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What is a matrix function?

An 𝑛 × 𝑛 symmetric matrix𝐀 has real eigenvalues and orthonormal eigenvectors:

𝐀 =
𝑛

∑
𝑖=1

𝜆𝑖𝐮𝑖𝐮T
𝑖 .

Thematrix function 𝑓(𝐀), induced by𝑓 ∶ ℝ → ℝ and𝐀, is defined as

𝑓(𝐀) ∶=
𝑛

∑
𝑖=1

𝑓(𝜆𝑖)𝐮𝑖𝐮T
𝑖 .

In this talk, think of the dimension 𝑛 as big! E.g. 𝑛 = 106 or 𝑛 = 1010, etc.
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What do we want?

Often,we don’t need 𝑓(𝐀) itself. In this talkwewill discuss:

𝑓(𝐀)𝐯, 𝐯T𝑓(𝐀)𝐯, tr(𝑓(𝐀)) =
𝑛−1

∑
𝑖=0

𝑓(𝜆𝑖)

Example. If 𝑓(𝑥) = 𝑥−1, then 𝑓(𝐀) = 𝐀−1 and 𝑓(𝐀)𝐯 = 𝐀−1𝐯 is the solution to the
linear system𝐀𝐱 = 𝐯.
– More computationally efficient to compute an approximation to the solution
𝐀−1𝐯 rather than computing𝐀−1 and thenmultiplyingwith 𝐯.
– Even if 𝐀 is sparse, 𝑓(𝐀) is typically dense. Storing a 𝑛 × 𝑛 densematrix might be
intractable.

– 𝑛 = 220 ≈ 1M⟹ 𝑛× 𝑛 densematrix requires 8.8 terrabytes of storage
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Applications

Applications inmanyfields: physics, chemistry, biology, statistics, high

performance computing, machine learning, etc.

Common functions: inverse, exponential, square root, sign function.
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Example application: network science

Let𝐺 be a graph (nodes and edges). Howmany triangles are there?

1

Fact. If 𝐀 is the adjacencymatrix for𝐺, then

# of triangles in𝐺 = tr(𝐀3)
6 .
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Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSLwork by splitting the

spectrum of 𝐀 into pieces, which can each be solved on different machines in
parallel.

1

Let 𝟙[𝑎 ≤ 𝑥 ≤ 𝑏] = 1 if 𝑥 ∈ [𝑎, 𝑏] and 0 otherwise. Then

# of eigenvalues in [𝑎, 𝑏] = tr(𝟙[𝑎 ≤ 𝐀 ≤ 𝑏]).
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Example application: quantum thermodynamics

Let𝐀 be the Hamiltonian of a quantum system.

If the system is held in thermal equilibrium at inverse temperature 𝛽 = 𝑘𝐵/𝑇, then
thermodynamic observables such as the specific heat, magnetization, heat capacity,

etc. can be obtained from the partition function:

𝑍(𝛽) = tr(exp(−𝛽𝐀)).
0https://phys.org/news/2023-06-quantum-materials-electron.html
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Matrix polynomials

Given a scalar polynomial 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑘𝑥𝑘, thematrix polynomial is

𝑝(𝐀) = 𝑐0𝐈 + 𝑐1𝐀 +⋯ + 𝑐𝑘𝐀𝑘.

We can obtain 𝑝(𝐀)𝐯 usingwith 𝑘matrix-vector products by computing1

𝐯,𝐀𝐯,… ,𝐀𝑘𝐯

and then taking a linear combination of the above vectors.

This is called the Krylov subspace:

𝒦𝑘+1(𝐀, 𝐯) = span{𝐯,𝐀𝐯,… ,𝐀𝑘𝐯} = {𝑝(𝐀)𝐯 ∶ deg(𝑝) ≤ 𝑘}.

