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About this project

This is part of a broad research program on understanding what can be learned
about a matrix from a small number of matrix-vector products.!

Collaboration between folks from NLA and TCS:

- Noah Amsel (NYU) — Cameron Musco (UMass)
- Feyza Duman Keles (NYU) - Christopher Musco (NYU)
- Diana Halikias (Cornell) - David Persson (EPFL-NYU)

I'm particularly interested in feedback from this community about what kinds of
theoretical analyses of algorithms for hierarchical matrices would be interesting.

'Halko, Martinsson, and Tropp 2011; Meyer, Musco, Musco, and Woodruff 2021; Halikias and
Townsend 2023; Amsel et al. 2024, etc.



HODLR Matrices

Definition. Fix a rank parameter k. We say a n X n matrix A is HODLR(k) if n < kor
A can be partitioned into (n/2) x (n/2) blocks

A A
A = 1,1 1,2]
[AZ,l A2,2

such that A, , and A, ; are of rank at most kand A, ; and A, , are each HODLR(k).



HODLR matrices
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The HODLR approximation problem

Problem. Given an n x n matrix A, accessible only by matrix-vector products, a
rank parameter k, and an accuracy parameter ¢, find a HODLR (k) matrix A such that
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The best HODLR approximation to A is obtained by applying a rank-k SVD to each
low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)
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Problem. Given an n x n matrix A, accessible only by matrix-vector products, a
rank parameter k, and an accuracy parameter ¢, find a HODLR (k) matrix A such that
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The best HODLR approximation to A is obtained by applying a rank-k SVD to each
low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)

In the special case that A € HODLR(k), then we require A = A (regardless of ¢).

— There are several matvec algorithms for this setting?

2Lin, Lu, and Ying 2011; Martinsson 2016; Levitt and Martinsson 2022; Halikias and Townsend
2023.



Learning low-rank matrices from matrix-vector products

The Randomized SVD (RSVD) is a well-known algorithm for obtaining a low-rank
approximation to a matrix B:

1. Sample Gaussian matrix Q
2. Form Q = orth(BQ)

3. Compute X = Q'B

4. Output Q[[X]],

Theorem. If Q has ~ k/g columns, then

IB-QIXIill < (1+5) min_ IB-XI.

Corollary. If B is rank-k, then Q[X]], = B (with probability one).



Peeling: an algorithm for the recovery problem?

The algorithm works from the top layer down.
At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

We then “peel” off these blocks before proceeding to the next level

3Lin, Lu, and Ying 2011; Martinsson 2016.



Peeling: an algorithm for the recovery problem
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Peeling: an algorithm for the recovery problem

At each level we use ~ k matrix-vector products with A and AT.

There are log,(n/k) < log,(n) levels until the blocks are of size k

- then we can directly recover them at once with k products

Theorem. We can recover a HODLR matrix using O(klog,(n)) matvecs.



Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles
at each level. Exponential blow-up in the number of levels (polynomial in n)!
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What's going on? An illustration.

Suppose X and Y are rank k and Y is way bigger than X. Consider

X'Y X
0:X 0
X:0 X
0:X 0

o MO

When we recover the low-rank blocks at the first level we will essentially get

X0

Y X].



What's going on? An illustration.

Next we subtract off these approximations:
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What's going on? An illustration.

Now we sketch to learn the subspaces at the next level:

0 X 0 X1 Qt 0
X 0 X 0|l 0| | x@Qf+0}
0 X 0 X |||~ 0
X 0xo0flo X(QF + Q)

We then compute Q = orth(X(Q7 + Q3)) and get the correct range for X



What's going on? An illustration.

However, we run into problems at the projection stage:

X

[0 Q" 0 Q7] =[2Q'X 0 2Q'x 0]

Mo Ko
Mo Ko
o Mo

0
X
0

So our approximation to the off-diagonal blocks at this level is completely wrong...
We get 2QQ'X = 2X instead of X.

All of the error from the first level propagated to the second level!



