Krylov Subspace Methods for Matrix Function
Trace Approximation

Tyler Chen
August 29, 2023

chen.pw/slides


chen.pw/slides

What is a matrix function?

An n X n symmetric matrix A has real eigenvalues and orthonormal eigenvectors:
n
A = E Aiuiu,-T.
i=1

The matrix function f(A),induced by f : R - Rand A, is defined as

f(A) = if@»uiuz .

In this talk, think of the dimension n as big! E.g. n = 10% orn = 1019, etc.



What do we want?

Often, we don’t need f(A) itself. In this talk we will discuss:

f(A)v, vif(A)y, tr(f(A))



What do we want?

Often, we don’t need f(A) itself. In this talk we will discuss:
f(A)v, vif(A)v, tr(f(A)) = ) f(4)

Example. If f(x) = x™}, then f(A) = A and f(A)v = A 'v s the solution to the
linear system Ax = v.
— More computationally efficient to compute an approximation to the solution
A~lv rather than computing A~! and then multiplying with v.

- Evenif Aissparse, f(A)is typically dense. Storing a n x n dense matrix might be
intractable.
- n = 2% = 1M = n x n dense matrix requires 8.8 terrabytes of storage



Applications

Applications in many fields: physics, chemistry, biology, statistics, high
performance computing, machine learning, etc.

Common functions: inverse, exponential, square root, sign function.



Example application: network science

Let Gbe a graph (nodes and edges). How many triangles are there?
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Example application: network science

Let Gbe a graph (nodes and edges). How many triangles are there?

Fact. If A is the adjacency matrix for G, then

tr(A%)

# of triangles in G = 3




Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSL work by splitting the
spectrum of A into pieces, which can each be solved on different machines in
parallel.
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Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSL work by splitting the
spectrum of A into pieces, which can each be solved on different machines in
parallel.

Let 1[a < x < b] = 1if x € [a, b] and 0 otherwise. Then

# of eigenvaluesin [a,b] = tr(1[a < A < b]).



Example application: quantum thermodynamics

Let A be the Hamiltonian of a quantum system.

If the system is held in thermal equilibrium at inverse temperature f = kz/T, then
thermodynamic observables such as the specific heat, magnetization, heat capacity,
etc. can be obtained from the partition function:

Z(B) = tr(exp(~BA)).

%https://phys.org/news/2023-06-quantum-materials-electron.html



https://phys.org/news/2023-06-quantum-materials-electron.html

Matrix polynomials

Given a scalar polynomial p(x) = ¢+ cyx + -~ + ¢,x¥, the matrix polynomial is

P(A) = col +c1A + -+ + ¢, Ak,

Can compute va(A)v in a similar way. Symmetry allows us to double the degree.



Matrix polynomials

Given a scalar polynomial p(x) = ¢+ cyx + -~ + ¢,x¥, the matrix polynomial is
P(A) = col +c1A + -+ + ¢, Ak,
We can obtain p(A)v using with k matrix-vector products by computing!
Vv,Av, ..., Aky

and then taking a linear combination of the above vectors.

This is called the Krylov subspace:

Kii1(A, v) = span{v, Av, ..., Afv} = {p(A)v : deg(p) < k}.

Can compute va(A)v in a similar way. Symmetry allows us to double the degree.



Approximation with polynomials

Let p be a degree s polynomial approximation to f. Then,
If (A)v —p(A)vil/lv] < [f(A) = p(A)l2 = [If —pla-

VT f(A)v=vTp(A)l/IvI3 < I (A) = p(A)l, = If =Pl

Error is determined at the eigenvalues of A.



Approximation with polynomials

Let p be a degree s polynomial approximation to f. Then,
If (A)v —p(A)vil/lv] < [f(A) = p(A)l2 = [If —pla-

VT f(A)v=vTp(A)l/IvI3 < I (A) = p(A)l, = If =Pl

Error is determined at the eigenvalues of A.

However, we can reduce to a more classical setting:
I =l = max [f (3) = p(V)] < max|f () - pd)| =: If - pll

where I = [A i, Amax)-



Matrix-function trace approximation

The trace of a symmetric matrix B is the sum of the diagonal entries (equivalently,
the sum of the eigenvalues)

How can we approximate tr(f(A)), given that we know A but not f(A)?

If we know f(A), this task is trivial! But typically, we can’t write down f(A).