1Can compute 𝐯T𝑝(𝐀)𝐯 in a similarway. Symmetry allows us to double the degree.
8/47
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Approximation with polynomials

Let 𝑝 be a degree 𝑠 polynomial approximation to 𝑓. Then,

‖𝑓(𝐀)𝐯 − 𝑝(𝐀)𝐯‖/‖𝐯‖ ≤ ‖𝑓(𝐀) − 𝑝(𝐀)‖2 = ‖𝑓 − 𝑝‖Λ.

|𝐯T𝑓(𝐀)𝐯 − 𝐯T𝑝(𝐀)𝐯|/‖𝐯‖2
2 ≤ ‖𝑓(𝐀) − 𝑝(𝐀)‖2 = ‖𝑓 − 𝑝‖Λ.

Error is determined at the eigenvalues of 𝐀.

However,we can reduce to amore classical setting:

‖𝑓 − 𝑝‖Λ ∶= max
𝜆∈Λ

|𝑓(𝜆) − 𝑝(𝜆)| ≤ max
𝜆∈ℐ

|𝑓(𝜆) − 𝑝(𝜆)| =∶ ‖𝑓 − 𝑝‖ℐ,

where ℐ = [𝜆min, 𝜆max].
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Matrix-function trace approximation

The trace of a symmetric matrix𝐁 is the sum of the diagonal entries (equivalently,

the sum of the eigenvalues)

How canwe approximate tr(𝑓(𝐀)), given thatwe know𝐀 but not 𝑓(𝐀)?

If we know𝑓(𝐀), this task is trivial! But typically, we can’twrite down 𝑓(𝐀).
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The matrix-vector query model

Supposewe have a black-boxwhich, given a vector 𝐯, outputs the vector𝐁𝐯.

– here𝐁 is some fixedmatrix; e.g. 𝐁 = 𝑓(𝐀)

Howmany times towe need to call this black box to perform basic linear algebra

tasks? Some simple tasks include:

– Compute the trace of 𝐁
– Estimate the Frobenius norm of 𝐁
– Write down all of the entries of 𝐁
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A simple algorithm for trace estimation

Consider thematrix𝐁:

⎡
⎢⎢⎢⎢⎢
⎣

𝑏11 𝑏12 𝑏13 ⋯ 𝑏1𝑛
𝑏21 𝑏22 𝑏23 ⋯ 𝑏2𝑛
𝑏31 𝑏32 𝑏33 ⋯ 𝑏3𝑛
⋮ ⋮ ⋮ ⋱ ⋮
𝑏𝑛1 𝑏𝑛2 𝑏𝑛3 ⋯ 𝑏𝑛𝑛

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

0
1
0
⋮
0

⎤
⎥⎥⎥⎥⎥
⎦

=

⎡
⎢⎢⎢⎢⎢
⎣

𝑏12
𝑏22
𝑏32
⋮
𝑏𝑛2

⎤
⎥⎥⎥⎥⎥
⎦

.

Howcanwe obtain tr(𝐁) = 𝑏11 + 𝑏22 + 𝑏33 + ⋯ + 𝑏𝑛𝑛 using onlymatrix-vector

productswith𝐁?
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A simple algorithm for trace estimation

Howcanwe obtain tr(𝐁) = 𝑏11 + 𝑏22 + 𝑏33 + ⋯ + 𝑏𝑛𝑛 using onlymatrix-vector

productswith𝐁?

Multiply𝐁with each of the standard basis vectors 𝐞𝑖 = [0, 0, 1, 0,… , 0]T, and read
off the 𝑖-th entry of each result.

In fact, we can learn𝐁 completely using 𝑛matrix vector products.2

2see also Halikias and Townsend 2023
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Can we do better?

Supposewe arewilling to tolerate some error 𝜖 (e.g. 𝜖 = 10−3).

Canwe approximate tr(𝐁)with≪ 𝑛matrix-vector product queries?

Yes!!! We can use randomized algorithms:

– deterministic: slow exact solution on all inputs

– randomized: fast approximate solution onmost inputs
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A simple randomized algorithm3

Suppose 𝐯 is a length 𝑛 vectorwhere each entry 𝑣𝑖 of 𝐯 is an independent standard
normal randomvariable.

