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Let 𝑆 be some family of matrices parameterized by a fewparameters.
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Matrix recovery and approximation

Let 𝑆 be some family of matrices parameterized by a small number of parameters.

Recovery: Promised𝐀 ∈ 𝑆, learn parameterization of 𝐀.

Approximation: Arbitrary𝐀, learn (parameterization of) 𝐀̃ ∈ 𝑆 such that

‖𝐀 − 𝐀̃‖ ≤ (1 + 𝜀) min
𝐗∈𝑆

‖𝐀 − 𝐗‖.

Howdowemeasure costs?

– number of arithmetic operations

– number of matrix-vector queries 𝐱 ↦ 𝐀𝐱 or 𝐲 ↦ 𝐀T𝐲
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Motivation 1: structured matrices are fast to work with

Suppose 𝑆 is some family of easy toworkwithmatrices.

Solve all your linear algebra problemswith𝐀 in these three simple steps:

1. approximate𝐀 by 𝐀̃ ∈ 𝑆
2. use structure of 𝑆 to solve problemwith 𝐀̃ quickly

3. pretend 𝐀̃ is𝐀 and declare success

– or try to correct for the error
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Motivation 1: structured matrices are fast to work with

Suppose 𝑆 is some family of easy toworkwithmatrices.

Solve all your linear algebra problemswith𝐀 in these three simple steps:

1. approximate𝐀 by 𝐀̃ ∈ 𝑆
2. use structure of 𝑆 to solve problemwith 𝐀̃ quickly

3. pretend 𝐀̃ is𝐀 and declare success

– or try to correct for the error

Examples of this framework:

– image-classification: 𝑆 = JPEG compressed images

– kernel spectral clustering: 𝑆 = low=rankmatrices

– performmatrix products: 𝑆 = low-rankmatrices, 𝑆 = sparsematrices, etc.

– solve regression problem, 𝑆 = low-rankmatrices
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Motivation 2: Operator Learning1

Physical processes oftenmap a function 𝑓 to a function 𝑢. I.e., implement some
operatorΦ(𝑓) ↦ 𝑢.

1Boullé and Townsend 2024.
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What role can theory play?

Enginering: Come upwith some algorithm and demonstrate itworks empirically.

Appliedmath: Develop algorithms to provably solve the recovery problem.2Hope

theyworkwhen𝐀 is not in 𝑆, but is very close to somematrix in 𝑆.

Theory: Guarantees for the approximation problem. Complexity lower bounds for

the hardness of problems.

Low-rank approximation is has seen a lot of work from all of these perspectives.

But other classes have relatively limited theory.

2Xia, Chandrasekaran, Gu, and Li 2010; Lin, Lu, andYing 2011; Halikias and Townsend 2023; Levitt

andMartinsson 2022a.
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Hierarchical matrices

Today, 𝑆will be some family of hierarchical matrices.

Hierarchical matrices are useful for applications involving physical applications

due to the presence of multiscale phenomena.

– example classes: hierarchical off-diagonal low-rank (HODLR), hierarchical

semi-seperable (HSS),ℋ1,ℋ2, hierarchical off-diagonal butterfly, etc.
8



Why hierarchical matrices?

Motivating example: Supposewe’re doing some 𝑛-body simulation and have the
positions (𝑥𝑖 ∈ ℝ3) of 𝑛 celestial bodies in space.

A relevant matrix is

𝐀𝑖,𝑗 = ‖𝑥𝑖 − 𝑥𝑗‖−2.

What does this matrix look like??
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HODLR matrices

low-rank block recursive block
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HODLR Matrices

Definition. Fix a rank parameter 𝑘. We say a 𝑛 × 𝑛matrix𝐀 isHODLR(𝑘) if 𝑛 ≤ 𝑘
or𝐀 can be partitioned into (𝑛/2) × (𝑛/2) blocks

𝐀 = [𝐀1,1 𝐀1,2
𝐀2,1 𝐀2,2

]

such that𝐀1,2 and𝐀2,1 are of rank atmost 𝑘 and𝐀1,1 and𝐀2,2 are eachHODLR(𝑘).

HODLRmatries have𝑂(𝑘𝑛 log(𝑛)) parameters.