The matrix-vector query model

Suppose we have a black-box which, given a vector v, outputs the vector Bv.

- here B is some fixed matrix; e.g. B = f(A)

How many times to we need to call this black box to perform basic linear algebra
tasks? Some simple tasks include:

- Compute the trace of B
— Estimate the Frobenius norm of B
— Write down all of the entries of B



A simple algorithm for trace estimation

Consider the matrix B:

by by by o b,

How can we obtain tr(B) = by, + by, + b33 + --- + b, using only matrix-vector
products with B?



A simple algorithm for trace estimation
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A simple algorithm for trace estimation

How can we obtain tr(B) = by, + b,, + b3z + --- + b, using only matrix-vector
products with B?

Multiply B with each of the standard basis vectors e; = [0,0, 1,0, ...,0]", and read
off the i-th entry of each result.

2see also Halikias and Townsend 2023



A simple algorithm for trace estimation

How can we obtain tr(B) = by, + b,, + b3z + --- + b, using only matrix-vector
products with B?

Multiply B with each of the standard basis vectors e; = [0,0, 1,0, ...,0]", and read
off the i-th entry of each result.

In fact, we can learn B completely using n matrix vector products.>

2see also Halikias and Townsend 2023



Can we do better?

Suppose we are willing to tolerate some error ¢ (e.g. e = 107).

Can we approximate tr(B) with <« n matrix-vector product queries?



Can we do better?

Suppose we are willing to tolerate some error ¢ (e.g. e = 107).
Can we approximate tr(B) with < n matrix-vector product queries?

Yes!!! We can use randomized algorithms:

- deterministic: slow exact solution on all inputs

- randomized: fast approximate solution on most inputs



A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

E[v;] =, ]E[Vi"j] =

3Girard 1987; Skilling 1989; Hutchinson 1989.
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A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

E[v] = 0, IE[v,-vj]z{ zz

3Girard 1987; Skilling 1989; Hutchinson 1989.



A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

i=j

1
E[v;] =0, E[vy;] = {O =y

3Girard 1987; Skilling 1989; Hutchinson 1989.



A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

1 =i

Ev]=0,  Elvw]= { )

0 i#)

In matrix form

3Girard 1987; Skilling 1989; Hutchinson 1989.



A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

L =i
Ev]=0, Epwl={ '~/
0 i#j
In matrix form
E[v] =0, E[vw'] =L

Recall that tr(XY) = tr(YX) and that the trace is linear. What is

E[v'Av] = E[tr(v'Av)]?

3Girard 1987; Skilling 1989; Hutchinson 1989.



A simple randomized algorithm?®

Suppose v is a length n vector where each entry v; of v is an independent standard
normal random variable.

L =i
Ev]=0, Epwl={ '~/
0 i#j
In matrix form
E[v] =0, E[vw'] =L

Recall that tr(XY) = tr(YX) and that the trace is linear. What is

E[v'Av] = E[tr(v'Av)] = E[tr(Avv'")] = tr(AE[vv']) = tr(AI) = tr(A).

3Girard 1987; Skilling 1989; Hutchinson 1989.



Example: f(x) = exp(-fH), f(A) scaled to unit trace

=01 p=1 B =10

spectral density (log)

0.0001 0.0002 0.0003 0.0004 0.0005

100

trace estimator
(=2}
o
1




What about the variance?

We see v'Bv is an unbiased estimator for B. What is the variance?



What about the variance?

We see v'Bv is an unbiased estimator for B. What is the variance?

This is elementary but is super tedious, so let’s assume (actually wlog) that B is
diagonal. Then,

n

V[v'Bv] =V [Zv%bﬁ] = > Vlvib] = ) bRV = ) 2% = 2|BJ}.
i=1 i=1 i=1

i=1



What about the variance?

We see v'Bv is an unbiased estimator for B. What is the variance?

This is elementary but is super tedious, so let’s assume (actually wlog) that B is
diagonal. Then,

V[v'Bv] = V [Zv%bﬁ] = Vvl =) BV =) 2b} =2|BJ}
i=1 i=1 i=1

i=1

So,if vy, ..., v, are independent and identically distributed copies of v, then

1% 2
v [a Zv}Bvi} = Z|BJi
1=

In other words, to get accuracy e, we need m = ||B|z/e* matrix-vector queries.



