

Let V be an onb for V. Subspace embedding:
Ve eR": (1-n)|[Ve| < |ISVe| < (1+n)[Ve|

So we care about

Vel [sVe| _

|sve| _||sve|
B Ve —a e — om=SY) o i

cern V| cerr e

If S is Gaussian, then so is SV (by orthogonal invariance). Up to scaling,
omax(SV) = 1+ +/d/n, omin(SV) = 1— 4/d/n.

Many “mixing” sketches behave like Gaussians, so ~ y/d/n is good reference.

= 0min(SV).

10/32

Sketch and precondition

This gives the sketch-and-precondition algorithm (Rokhlin and Tygert 2008).

Algorithm:

1. Generate S (choose hyperparameters)
Compute SA, Sb
Factor QR = SA (or SVD)
Get initial guess xo = R'Q"Sb
Preconditioner M = R~

o oA W

Run preconditioned iterative method

1/32

Sparse sign sketch

Definition: We say S € R9*™ is a sparse sign sketching matrix with sparsity
parameter (if

S — 9[51 Sy .- sm]7

¢

where each column s; is independent and consists of exactly (random signs
situated in uniformly random coordinates.?

Theorem (Cohen 2015): Subspace embedding with distortion 7 if
d = O(nlog(n)/*) and ¢ = O(log(n)/n).

Other sparse sketches: More at the end..

2This is often called CountSketch when ¢ = 1.
12/32

Sparse sign sketch

lllusration of sparse sign matrix withd = 10, m = 30,and { = 3:

Legend: gold/light entries = +1, blue/dark entries = —1

13/32

Sparse sign sketch quality

Sparse sign sketches (even with small) behave similarly to Gaussian sketches.

45e5_500_identity

4 connectus

100
107!
0

10

10-!

{5e5_500_dense

{5e5_500_sparse

/

[{MNIST_standard

07! 4bibd_22_8

100

4rail507

Jpre2_krylov

{t2em_krylov

{parabolic_fem_krylov

{kkt_power_krylov

10!

10!

10%

10! 10%

embedding dimension ratio: d/n

10!

102

Legend: (=2(——), (=4(—=—),(=8(——),(=12(—),(=24(——)

14/32

Generating sparse sign sketches

It is straightforward to sample the values of the (m nonzero entries of S, which are
independent random (scaled) signs.

The more involved task is determining, in each column, which of the ¢ rows will be
nonzero. This task is equivalent to sampling a ¢ x m matrix

Ci1 G2 - Cim
C=|: : :
Cer G2 -0 C¢m

where each column of C independently contains exactly ¢ numbers drawn from
[d] ={1,...,d} without replacement.

A CSC sparse representation can then easily be constructed.

15/32

High-level implementation

We want a high-level implementation for generating C.

- If we can offload costly operations to low-level primitives, then we get an
effecient platform agnostic implementation.

- Efficiently generating sparse sign sketches in python/MATLAB/etc. is
non-trivial.

We are unaware of any existing efficient high-level implementations!

Since the columns of C are iid, (mathematically) we can consider a single column.

However, we should keep in mind that we will want to be able to easily parallelize
over columns.

16/32

Shuffling algorithms

Naive: Permute {1,2, ..., n} and take first ¢ entries.

Fisher-Yates:
1. sample an integer x uniformly from [d — j]
2. let 6 be the number of numbers in C less than or equal to x
3. appendx+4dtoC

Naieve implemention requires O(CQ) work per column to check inclusion.

Fisher-Yates (inplace): (used by Murray et al. 2023 for RandLAPACK)
1. initialize list [1,..., m]
2. sample an integer x uniformly from [d — j]
3. swap indices from j and x

This now requires O(¢) work per column (but O(m) working space).

17/32

Our approach

Rejection sampling: (used by Epperly 2024)
1. Generate x uniformly from [d]
2. If xis not contained in C append it, else resample
Cost depends on number of rejections, but typically ¢ « d.