There are several matvec algorithms for the recovery problem.3

3Lin, Lu, andYing 2011; Martinsson 2016; Levitt andMartinsson 2022b; Halikias and Townsend

2023.
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Low-rank approximation from matrix-vector products

The Randomized SVD (RSVD) is awell-known algorithm for obtaining a low-rank

approximation to amatrix𝐁:

1. Sample Gaussianmatrix𝛀
2. Form𝐐 = orth(𝐁𝛀)
3. Compute𝐗 = 𝐐T𝐁 (minimize: ‖𝐁 − 𝐐𝐗‖F)
4. Output𝐐[[𝐗]]𝑘

Theorem. If 𝐁 is rank-𝑘, and𝛀 has𝑂(𝑘) columns, then𝐐[[𝐗]]𝑘 = 𝐁 (a.s.).

13



Peeling: an algorithm for the recovery problem4

The algorithmworks from the top layer down.

At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

We then “peel” off these blocks before proceeding to the next level

4Lin, Lu, andYing 2011; Martinsson 2016.
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Peeling: an algorithm for the recovery problem

𝐀(3) =

𝐀(3)
2,1

𝐀(3)
1,2

𝐀(3)
4,3

𝐀(3)
3,4

𝐀(3)
6,5

𝐀(3)
5,6

𝐀(3)
8,7

𝐀(3)
7,8

𝛀+ =

𝛀1

𝛀3

𝛀5

𝛀7

𝚿− =

𝚿2

𝚿4

𝚿6

𝚿8

From𝐀(3)𝛀+we get sketches: 𝐀(3)
2,1𝛀1,𝐀

(3)
4,3𝛀3,𝐀

(3)
6,5𝛀5,𝐀

(3)
8,7𝛀7.
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Peeling: an algorithm for the recovery problem

At each levelwe use𝑂(𝑘)matrix-vector productswith𝐀 and𝐀T.

There are log2(𝑛/𝑘) ≤ log2(𝑛) levels until the blocks are of size 𝑘

– thenwe can directly recover them at oncewith 𝑘 products

Theorem.We can recover a HODLRmatrix using𝑂(𝑘 log2(𝑛))matvecs.
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Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles

at each level. Exponential blow-up in the number of levels (linear in 𝑛)!
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What’s going on? An illustration.

Suppose𝐗 and 𝐘 are rank 𝑘 and 𝐘 is way bigger than𝐗. Consider

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝐘 𝐗
𝐗 𝟎 𝐗 𝟎
𝐘 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

.

Whenwe recover the low-rank blocks at the first levelwewill essentially get

[𝐘 𝟎
𝟎 𝟎] .
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What’s going on? An illustration.

Nextwe subtract off these approximations:

⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝐘 𝐗
𝐗 𝟎 𝐗 𝟎
𝐘 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

−
⎡
⎢
⎢
⎢
⎣

𝟎 𝟎 𝐘 𝟎
𝟎 𝟎 𝟎 𝟎
𝐘 𝟎 𝟎 𝟎
𝟎 𝟎 𝟎 𝟎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

.
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What’s going on? An illustration.

Nowwe sketch to learn the subspaces at the next level:

⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛀+
1

𝟎
𝛀+

3
𝟎

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝟎
𝐗(𝛀+

1 + 𝛀+
3)

𝟎
𝐗(𝛀+

1 + 𝛀+
3)

⎤
⎥
⎥
⎥
⎦

.

We then compute𝐐 = orth(𝐗(𝛀+
1 + 𝛀+

3)) and get the correct range for𝐗
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What’s going on? An illustration.

However,we run into problems at the projection stage:

[𝟎 𝐐T 𝟎 𝐐T]
⎡
⎢
⎢
⎢
⎣

𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎
𝟎 𝐗 𝟎 𝐗
𝐗 𝟎 𝐗 𝟎

⎤
⎥
⎥
⎥
⎦

= [2𝐐T𝐗 𝟎 2𝐐T𝐗 𝟎].

So our approximation to the off-diagonal blocks at this level is completelywrong...

We get 2𝐐𝐐T𝐗 = 2𝐗 instead of 𝐗.

All of the error from the first level propagated to the second level!
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Accurate HODLR approximation?

This peeling type of algorithm is used in operator learning to approximate the

solution operator of elliptic PDEs (2024 SIAM Linear Algebra Best Paper Prize

winner).5

Boullé and Townsend 2022: Is there a peeling-type algorithm that works for

nearly-HODLRmatrices?