𝔼[𝑣𝑖] =

0

, 𝔼[𝑣𝑖𝑣𝑗] =

⎧{
⎨{⎩

1

𝑖 = 𝑗

0

𝑖 ≠ 𝑗

Inmatrix form

𝔼[𝐯] = 𝟎, 𝔼[𝐯𝐯T] = 𝐈.

Recall that tr(𝐗𝐘) = tr(𝐘𝐗) and that the trace is linear. What is

3Girard 1987; Skilling 1989; Hutchinson 1989.
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Example: 𝑓(𝑥) = exp(−𝛽𝐇), 𝑓(𝐀) scaled to unit trace
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What about the variance?

We see 𝐯T𝐁𝐯 is an unbiased estimator for𝐁. What is the variance?

This is elementary but is super tedious, so let’s assume (actuallywlog) that𝐁 is
diagonal. Then,

𝕍[𝐯T𝐁𝐯] = 𝕍⎡⎢
⎣

𝑛

∑
𝑖=1

𝑣2
𝑖 𝑏𝑖𝑖

⎤⎥
⎦
=

𝑛

∑
𝑖=1

𝕍[𝑣2
𝑖 𝑏𝑖𝑖] =

𝑛

∑
𝑖=1

𝑏2
𝑖𝑖𝕍[𝑣2

𝑖 ] =
𝑛

∑
𝑖=1

2𝑏2
𝑖𝑖 = 2‖𝐁‖2

F.

So, if 𝐯1,… , 𝐯𝑚 are independent and identically distributed copies of 𝐯, then

𝕍⎡⎢
⎣
1
𝑚

𝑚

∑
𝑖=1

𝐯T
𝑖 𝐁𝐯𝑖

⎤⎥
⎦
= 2

𝑚‖𝐁‖2
F.

In otherwords, to get accuracy 𝜖, we need𝑚 ≈ ‖𝐁‖F/𝜖2 matrix-vector queries.
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What about the variance?
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diagonal. Then,

𝕍[𝐯T𝐁𝐯] = 𝕍⎡⎢
⎣

𝑛

∑
𝑖=1

𝑣2
𝑖 𝑏𝑖𝑖

⎤⎥
⎦
=

𝑛

∑
𝑖=1

𝕍[𝑣2
𝑖 𝑏𝑖𝑖] =

𝑛

∑
𝑖=1

𝑏2
𝑖𝑖𝕍[𝑣2
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∑
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The rest of this talk

Stochastic trace estimation appeared around 19904, although similar ideas are

older5

In the remainder of this talk, wewill discuss developments based on stochastic

trace estimation:

1. Spectral densities and spectral sums

2. Partial traces and variance reduction

4Girard 1987; Skilling 1989; Hutchinson 1989.
5Alben, Blume, Krakauer, and Schwartz 1975.
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Spectral densities and spectral sums

Define the cumulative empirical spectral measure (CSEM):

Φ(𝑥) =
𝑛

∑
𝑖=1

1
𝑛𝟙[𝜆𝑖 ≤ 𝑥], dΦ(𝑥)

d𝑥 =
𝑛

∑
𝑖=1

1
𝑛𝛿(𝑥 − 𝜆𝑖).

Note thatwe canwrite the spectral sum

tr(𝑓(𝐀)) =
𝑛

∑
𝑖=1

𝑓(𝜆𝑖) = 𝑛∫𝑓(𝑥)dΦ(𝑥).

So let’s focus on the CESMΦ(𝑥).
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Approximating the CESM by moments

We can’t computeΦ efficiently (why?), but maybe canwe approximateΦ?

For themoment, let’s supposewe know themoments

∫𝑥𝑚dΦ(𝑥) = 𝑛−1 tr(𝑝(𝐀)), 𝑚 = 0, 1,… , 𝑘.

