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About this project

This is part of a broad research program on understandingwhat can be learned

about amatrix from a small number of matrix-vector products.1

Collaboration between folks fromNLA andTCS:

– Noah Amsel (NYU)

– Feyza Duman Keles (NYU)

– Diana Halikias (Cornell)

– CameronMusco (UMass)

– ChristopherMusco (NYU)

– David Persson (EPFL→NYU)

I’m particularly interested in feedback from this community aboutwhat kinds of

theoretical analyses of algorithms for hierarchical matriceswould be interesting.

1Halko, Martinsson, and Tropp 2011; Meyer, Musco, Musco, andWoodruff 2021; Halikias and

Townsend 2023; Amsel et al. 2024, etc.
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HODLR Matrices

Definition. Fix a rank parameter 𝑘. We say a 𝑛 × 𝑛matrix𝐀 isHODLR(𝑘) if 𝑛 ≤ 𝑘 or
𝐀 can be partitioned into (𝑛/2) × (𝑛/2) blocks

𝐀 = [𝐀1,1 𝐀1,2
𝐀2,1 𝐀2,2

]

such that𝐀1,2 and𝐀2,1 are of rank at most 𝑘 and𝐀1,1 and𝐀2,2 are eachHODLR(𝑘).
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HODLR matrices

low-rank block recursive block
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The HODLR approximation problem

Problem. Given an 𝑛 × 𝑛matrix𝐀, accessible only bymatrix-vector products, a
rank parameter 𝑘, and an accuracy parameter 𝜀, find aHODLR(𝑘)matrix �̃� such that

‖𝐀 − �̃�‖F ≤ (1 + 𝜀) min
𝐇∈HODLR(𝑘)

‖𝐀 − 𝐇‖F.

The best HODLR approximation to𝐀 is obtained by applying a rank-𝑘 SVD to each
low-rank block of 𝐀.

– This is too expensive in thematrix-vector product model (𝑛 products)

In the special case that𝐀 ∈ HODLR(𝑘), thenwe require �̃� = 𝐀 (regardless of 𝜀).

– There are several matvec algorithms for this setting2

2Lin, Lu, andYing 2011; Martinsson 2016; Levitt andMartinsson 2022; Halikias and Townsend

2023.
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Learning low-rank matrices from matrix-vector products

The Randomized SVD (RSVD) is awell-known algorithm for obtaining a low-rank

approximation to amatrix𝐁:

1. Sample Gaussianmatrix𝛀
2. Form𝐐 = orth(𝐁𝛀)
3. Compute𝐗 = 𝐐T𝐁
4. Output𝐐[[𝐗]]𝑘

Theorem. If 𝛀 has∼ 𝑘/𝜀 columns, then

‖𝐁 − 𝐐[[𝐗]]𝑘‖F ≤ (1 + 𝜀) min
rank(𝐗)≤𝑘

‖𝐁 − 𝐗‖F.

Corollary. If 𝐁 is rank-𝑘, then𝐐[[𝐗]]𝑘 = 𝐁 (with probability one).
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Peeling: an algorithm for the recovery problem3

The algorithmworks from the top layer down.

At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

We then “peel” off these blocks before proceeding to the next level

3Lin, Lu, andYing 2011; Martinsson 2016.
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Peeling: an algorithm for the recovery problem
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Peeling: an algorithm for the recovery problem

At each levelwe use∼ 𝑘matrix-vector productswith𝐀 and𝐀T.

There are log2(𝑛/𝑘) ≤ log2(𝑛) levels until the blocks are of size 𝑘

– thenwe can directly recover them at oncewith 𝑘 products

Theorem.We can recover a HODLRmatrix using𝑂(𝑘 log2(𝑛))matvecs.
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Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles

at each level. Exponential blow-up in the number of levels (polynomial in 𝑛)!
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What’s going on? An illustration.

Suppose𝐗 and 𝐘 are rank 𝑘 and 𝐘 is way bigger than𝐗. Consider

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝐘 𝐗
𝐗 𝟎 𝐗 𝟎
𝐘 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

.

Whenwe recover the low-rank blocks at the first levelwewill essentially get

[𝐘 𝐗
𝐗 𝟎] .
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What’s going on? An illustration.

Nextwe subtract off these approximations:

⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝐘 𝐗
𝐗 𝟎 𝐗 𝟎
𝐘 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

𝟎 𝟎 𝐘 𝟎
𝟎 𝟎 𝟎 𝟎
𝐘 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

.
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What’s going on? An illustration.

Nowwe sketch to learn the subspaces at the next level:

⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛀+
1

𝟎
𝛀+

3
𝟎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝟎
𝐗(𝛀+

1 + 𝛀+
3)

𝟎
𝐗(𝛀+

1 + 𝛀+
3)

⎤
⎥
⎥
⎥
⎦

.

We then compute𝐐 = orth(𝐗(𝛀+
1 + 𝛀+

3)) and get the correct range for𝐗
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What’s going on? An illustration.

However,we run into problems at the projection stage:

[𝟎 𝐐T 𝟎 𝐐T]
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

= [2𝐐T𝐗 𝟎 2𝐐T𝐗 𝟎].

So our approximation to the off-diagonal blocks at this level is completelywrong...

We get 2𝐐𝐐T𝐗 = 2𝐗 instead of 𝐗.