5Boullé and Townsend 2022.
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The HODLR approximation problem6

Problem. Given an 𝑛 × 𝑛matrix 𝐀, accessible only bymatrix-vector products, a
rank parameter 𝑘, and an accuracy parameter 𝜀, find a HODLR(𝑘)matrix 𝐀̃ such

that

‖𝐀 − 𝐀̃‖F ≤ (1 + 𝜀) min
𝐇∈HODLR(𝑘)

‖𝐀 − 𝐇‖F.

Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to𝐀 is obtained by applying a rank-𝑘 SVD to
each low-rank block of 𝐀.

– This is too expensive in thematrix-vector product model (𝑛 products)

6Chen et al. 2025.
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Classical RSVD analysis7

Theorem. Let𝐐 = orth(𝐁𝛀) and𝐗 = 𝐐T𝐁. If 𝛀has𝑂(𝑘/𝜀) columns, then output
of RSVD satisfies

𝔼[‖𝐁 − 𝐐[[𝐗]]𝑘‖2
F] ≤ (1 + 𝜀)‖𝐁 − [[𝐁]]𝑘‖2

F.

Structural perturbation bound:

‖𝐁 − 𝐐[[𝐗]]𝑘‖2
F ≤ ‖𝚺bot‖2

F + ‖𝚺bot𝛀bot𝛀
†
top‖2

F.

When𝛀 is Gaussian and has𝑚 ≥ 𝑘 + 2 columns:

𝔼[‖𝚺bot𝛀bot𝛀
†
top‖2

F] = ‖𝚺bot‖2
F ⋅ 𝔼[‖𝛀†

top‖2
F] = 𝑘

𝑚 − 𝑘 − 1‖𝚺bot‖2
F.

7Halko, Martinsson, and Tropp 2011; Tropp andWebber 2023.
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A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let𝐐 = orth(𝐁𝛀 + 𝐄1) and𝐗 = 𝐐T𝐁 + 𝐄2. Then

‖𝐁 − 𝐐[[𝐗]]𝑘‖F ≤ ‖𝐄1𝛀†
top‖F + 2‖𝐄2‖F⏟⏟⏟⏟⏟⏟⏟⏟⏟
perturbations

+ (‖𝚺bot‖2
F + ‖𝚺bot𝛀bot𝛀

†
top‖2

F)
1/2

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
classical RSVD bound

.

When𝛀 has𝑂(𝑘/𝜀) columns,𝛀top is a 𝑘 × 𝑂(𝑘/𝜀)Gaussianmatrixwhich has a small
pseudoinverse:

𝔼[(𝛀†
top)T𝛀

†
top] = 𝔼[(𝛀top𝛀T

top)−1] = 𝜀𝐈.

Takeaway: The pseudoinversewill help damp the perturbation 𝐄1, but

(unsurprisingly) all of the perturbation 𝐄2 can propagate.
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Generalized Nyström8

The RSVD tries to compute𝐐T𝐁 directly; this is the solution to:

min
𝐗

‖𝐀 − 𝐐𝐗‖F.

Instead,we can solve a sketched problem:

min
𝐗

‖𝚿T𝐀 − 𝚿T𝐐𝐗‖F.

This means𝐗 = (𝚿T𝐐)†𝚿T𝐀.

Observation. By adding columns to𝚿, we can damp errors in the product𝚿T𝐀.

The algorithm is also non-adaptive (we can do productswith𝚿 in advance)

8Clarkson andWoodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.
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Back to the hard instance
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Another approach: perforated sketches

Because of the structure of peeling, the error happenswhen blocks of our sketch hit

the error from our approximation of low-rank blocks at previous levels.

What if we just reduce howoften this happens?
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Our main result

Theorem. There existmatvecalgorithmswhichuse𝑂(𝑘 log(𝑛)/𝛽3)productswith
𝐀 to obtain aHODLR(𝑘)matrix 𝐀̃ satisfying

‖𝐀 − 𝐀̃‖F ≤ (1 + 𝛽)log2(𝑛) min
𝐇∈HODLR(𝑘)

‖𝐀 − 𝐇‖F.