We can obtain a distributionwhich has the samemoments asΦ, and hope that it is
near toΦ.
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Measuring the similarity of distributions

TheWasserstein distancemeasures the similarity between distributions:

𝑑W(Υ1, Υ2) = ∫ |Υ1(𝑥) − Υ2(𝑥)|d𝑥.
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Fact. Suppose ∫𝑥𝑚dΥ1(𝑥) = ∫𝑥𝑚dΥ2(𝑥) for all𝑚 ≤ 𝑘. Then 𝑑W(Υ1, Υ2) = 𝑂(𝑘−1).
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But we don’t know the moments!

We don’t know themoments of Φ, and computing𝐀𝑚 is expensive.

Whatwe can do, is approximate themomentswith a stochatic trace estimator:

∫𝑥𝑚dΦ(𝑥) = 𝑛−1 tr(𝐀𝑚) ≈ 𝑛−1𝐯T𝐀𝑚𝐯.

Note thatwe can define theweighted CESM

Ψ(𝑥) =
𝑛

∑
𝑖=1

|𝐯T𝐮𝑖|2𝟙[𝜆𝑖 ≤ 𝑥], dΨ(𝑥)
d𝑥 =

𝑛

∑
𝑖=1

|𝐯T𝐮𝑖|2𝛿(𝑥 − 𝜆𝑖).

Theweighted CESM is nice toworkwith:

𝔼[Ψ(𝑥)] = Φ(𝑥), ∫ 𝑥𝑚Ψ(𝑥) = 𝐯T𝐀𝑚𝐯.
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The weighted CESM

CESM (dark) and iid copies of theweighted CESM (light)
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Gaussian quadrature: an applied math approach6

Consider a distribution of the form

Υ(𝑥) =
𝑠

∑
𝑖=1

𝑤𝑖𝟙[𝜃𝑖 ≤ 𝑥], dΥ(𝑥)
d𝑥 =

𝑠

∑
𝑖=1

𝑤𝑖𝛿(𝑥 − 𝜃𝑖).

This has 2𝑠 free parameters, sowe can hope tomatch 𝑘 = 2𝑠moments!

The gaussian quadrature forΨ is closely related to the orthogonal polynomials of Ψ
and can be computedwith the Lanczos algorithm.

6Bai, Fahey, and Golub 1996.
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The kernel polynomial method: a physics approach7

Fix a referencemeasure 𝜇(𝑥). This gives an inner product

⟨𝑓, 𝑔⟩𝜇 = ∫𝑓(𝑦)𝑔(𝑦)d𝜇(𝑦).

Let 𝑝𝑖 (deg 𝑝𝑖 = 𝑖) be the orthogonal polynomails of 𝜇:

‖𝑝𝑖‖2
𝜇 = ∫ |𝑝𝑖(𝑥)|2d𝜇(𝑥) = 1, ⟨𝑝𝑖, 𝑝𝑗⟩𝜇 = ∫𝑝𝑖(𝑥)𝑝𝑗(𝑥)d𝜇(𝑥) = 0, 𝑖 ≠ 𝑗.

We can decompose a function into the orthogonal polynomials as:

𝑓(𝑥) =
∞

∑
𝑖=0

⟨𝑓, 𝑝𝑖⟩𝜇 𝑝𝑖(𝑥) = (∫𝑓(𝑦)𝑝𝑖(𝑦)d𝜇(𝑦)) 𝑝𝑖(𝑥).

7Skilling 1989;Weiße,Wellein, Alvermann, and Fehske 2006.
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The kernel polynomial method: a physics approach

Observe that

dΨ(𝑥)
d𝜇(𝑥) =

∞

∑
𝑖=0

(dΨ(𝑦)
d𝜇(𝑦) 𝑝𝑖(𝑦)d𝜇(𝑦)) 𝑝𝑖(𝑥) =

∞

∑
𝑖=0

(𝑝𝑖(𝑦)dΨ(𝑦)) 𝑝𝑖(𝑥).

Thus,
dΨ(𝑥)
d𝑥 = dΨ(𝑥)

d𝜇(𝑥)
d𝜇(𝑥)
d𝑥 = d𝜇(𝑥)

d𝑥

∞

∑
𝑖=0

(𝑝𝑖(𝑦)dΨ(𝑦)) 𝑝𝑖(𝑥).