A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let Q = orth(BQ +E;) and X = Q"B +E,. Then

1/2
IB-QIQ"B +E;[lille < IE, 2%l + 21z llr + (1Zpot 1 + [ EpotRpor RloplE) -

perturbations classical RSVD bound

Takeaway: The pseudoinverse will help damp the perturbation E,, but
(unsurprisingly) all of the perturbation E, can propagate.



Generalized Nystrém*

The RSVD tries to compute Q"B directly; this is the solution to:

mXin 1A - QX]lE.

#Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.



Generalized Nystrém*

The RSVD tries to compute Q"B directly; this is the solution to:
mXin 1A - QX]lE.
Instead, we can solve a sketched problem:
min IPTA -9TQX|.

This means X = (¥TQ)'WTA.

#Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.



Generalized Nystrém*

The RSVD tries to compute Q"B directly; this is the solution to:
mXin 1A - QX]lE.
Instead, we can solve a sketched problem:
min IPTA -9TQX|.
This means X = (¥TQ)'WTA.
Observation. By adding columns to ¥, we can damp errors in the product ¥TA.

The algorithm is also non-adaptive (we can do products with W in advance)

#Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.



Back to the hard instance
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Another approach: perforated sketches

Because of the structure of peeling, the error happens when blocks of our sketch hit
the error from our approximation of low-rank blocks at previous levels.

What if we just reduce how often this happens?



Perforated Block CountSketch
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Main result

Theorem. There exist matvec algorithms which use O(klog(n) - poly(1/B))
products with A to obtain a HODLR (k) matrix A satisfying®

A-A 1 + B)log(" i A—H|.
[ lr < (1+8) e I 3

5The poly(-) factors are essentially matching the best known bounds for Generalized Nystrém
(although these bounds are thought to be loose).



Main result

Theorem. There exist matvec algorithms which use O(klog(n) - poly(1/B))
products with A to obtain a HODLR (k) matrix A satisfying®

A-A 1 + B)log(" i A—H|.
[ lr < (1+8) e I 3

Corollary. (1 + ¢)-optimal approximation with O(k log(n) - poly(log(n)/)) matvecs

Corollary. n%°!-optimal approximation with O(k log(n)) matvecs

5The poly(-) factors are essentially matching the best known bounds for Generalized Nystrém
(although these bounds are thought to be loose).



Another experiment

Given points x; € R?, define [A];; = —log(|lx; — x;]))

points x; matrix A
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Another experiment
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Lower bounds?

The matrix-vector query model often lets us prove lower-bounds against any matvec
algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding how good algorithms are
(compared to classical numerical analysis).

Theorem. There is a constant C > 0 such that for any &, n, ¢, there exists a matrix A
such that getting a (1 + ¢)-optimal HODLR approximation requires at least
C(klog,(n/k) + k/¢) matvecs.



What's next?

Correct log(n) and ¢ rates for the algorithms we study?
- Limited by the best known bounds for Generalized Nystrém: O(k/s°)

True stability analysis (e.g. for floating point arithmetic)

|

Adaptive algorithms

Other hierarchical classes?

- for H! the generalization is probably straightforward
- for nested families (e.g. HSS), it’s not even clear how to get the best
approximation, even if you know the matrix

- Better understanding of (non-adaptive) low-rank approximation



Questions for you

- What are important theoretical questions in this area?

- Does it matter if algorithms are provably correct if they work well in practice?



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥, = ¥"Qand ¥, = ¥'Q.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
¥'B = ¥7(QQ"+QQ")B = ¥,Q'B + ¥,Q"B.

Therefore:

X = (¥'Q)(¥"B) = ¥]v,Q'B+¥!¥,Q'B = Q"B+ ¥]¥,Q"B.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥; = ¥TQ and ¥, = ¥TQ.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
Y B+E=97(QQ"+QQ")B+E = ¥,Q'B+¥,Q'B+E.
Therefore:

X = (Y7Q)(¥"B+E) = ¥]¥,Q'B+¥]¥,Q'B+ ¥|E = Q"B+ ¥!¥,Q'B+ V]E.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.
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