Corollary. (1 + 𝜀)-optimal approximationwith𝑂(𝑘 log(𝑛)4/𝜀3)matvecs

Corollary. 𝑛0.01-optimal approximationwith𝑂(𝑘 log(𝑛))matvecs

32



Our main result

Theorem. There existmatvecalgorithmswhichuse𝑂(𝑘 log(𝑛)/𝛽3)productswith
𝐀 to obtain aHODLR(𝑘)matrix 𝐀̃ satisfying

‖𝐀 − 𝐀̃‖F ≤ (1 + 𝛽)log2(𝑛) min
𝐇∈HODLR(𝑘)

‖𝐀 − 𝐇‖F.

Corollary. (1 + 𝜀)-optimal approximationwith𝑂(𝑘 log(𝑛)4/𝜀3)matvecs

Corollary. 𝑛0.01-optimal approximationwith𝑂(𝑘 log(𝑛))matvecs

32



Another experiment

Given points 𝑥𝑖 ∈ ℝ2, define [𝐀]𝑖,𝑗 = − log(‖𝑥𝑖 − 𝑥𝑗‖)
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Another experiment
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Lower bounds?

Thematrix-vector querymodel often lets us prove lower-bounds against anymatvec

algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding howgood algorithms are

(compared to classical numerical analysis).

Theorem. There is a constant 𝐶 > 0 such that for any 𝑘, 𝑛, 𝜀, there exists a ma-
trix𝐀 such that getting a (1 + 𝜀)-optimal HODLR approximation requires at least
𝐶(𝑘 log2(𝑛/𝑘) + 𝑘/𝜀)matvecs.
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HSS matrices

The low-rank blocks of HSSmatrices are related: 𝑂(𝑛𝑘) parameters.
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HSS is tricky!

Manypapers studyHSS recovery.9

The nestedness of column-spaces across levels adds lots of relationswhichmake

the approximation problemmuch harder.

– No known polynomial algorithm known for constant factor HSS

approximation?!

– In fact, not even clearwhat to do in exponential time.

We prove:

Theorem. Can get𝑂(log(𝑛))HSS approximation in𝑂(𝑘𝑛2) time.

9Xia, Chandrasekaran, Gu, and Li 2010; Levitt andMartinsson 2022b; Halikias andTownsend 2023.
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Some intuition for why HSS might be hard

Toy problem: Fix matrices 𝐀𝑖,𝑗 for 𝑖, 𝑗 ∈ [𝑞]. Find matrices 𝐔𝑖 and 𝐕𝑗 with 𝑘 or-
thonormal columnsminimizing

𝑞

∑
𝑖=1

𝑞

∑
𝑗=1

∥𝐀𝑖,𝑗 − 𝐔𝑖𝐗𝑖,𝑗𝐕T
𝑗 ∥2

F
, 𝐗𝑖,𝑗 ∶= 𝐔T

𝑖 𝐀𝑖,𝑗𝐕T
𝑗 .

Greedy approach: first find all the𝐔𝑖, then based on these, find the𝐕𝑗.

– gives 2-factor approximation

38



What’s next?

Big goal: general theory for structuredmatrix approximation problem

– Correct log(𝑛) and 𝜀 rates for the algorithmswe study?
– Limited by the best known bounds for Generalized Nyström: 𝑂(𝑘/𝜀3)

– True stability analysis (e.g. for floating point arithmetic)

– Working onwith students at NYU

– Adaptive algorithms

– Other hierarchical classes?

– Better understanding of (non-adaptive) low-rank approximation
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Generalized Nyström (perturbation) analysis

Extend𝐐 to an orthogonal matrix [𝐐 𝐐̂], andwrite𝚿1 = 𝚿T𝐐 and𝚿2 = 𝚿T𝐐̂.

By orthogonal invariance,𝚿1 and𝚿2 are independent Gaussianmatrices!

First observe:

𝚿T𝐁 = 𝚿T(𝐐𝐐T + 𝐐̂𝐐̂T)𝐁 = 𝚿1𝐐T𝐁 + 𝚿2𝐐̂T𝐁.

Therefore:

𝐗 = (𝚿T𝐐)†(𝚿T𝐁) = 𝚿†
1𝚿1𝐐T𝐁 + 𝚿†

1𝚿2𝐐̂T𝐁 = 𝐐T𝐁 + 𝚿†
1𝚿2𝐐̂T𝐁.

Addingmore columns to𝚿 (and hence𝚿1) reduces the error in the second term.
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