Our implementation: we use a vectorized version of rejection sampling:
1. sort along axis
2. compare neighbors
3. resample bad indices

This can be efficiently implemented in high-level langauges.

18/32

Numerical Experiments

Choice of sketching distribution

There are lots of ways to get a subspace embedding, including oblivious methods.
Common choices include:

- Gaussian
- Fast Trigonometric
- Sparse

These “mixing sketches” all behave similar to Gaussian with respect to the
embedding dimension.

20/32

Comparison of generate/apply time

generate time apply time (dense)

apply time (sparse)
107" 4 E
g 107
e e e
1073 ¥ F—F—¥—¥—v——¥—¥ 4
10! 10 10! 10 10! 10

embedding dimension ratio: d/n

Legend: Generate and apply time (to dense and sparse A) for Gaussian (——), subsampled trig (—+—), and
sparse sign sketch with (= 8(—e—)and { = 24 (—=—

21/32

Total Runtime

10° {5¢5_560_dense {5e5_500_sparse [{5e5_500_identity [{MNTST standard

|0"«‘\‘\1—<—‘—,-4—4—‘ E 4 4
[, —

107 4 J] i

10° bIdeZj}' dria . S onneerts drattsor .

107" 4

1072 4

107 4

P

S

._.’r*-—/

Ssecael

SEEL

T

T

10° 4

T
pre2_krylov

T
t2em_krylov

T
parabolic_fem_krylov

T
T_power_krylov

104 4 b Y |

107 g 4 4
.
10! 102 10! 102 10! 102 10! 102

embedding dimension ratio: d/n

Legend: Total runtime of sketch-and-precondition (¢ = 12) as a function of embedding dimension (—e—) and
individual components: iteration time (—=—), preconditioner build time (——), sketch apply time (—+),
and sketch generate time (——).

22/32

Embedding dimension

How should we select the embedding dimension d (which controls the subspace
embedding distorition 7)?
- Asn — Othe convergence of LSQR is faster, but factoring the sketch is more
expensive.
Gaussian sketch gives < \/m which we can use as a proxy.

23/32

Embedding dimension

100 4

rel. e.d. d/n

10° 10
matrix width n

Legend: Total runtime of sketch-and-precondition (¢ = 12) as a function of embedding dimension (—e—) and
individual components: iteration time (—=—), preconditioner build time (——), sketch apply time (—+),
and sketch generate time (——).

24/32

Multi-GPU computations

We study the behavior of sketch-and-precondition with sparse sketches when we
have multiple GPU devices (8 A100 GPUs on a single node).

Parallelize across long axis (dimension m vectors): Specifically, partition {1,...,m}
toly,...,lp. Each GPU holds some rows A[l,, - | of the data-matrix.

I\[|17 '] l\[|17 '])(

Ax = E X = E
Allp, -] Allp, -]x
T
Ally, 11" [yllo]
Aly=| 2| = A, Tyl T Al T[]

Allo. 1| |yl

25/32

Scaling Experiments

strong scaling weak scaling

——

100 4

time (s)

107" L= T T T T T—T—T—T T
1 2 3 4 5678 1 2 3 4 5678

number of GPUs

Legend: Total runtime of sketch-and-precondition (¢ = 12) as a function of embedding dimension (—e—) and

individual components: iteration time (—=—), preconditioner build time (——), sketch apply time (——),
and sketch generate time (——).

26/32

Conclusions

- Sparse sketches seem to outperform other sketching types in most
computational settings

- Sparse sign sketches can be efficiently generated in a high-level language
(but it requires some work)

— Sparse sign sketches and sketch-and-precondition have very good
performance on one and multiple GPU devices (for tall problems)

- Practical implementations of sketch-and-precondition should aim to
adaptively determine the embedding dimension

27/32

Other sparse sketches

Definition: We say S € R9*™M s a sparse stack sketching matrix with sparsity
parameter (if

where each S; € R9/¢*™M s an independent CountSketch matrix.