The rest of this talk

Stochastic trace estimation appeared around 19904, although similar ideas are
older’

In the remainder of this talk, we will discuss developments based on stochastic
trace estimation:

1. Spectral densities and spectral sums

2. Partial traces and variance reduction

*Girard 1987; Skilling 1989; Hutchinson 1989.
>Alben, Blume, Krakauer, and Schwartz 1975.



Spectral densities and spectral sums

Define the cumulative empirical spectral measure (CSEM):

o) =) %1[;\,- <x], diix) =y %6(x—/\i).
i=1

i=1

Note that we can write the spectral sum
t(f(A) = S = n [ flx)d0().
i=1

So let’s focus on the CESM @(x).



Approximating the CESM by moments

We can’t compute ® efficiently (why?), but maybe can we approximate ®?

For the moment, let’s suppose we know the moments

IxmdQD(x) = n"ltr(p(A)), m=0,1,..., k.

We can obtain a distribution which has the same moments as ®, and hope that it is
near to ®.



Measuring the similarity of distributions

The Wasserstein distance measures the similarity between distributions:

(Y1, Y,) = j 1Y, (x) = Yy (x) dx.
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Measuring the similarity of distributions

The Wasserstein distance measures the similarity between distributions:

(Y1, Y,) = j 1Y, (x) = Yy (x) dx.

1.0 4
05 ] H_J_,_'_a—_'—'l__'_r"
0.6

0.4

0.2

0.0 1

T T T T T T T T T
—1.00 —0.75 —0.50 —0.25 0.00 0.25 0.50 0.75 1.00

Fact. Suppose [ x™dY;(x) = [ x™dY,(x) for allm < k. Then dy(Y;,Y,) = O(k™).



But we don’t know the moments!

We don’t know the moments of @, and computing A™ is expensive.
What we can do, is approximate the moments with a stochatic trace estimator:

.[xmd@(x) =nltr(A™) = n"lv'A™y.



But we don’t know the moments!

We don’t know the moments of @, and computing A™ is expensive.
What we can do, is approximate the moments with a stochatic trace estimator:
-[ x"d®(x) = n" tr(A™) = n"lvTA™y.

Note that we can define the weighted CESM

< d¥(x S
Y(x) = > vTw[A < x], di ) = > IvTu8(x - ).
i=1 i=1

The weighted CESM is nice to work with:



The weighted CESM

CESM (dark) and iid copies of the weighted CESM (light)
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Gaussian quadrature: an applied math approach®

Consider a distribution of the form

Y(x) = iwin[ei <x], dﬁix) = iwié(x—ei).

i=1

This has 2s free parameters, so we can hope to match k = 2s moments!

The gaussian quadrature for ¥ is closely related to the orthogonal polynomials of ¥
and can be computed with the Lanczos algorithm.

®Bai, Fahey, and Golub 1996.



The kernel polynomial method: a physics approach’

Fix a reference measure y(x). This gives an inner product

fr 9= jf ()g(y)du(y).

Let p; (deg p; = i) be the orthogonal polynomails of u:

Ip:ll = f pi(x)Pdu(x) =1, {pupj)y = fpi(x)Pj(X)du(x) =0, i#]j.

We can decompose a function into the orthogonal polynomials as:

Z(frf),m = ([ ropdue) ) pio).

"Skilling 1989; WeiRke, Wellein, Alvermann, and Fehske 2006.



The kernel polynomial method: a physics approach

Observe that

d¥(x) < (d¥(y) S

du(x) — ; (T&’)P:O’)dﬂ()’)) pi(x) = ;(p,(y)d‘l’(y))pz(x)
Thus,




The kernel polynomial method: a physics approach

Observe that

d¥(x) [/ d¥(y) o0
o) = 2 (BP0 ) ) = 3 GEON o)
Thus,

) _ 3‘55;; ) _ dulx) > (i)Y ) pi).

i=0

We can compute the modified moments [ p;(y)d¥(y) = v'p;(A)v through degrees,
so truncate to get an approximation:

dzix) - dﬁ(:) Z(VTPi(A)V) i(x).

i=0




Example: Kneser graph

The spectrum of Kneser graphs is discrete and anlytically known.

10" 4
0 |
o b L 4
1072 4 {
1073 + L3
1074 1 l
10—5 -
10—6 -
10—7 -
10—8 -
0

T —T —
-1 -9 -7 -5 -3 -1 2 4 6 8 10 12

Yellow squares: true spectral density, blue dots: GQ, Green: KPM



Theoretical gurantees

How do we analyze these algorithms?