We can compute themodifiedmoments ∫𝑝𝑖(𝑦)dΨ(𝑦) = 𝐯T𝑝𝑖(𝐀)𝐯 through degree 𝑠,
so truncate to get an approximation:

dΥ(𝑥)
d𝑥 = d𝜇(𝑥)

d𝑥

𝑠

∑
𝑖=0

(𝐯T𝑝𝑖(𝐀)𝐯)𝑝𝑖(𝑥).
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Example: Kneser graph

The spectrum of Kneser graphs is discrete and anlytically known.
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Yellow squares: true spectral density, blue dots: GQ, Green: KPM
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Theoretical gurantees

Howdowe analyze these algorithms?

Early analyses8 use triangle inequality:

∣𝑛−1 tr(𝑓(𝐀)) − ∫𝑓dΥ∣ ≤ ∣∫𝑓d(Φ − Ψ)∣ + ∣ ∫𝑓d(Ψ − Υ)∣.

– First term: analyze by stochastic trace estimation bounds

– Second term: by classical quadrature analysis

Shortcomings: Only holds for one function

8Han,Malioutov, Avron, and Shin 2017; Ubaru, Chen, and Saad 2017; Cortinovis and Kressner 2021.
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Uniform bounds

Recent analyses9 use the fact:

𝑑W(Υ1, Υ2) = ∫ |Υ1(𝑥) − Υ2(𝑥)|d𝑥 = sup{∣∫𝑓dΥ1 − ∫𝑓dΥ2∣ ∶ 𝑓 1-Lipschitz} .

Proof sketch. Let 𝑝𝑠 be the degree 𝑠 Chebyshev approximant for 𝑓(𝑥). Then:

∣∫ 𝑓d (Φ − Υ)∣ ≤ 2‖𝑓 − 𝑝𝑠‖[−1,1] + 2
𝑠

∑
𝑘=1

∣∫ 𝑓𝑇𝑘d𝜇𝑇
−1,1∣ ∣∫ 𝑇𝑘d (Φ − Υ)∣ .

– For families of functions 𝑓 (e.g. analytic, Lipshitz, etc.) bounds for ‖𝑓 − 𝑝𝑠‖[−1,1]
and the Chebyshev coefficients ∫𝑓𝑇𝑘d𝜇𝑇

−1,1 arewell-known.
10

– Union bound ensures the Chebyshevmoments of Φ and Υ are close for all 𝑘 ≤ 𝑠.

9Chen, Trogdon, and Ubaru 2021; Braverman, Krishnan, andMusco 2022; Chen, Trogdon, and

Ubaru 2022.
10Trefethen 2019.
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Chebyshev moments vs monomial moments

While two distribution functionswith exactly the same first 𝑘moments have
Wasserstein distance𝑂(𝑘−1), if themonomial moments are even a little different,
theWasserstein distance can be big.

Instead, one should look at Chebyshevmomentswhich are stablewith respect to

perturbations.
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Other related ideas / research directions

– probing / structured test vectors11

– Faster trace estimation algorithms via low-rank structure12

– randomized sketching of matrix functions13

– Theoretically justified implementations14

– Applications!

11Stathopoulos, Laeuchli, and Orginos 2013; Halikias and Townsend 2023.
12Saibaba, Alexanderian, and Ipsen 2017; Meyer, Musco, Musco, andWoodruff 2021; Epperly,

Tropp, andWebber 2023.
13Persson and Kressner 2023; Chen and Hallman 2023.
14Chen, Trogdon, and Ubaru 2022; Chen 2023.
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Quantum equilibrium thermodynamics

Consider a quantum system consisting of subsystems (s) and (b)with Hamiltonian

𝐇 = �̄�s + �̄�b + 𝐇sb, �̄�s = 𝐇s ⊗ 𝐈b, �̄�b = 𝐈s ⊗𝐇b. (1)