All of the error from the first level propagated to the second level!
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A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let𝐐 = orth(𝐁𝛀 + 𝐄1) and𝐗 = 𝐐T𝐁 + 𝐄2. Then

‖𝐁 − 𝐐[[𝐐T𝐁 + 𝐄2]]𝑘‖F ≤ ‖𝐄1𝛀†
top‖F + 2‖𝐄2‖F⏟⏟⏟⏟⏟⏟⏟⏟⏟
perturbations

+ (‖𝚺bot‖2
F + ‖𝚺bot𝛀bot𝛀

†
top‖2

F)
1/2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
classical RSVD bound

.

Takeaway: The pseudoinversewill help damp the perturbation 𝐄1, but

(unsurprisingly) all of the perturbation 𝐄2 can propagate.
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Generalized Nyström4

The RSVD tries to compute𝐐T𝐁 directly; this is the solution to:

min
𝐗

‖𝐀 − 𝐐𝐗‖F.

Instead,we can solve a sketched problem:

min
𝐗

‖𝚿T𝐀 − 𝚿T𝐐𝐗‖F.

This means𝐗 = (𝚿T𝐐)†𝚿T𝐀.

Observation. By adding columns to𝚿, we can damp errors in the product𝚿T𝐀.

The algorithm is also non-adaptive (we can do productswith𝚿 in advance)

4Clarkson andWoodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.
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Back to the hard instance

101 102 103 104

dimension 𝑛

100

101

102

103

104
re
la
ti
v
e
er
ro
r

𝑛
RSVD

1 18



Back to the hard instance
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Another approach: perforated sketches

Because of the structure of peeling, the error happenswhen blocks of our sketch hit

the error from our approximation of low-rank blocks at previous levels.

What if we just reduce howoften this happens?
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Perforated Block CountSketch
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Perforated Block CountSketch
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Main result

Theorem. There exist matvec algorithmswhich use𝑂(𝑘 log(𝑛) ⋅ poly(1/𝛽))
productswith𝐀 to obtain aHODLR(𝑘)matrix �̃� satisfying5

‖𝐀 − �̃�‖F ≤ (1 + 𝛽)log2(𝑛) min
𝐇∈HODLR(𝑘)

‖𝐀 − 𝐇‖F.

Corollary. (1 + 𝜀)-optimal approximationwith𝑂(𝑘 log(𝑛) ⋅ poly(log(𝑛)/𝜀))matvecs

Corollary. 𝑛0.01-optimal approximationwith𝑂(𝑘 log(𝑛))matvecs

5The poly(⋅) factors are essentiallymatching the best known bounds for Generalized Nyström
(although these bounds are thought to be loose).
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Another experiment

Given points 𝑥𝑖 ∈ ℝ2, define [𝐀]𝑖,𝑗 = − log(‖𝑥𝑖 − 𝑥𝑗‖)
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Another experiment

101

oversampling 1/𝛽

10−2

10−1

100

re
la
ti
v
e
er
ro
r

GN

RSVD

1 24



Lower bounds?

Thematrix-vector querymodel often lets us prove lower-bounds against anymatvec

algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding howgood algorithms are

(compared to classical numerical analysis).

Theorem. There is a constant 𝐶 > 0 such that for any 𝑘, 𝑛, 𝜀, there exists amatrix𝐀
such that getting a (1 + 𝜀)-optimal HODLR approximation requires at least
𝐶(𝑘 log2(𝑛/𝑘) + 𝑘/𝜀)matvecs.
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What’s next?

– Correct log(𝑛) and 𝜀 rates for the algorithmswe study?
– Limited by the best known bounds for Generalized Nyström: 𝑂(𝑘/𝜀3)

– True stability analysis (e.g. for floating point arithmetic)

– Adaptive algorithms

– Other hierarchical classes?

– forℋ1 the generalization is probably straightforward
– for nested families (e.g. HSS), it’s not even clear how to get the best
approximation, even if you know thematrix

– Better understanding of (non-adaptive) low-rank approximation
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Questions for you

– What are important theoretical questions in this area?

– Does it matter if algorithms are provably correct if theyworkwell in practice?
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Generalized Nyström (perturbation) analysis

Extend𝐐 to an orthogonal matrix [𝐐 �̂�], andwrite𝚿1 = 𝚿T𝐐 and𝚿2 = 𝚿T�̂�.

By orthogonal invariance,𝚿1 and𝚿2 are independent Gaussianmatrices!

First observe:

𝚿T𝐁 = 𝚿T(𝐐𝐐T + �̂��̂�T)𝐁 = 𝚿1𝐐T𝐁 + 𝚿2�̂�T𝐁.

Therefore:

𝐗 = (𝚿T𝐐)†(𝚿T𝐁) = 𝚿†
1𝚿1𝐐T𝐁 + 𝚿†

1𝚿2�̂�T𝐁 = 𝐐T𝐁 + 𝚿†
1𝚿2�̂�T𝐁.

Addingmore columns to𝚿 (and hence𝚿1) reduces the error in the second term.
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𝐗 = (𝚿T𝐐)†(𝚿T𝐁 + 𝐄) = 𝚿†
1𝚿1𝐐T𝐁 + 𝚿†
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1𝐄 = 𝐐T𝐁 + 𝚿†

1𝚿2�̂�T𝐁 + 𝚿†
1𝐄.
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