Early analyses® use triangle inequality:

nltr(f(A)) - f de‘ <

jfd(d)—\lf)‘+de(‘P—Y)‘.

- First term: analyze by stochastic trace estimation bounds

- Second term: by classical quadrature analysis

Shortcomings: Only holds for one function

8Han, Malioutov, Avron, and Shin 2017; Ubaru, Chen, and Saad 2017; Cortinovis and Kressner 2021.



Uniform bounds

Recent analyses’ use the fact:

dw(Y1, Y,) = j Yy (x) = Ya(x)ldx = sup {deY1 - jdez

: f 1—Lipschitz} .

°Chen, Trogdon, and Ubaru 2021; Braverman, Krishnan, and Musco 2022; Chen, Trogdon, and
Ubaru 2022.
OTrefethen 2019.



Uniform bounds

Recent analyses’ use the fact:

dw(Y1, Y,) = j Yy (x) = Ya(x)ldx = sup {deY1 - jdez

: f l—Lipschitz} .

Proof sketch. Let p, be the degree s Chebyshev approximant for f(x). Then:

jf delizm

[ra@=0] <217 -pdase2y” [ra@-v).

~ For families of functions f (e.g. analytic, Lipshitz, etc.) bounds for [|f — p[_; 1]

and the Chebyshev coefficients [ f deyflrl are well-known.!°

— Union bound ensures the Chebyshev moments of ® and Y are close forallk < s.

°Chen, Trogdon, and Ubaru 2021; Braverman, Krishnan, and Musco 2022; Chen, Trogdon, and
Ubaru 2022.
OTrefethen 2019.



Chebyshev moments vs monomial moments

While two distribution functions with exactly the same first k moments have
Wasserstein distance O(k™!), if the monomial moments are even a little different,
the Wasserstein distance can be big.

Instead, one should look at Chebyshev moments which are stable with respect to
perturbations.

x™ and x™*2 T,,(x) and T,,,5(x)

1.0 b

0.5 1 1

0.0 A b

—-0.5 1

-1.0 1 1
T T
-1.0 -0.5 0.0 0.5 1.0 -1.0 -0.5 0.0 0.5 1.0




Other related ideas / research directions

probing / structured test vectors'!

Faster trace estimation algorithms via low-rank structure'?

- randomized sketching of matrix functions'

4

Theoretically justified implementations!

Applications!

Stathopoulos, Laeuchli, and Orginos 2013; Halikias and Townsend 2023.

12Saibaba, Alexanderian, and Ipsen 2017; Meyer, Musco, Musco, and Woodruff 2021; Epperly,
Tropp, and Webber 2023.

Bpersson and Kressner 2023; Chen and Hallman 2023.

“Chen, Trogdon, and Ubaru 2022; Chen 2023.



Quantum equilibrium thermodynamics

Consider a quantum system consisting of subsystems (s) and (b) with Hamiltonian
H = I:Is + I:Ib + HSb’ I:IS = HS ® Ib' I:Ib = IS ® Hb‘ (1)

In thermal equilibrium at interver temperature f3, the state of the system is
described by a density matrix

ou(B) = % Z(p) = tr(exp(-BH); @)

The denisty matrix for subsystem (s) is given by

p*(B) = try(pe(B)) = %, v

where tr,( - ) is the partial trace over subsystem (b)."®

BCampisi, Zueco, and Talkner 2010; Ingold, Hinggi, and Talkner 2009; Talkner and Hanggi 2020.



Partial traces

Suppose A is a d dy, X d d, matrtix partitioned as:

A, A,
A= Ay Ay

A1 A

S/



Partial traces

Then the partial trace (wrt. this partitioning) is defined as:

tr(Ay;) tr(Ayy) - tr(Ag,)
try(A) = tr(éz,l) tr("“z,z) tr(/’:z,ds)

tr(Ag 1) tr(Agn) - tr(Ag q)

s/



Partial traces

We can use a randomized estimator:*°
VIA )V VAV
T T
VA, ;v VA,V
(I, ®V)'A(I; ® v) = e e
S S

T T
VAV VALV

Chen and Cheng 2022.