In thermal equilibrium at interver temperature 𝛽, the state of the system is

described by a densitymatrix

𝛒t(𝛽) =
exp(−𝛽𝐇)
𝑍t(𝛽)

, 𝑍t(𝛽) = tr(exp(−𝛽𝐇); (2)

The denistymatrix for subsystem (s) is given by

𝛒∗(𝛽) = trb(𝛒t(𝛽)) =
trb(exp(−𝛽𝐇))
tr(exp(−𝛽𝐇)) , (3)

where tr𝑏( ⋅ ) is the partial trace over subsystem (b).15

15Campisi, Zueco, and Talkner 2010; Ingold, Hänggi, and Talkner 2009; Talkner and Hänggi 2020.
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Partial traces

Suppose𝐀 is a 𝑑s𝑑b × 𝑑s𝑑b matrtix partitioned as:

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝐀1,1 𝐀1,2 ⋯ 𝐀1,𝑑s
𝐀2,1 𝐀2,2 ⋯ 𝐀2,𝑑s
⋮ ⋮ ⋱ ⋮

𝐀𝑑s,1 𝐀𝑑s,2 ⋯ 𝐀𝑑s,𝑑s

⎤
⎥
⎥
⎥
⎦

,
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Partial traces

Then the partial trace (wrt. this partitioning) is defined as:

trb(𝐀) =
⎡
⎢
⎢
⎢
⎣

tr(𝐀1,1) tr(𝐀1,2) ⋯ tr(𝐀1,𝑑s
)

tr(𝐀2,1) tr(𝐀2,2) ⋯ tr(𝐀2,𝑑s
)

⋮ ⋮ ⋱ ⋮
tr(𝐀𝑑s,1) tr(𝐀𝑑s,2) ⋯ tr(𝐀𝑑s,𝑑s

)

⎤
⎥
⎥
⎥
⎦

.
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Partial traces

We can use a randomized estimator:16

(𝐈𝑑s
⊗ 𝐯)T𝐀(𝐈𝑑s

⊗ 𝐯) =
⎡
⎢
⎢
⎢
⎣

𝐯T𝐀1,1𝐯 𝐯T𝐀1,2𝐯 ⋯ 𝐯T𝐀1,𝑑s
𝐯

𝐯T𝐀2,1𝐯 𝐯T𝐀2,2𝐯 ⋯ 𝐯T𝐀2,𝑑s
𝐯

⋮ ⋮ ⋱ ⋮
𝐯T𝐀𝑑s,1𝐯 𝐯T𝐀𝑑s,2𝐯 ⋯ 𝐯T𝐀𝑑s,𝑑s

𝐯

⎤
⎥
⎥
⎥
⎦

.

16Chen and Cheng 2022.
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Partial trace estimator: analysis

Define the varaince of a randommatrix as:

𝕍[𝐗] = 𝔼[∥𝐗 − 𝔼[𝐗]∥2
F
] = ∑

𝑖
∑

𝑗
𝕍[𝑋𝑖,𝑗]2.

Then, since𝕍[𝐯T𝐀𝑖,𝑗𝐯] = 2‖𝐀𝑖,𝑗‖2
F,

𝕍[(𝐈𝑑s
⊗ 𝐯)T𝐀(𝐈𝑑s

⊗ 𝐯)] =
𝑑s

∑
𝑖=1

𝑑s

∑
𝑗=1

𝕍[𝐯T𝐀𝑖,𝑗𝐯] =
𝑑s

∑
𝑖=1

𝑑s

∑
𝑗=1

2‖𝐀𝑖,𝑗‖2
F = 2‖𝐀‖2

F.

As before, if 𝐯1,… , 𝐯𝑚 are independent and identically distributed copies of 𝐯, then

𝕍⎡⎢
⎣
1
𝑚

𝑚

∑
𝑖=1

(𝐈𝑑s
⊗ 𝐯𝑖)T𝐀(𝐈𝑑s

⊗ 𝐯𝑖)⎤⎥
⎦
= 2

𝑚‖𝐀‖2
F.
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Partial trace estimator: variance reduction

For anymatrix �̃�,
trb(𝐀) = trb(�̃�) + trb(𝐀 − �̃�).