Theorem (Chenakkod, Derezinski, and Dong 2025):® Subspace embedding with
distortion 5 if d = O(n/5?) and ¢ = O(log(n)/n).

Question: Why did sparse sign sketches get popularized instead of sparse stack
sketches? Are there any settings where we should prefer sparse sign sketches?

Sup to sub-polylog factors.

28/32

Other iterative methods

We often have a good idea of the spectrum of AM.

- We can use Chebysheyv iteration and get essentially the same convergence
rate as LSQR, while avoiding inner products.

- However, on “hard problems”, the sketch may not behave like a Gaussian

typical hard

error

T T T T T T T T
0.06 0.08 0.10 0.12 0.06 0.08 0.10 0.12

time (s)

Legend: Error as a function of runtime for various iterative methods: LSQR (—e—), Gradient Descent (—=—),

and Heavy ball momentum (—4—).

29/32

Dedicated sketch-apply primitives?

We are using cuSPARSE to apply the sparse sign sketches as generic CSC
matrices. However, sparse sketch matrices have a lot of special structure.

— There are only two nonzero values (which we can assume are +1). So we can
apply the sketch without float multiplication/division.

- Since the nonzeros are distributed in a very particular way, might be more
efficient ways to access memory.

Some recent work on fine-grained implementation for CountSketch (¢ = 1).

*Higgins, Boman, and Yamazaki 2025.
30/32

References |

Avron, Haim, Petar Maymounkoy, and Sivan Toledo (Jan. 2010). “Blendenpik: Supercharging
LAPACK'’s Least-Squares Solver”. In: SIAM Journal on Scientific Computing 32.3, pp. 1217-1236.
ISSN: 1095-7197. DOI: 10.1137/090767911.

Chenakkod, Shabarish, Michat Derezinski, and Xiaoyu Dong (2025). Optimal Subspace Embeddings:

Resolving Nelson-Nguyen Conjecture Up to Sub-Polylogarithmic Factors. arXiv: 2508. 14234
[cs.DS].

Cohen, Michael B. (Dec. 2015). “Nearly Tight Oblivious Subspace Embeddings by Trace Inequalities”.

In: Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms.
Society for Industrial and Applied Mathematics, pp. 278-287. DOI:
10.1137/1.9781611974331.ch21.

Epperly, Ethan N. (Oct. 2024). “Fast and Forward Stable Randomized Algorithms for Linear
Least-Squares Problems”. In: SIAM Journal on Matrix Analysis and Applications 45.4,
pp. 1782-1804. ISSN: 1095-7162. DOI: 10.1137/23m1616790.

31/32

https://doi.org/10.1137/090767911
https://arxiv.org/abs/2508.14234
https://arxiv.org/abs/2508.14234
https://doi.org/10.1137/1.9781611974331.ch21
https://doi.org/10.1137/23m1616790

References i

Higgins, Andrew J., Erik G. Boman, and Ichitaro Yamazaki (2025). A High Performance GPU
CountSketch Implementation and Its Application to Multisketching and Least Squares Problems.
arXiv: 2508.14209 [math.NA].

Murray, Riley et al. (2023). Randomized Numerical Linear Algebra : A Perspective on the Field With
an Eye to Software. arXiv: 2302.11474 [math.NA].

Rokhlin, Vladimir and Mark Tygert (Sept. 2008). “A fast randomized algorithm for overdetermined
linear least-squares regression”. In: Proceedings of the National Academy of Sciences 105.36,
pp. 13212-13217. ISSN: 1091-6490. DOI: 10.1073/pnas .0804869105.

32/32

https://arxiv.org/abs/2508.14209
https://arxiv.org/abs/2302.11474
https://doi.org/10.1073/pnas.0804869105

	References