VIA ;v

s

VTAZ,dSV

. :
A% AdS/dSV



Partial trace estimator: analysis

Define the varaince of a random matrix as:

VIX] = E[[X-E[X]|{] = > > VIx,)%

i
Then, since V[v'A,; ;v] = 2||Ai,j||2,

dS dS dS dS

V[, @v) Al ev)]=> > V[vAv]=> > 2Al =2]AlZ

i=1 j=1 i=1 j=1

As before, if vy, ..., v,, are independent and identically distributed copies of v, then

1\ 2
\% [E Zl(lds ® Vi) Al ® Vi)] = E”A“%'

i



Partial trace estimator: variance reduction

For any matrix A,
tr,(A) = try(A) + tr, (A — &).

So we might try to use the estimator
try(A) = try(A) +fry (A - A).
which will have reduced variance if |A —A|2 <« |A[2.

This residual trick is widely used in regular trace estimation.”

"Girard 1987; Weife, Wellein, Alvermann, and Fehske 2006; Morita and Tohyama 2020; Meyer,
Musco, Musco, and Woodruff 2021.



A cancellation issue

We could try to take A = QQ'AQQ’, for some orthonormal Q.

Recall, however, that in our seting A = exp(—fH), and we must approxiamte
products with A. This can lead to cancellation issues in the term:

fry (A - &).
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Recall, however, that in our seting A = exp(—fH), and we must approxiamte
products with A. This can lead to cancellation issues in the term:

(100042 +0.01%) — (100017 + 0.01%) = (42 —17) + 20 = no accuracy.



A cancellation issue

We could try to take A = QQ'AQQ’, for some orthonormal Q.

Recall, however, that in our seting A = exp(—fH), and we must approxiamte
products with A. This can lead to cancellation issues in the term:

(100042 +0.01%) — (100017 + 0.01%) = (42 —17) + 20 = no accuracy.
With normal traces, we can use the cyclic property to write
tr(QQ'AQQ’") = tr(AQQ'QQ") = tr(AQQ").

Thus, we can avoid cancellation by using:

tr(A - QQ'AQQ) = tr(A(I-QQ")) = tr((I- QQ")A(I- QQ")).



A fix3

Suppose Q contains only eigenvectors of A = . A;u;u]. Then it can be shown,
A-QQ'AQQ" = (I-QQNA(I-QQ").

This avoids the cancellation issues.

BChen, Chen, Li, Nzeuton, Pan, and Wang 2023.



A fix3

Suppose Q contains only eigenvectors of A = . A;u;u]. Then it can be shown,

A-QQ'AQQ" = (I-QQNA(I-QQ").

This avoids the cancellation issues.

Proof. WLOG assume Q = u;. Note that

A- uuTAuu = E A uu —uu; ulu,Tu]u]T)

_ZAI uu))uuf(I-uu)

i#

=(I- u;u; DA(I- u}u])

BChen, Chen, Li, Nzeuton, Pan, and Wang 2023.



Eigenvalues of p*(f): parameter test

10°

107! o

1072 o

eigenvalues of 5*(f)

10° 5

107! o

1072 o

eigenvalues of §*(8)

10°

k=10,m = 10

1004 =

1072 o

eigenvalues of §*(B)

T T
107! 10! 10° 107! 10! 10° 107! 10! 10°
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von Neumann entropy

The von Neumann entropy —tr(p*(f) In(p*(f))) is a measure of the entanglement
betweeen subsystems (s) and (b).

Understanding the von Neumann entropy for a range of a system with Hamiltonian
H(0) at a range of parameter values 0 and inverse temperatures f is of interest.

We will consider a special case
pd
— VoY y
H = Z [],]ao' + ,10'10'] EZ
lijl=1 i=1

where h is the magnetic field strength.

Subsystem (s) corresponds toi = 1, 2 and subsystem (b) corresponds to the rest of
the spins.



von Neumann entropy phase plot”

=
=

—
V]
L

von Neumann entropy: —tr(p*(3) In(p*(5)))
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von Neumann entropy phase plot*°

von Neumann entropy (raw data) von Neumann entropy (filtered)

T T T T T T
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magnetic field strength: h/] magnetic field strength: h/]

20Chen, Chen, Li, Nzeuton, Pan, and Wang 2023.
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von Neumann entropy phase plot (cropped)*

von Neumann entropy (raw data)

von Neumann entropy (filtered)
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