Sowemight try to use the estimator

trb(𝐀) ≈ trb(�̃�) + t̂r
𝑚
b (𝐀 − �̃�).

whichwill have reduced variance if ‖𝐀 − �̃�‖2
F ≪ ‖𝐀‖2

F.

This residual trick iswidely used in regular trace estimation.17

17Girard 1987;Weiße,Wellein, Alvermann, and Fehske 2006;Morita and Tohyama 2020;Meyer,

Musco, Musco, andWoodruff 2021.
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A cancellation issue

We could try to take �̃� = 𝐐𝐐T𝐀𝐐𝐐T, for some orthonormal𝐐.

Recall, however, that in our seting𝐀 = exp(−𝛽𝐇), andwemust approxiamte
productswith𝐀. This can lead to cancellation issues in the term:

t̂r
𝑚
b (𝐀 − �̃�).

With normal traces, we can use the cyclic property towrite

tr(𝐐𝐐T𝐀𝐐𝐐T) = tr(𝐀𝐐𝐐T𝐐𝐐T) = tr(𝐀𝐐𝐐T).

Thus,we can avoid cancellation by using:

tr(𝐀 − 𝐐𝐐T𝐀𝐐𝐐T) = tr(𝐀(𝐈 − 𝐐𝐐T)) = tr((𝐈 − 𝐐𝐐T)𝐀(𝐈 − 𝐐𝐐T)).
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A fix18

Suppose𝐐 contains only eigenvectors of 𝐀 = ∑𝑖 𝜆𝑖𝐮𝑖𝐮T
𝑖 . Then it can be shown,

𝐀 − 𝐐𝐐T𝐀𝐐𝐐T = (𝐈 − 𝐐𝐐T)𝐀(𝐈 − 𝐐𝐐T).

This avoids the cancellation issues.

Proof.WLOG assume𝐐 = 𝐮𝑗. Note that

𝐀 − 𝐮𝑗𝐮T
𝑗𝐀𝐮𝑗𝐮𝑗 =

𝑛

∑
𝑖=1

𝜆𝑖 (𝐮𝑖𝐮T
𝑖 − 𝐮𝑗𝐮T

𝑗𝐮𝑖𝐮T
𝑖 𝐮𝑗𝐮T

𝑗 )

= ∑
𝑖≠𝑗

𝜆𝑖(𝐈 − 𝐮𝑗𝐮T
𝑗 )𝐮𝑖𝐮T

𝑖 (𝐈 − 𝐮𝑗𝐮T
𝑗 )

= (𝐈 − 𝐮𝑗𝐮T
𝑗 )𝐀(𝐈 − 𝐮𝑗𝐮T

𝑗 ).

18Chen, Chen, Li, Nzeuton, Pan, andWang 2023.
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Eigenvalues of 𝛒∗(𝛽): parameter test
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von Neumann entropy

The von Neumann entropy − tr(𝛒∗(𝛽) ln(𝛒∗(𝛽))) is a measure of the entanglement
betweeen subsystems (s) and (b).

Understanding the von Neumann entropy for a range of a systemwith Hamiltonian

𝐇(𝜃) at a range of parameter values 𝜃 and inverse temperatures 𝛽 is of interest.

Wewill consider a special case

𝐇 = ∑
|𝑖−𝑗|=1

[𝐽x𝑖,𝑗𝛔x𝑖𝛔x𝑗 + 𝐽
y
𝑖,𝑗𝛔

y
𝑖 𝛔

y
𝑗 ] +

ℎ
2

𝑁

∑
𝑖=1

𝛔z𝑖 .

where ℎ is themagnetic field strength.

Subsystem (s) corresponds to 𝑖 = 1, 2 and subsystem (b) corresponds to the rest of

the spins.
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von Neumann entropy phase plot19
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von Neumann entropy phase plot20
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von Neumann entropy phase plot (cropped)21
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