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Matrix recovery and approximation

Let S be some family of matrices parameterized by a small number of parameters.

Recovery: Promised A € §, learn parameterization of A.

Approximation: Arbitrary A, learn (parameterization of) A € S such that

IA-&| < (1+¢) min |A-X].
XeS

Assume we can only access A using matrix-vector (matvec) queries x — Ax or
y ~ Aly.

- if A = B™!, we can compute Ax using a fast solver

- the action of A could also correspond to some physical process



Operator Learning!

Physical processes often map a function f to a function u. L.e., implement some

operator ®(f) = u.
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Operator Learning!

Physical processes often map a function f to a function u. L.e., implement some
operator ®(f) = u.
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Operator Learning!

Physical processes often map a function f to a function u. L.e., implement some
operator ®(f) = u.

crack attime 0, f crack at later time, u

—

[Goswami, Anitescu, Rabczuk 2019]
Goal: Learn mapping from input-output pairs: (f, uy), ..., (f p Up)-

Scientific ML: Assume S is some parameterized family (e.g. neural net as in
DeepONet, DeepGreen, etc.)

Boullé and Townsend 2024.



Hierarchical matrices

Today, S will be some family of hierarchical matrices.
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example classes: hierarchical off-diagonal low-rank (HODLR), hierarchical
semi-seperable (HSS), J{!, H?, hierarchical off-diagonal butterfly, etc.



Why hierarchical matrices?

Hierarchical matrices are useful for applications involving physical applications
due to the presence of multiscale phenomena.

= A
é il t ButterflyPACK
A rgo nne BERKELEY LAB Fast PDE solvers and transforms

NATIONAL Lawrence Berkeley

LABORATORY T
National Laboratory R1ib



HODLR matrices

I:l low-rank block . recursive block



HODLR matrices

|:| low-rank block . recursive block



HODLR matrices

D low-rank block D recursive block



HODLR matrices

D low-rank block D recursive block



HODLR Matrices

Definition. Fix a rank parameter k. We say a n X n matrix A is HODLR(k) if n < k
or A can be partitioned into (n/2) x (n/2) blocks

A, A
A= |11 1,2]
[Az,l Ay

suchthatA; ,and A, ; are of rank at most kand A, ; and A, , are each HODLR(k).

HODLR matries have O(knlog(n)) parameters.

There are several matvec algorithms for the recovery problem.?

2Lin, Lu, and Ying 2011; Martinsson 2016; Levitt and Martinsson 2022; Halikias and Townsend
2023.



Low-rank approximation from matrix-vector products

The Randomized SVD (RSVD) is a well-known algorithm for obtaining a low-rank
approximation to a matrix B:

1. Sample Gaussian matrix Q

2. Form Q = orth(BQ)

3. ComputeX = Q'B

4. Output Q[X],

Theorem. If B is rank-k, and Q has O(k) columns, then Q[X], = B (a.s.).



Peeling: an algorithm for the recovery problem?

The algorithm works from the top layer down.
At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

We then “peel” off these blocks before proceeding to the next level

3Lin, Lu, and Ying 2011; Martinsson 2016.
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Peeling: an algorithm for the recovery problem

At each level we use O(k) matrix-vector products with A and A.

There are log,(n/k) < log,(n) levels until the blocks are of size k

- then we can directly recover them at once with k products

Theorem. We can recover a HODLR matrix using O(klog,(n)) matvecs.



Peeling with error?

Avariant of the peeling algorithm can be used to approximate the solution operator
of elliptic PDEs (2024 SIAM Linear Algebra Best Paper Prize winner).*

Boullé and Townsend 2022: Is there a peeling-type algorithm that works for
nearly-HODLR matrices?

“Boullé and Townsend 2022.



Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles
at each level. Exponential blow-up in the number of levels (linear in n)!
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The HODLR approximation problem®

Problem. Given an n X n matrix A, accessible only by matrix-vector products, a
rank parameter k, and an accuracy parameter ¢, find a HODLR(k) matrix A such
that

A-A 1 i A-H.
IA-Kl < (1+6), min |A-HI;

5Chen et al. 2025.
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each low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)
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A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let Q = orth(BQ +E;) and X = Q"B +E,. Then

12
IB - Q[XTlle < [IE; top”F + 2[[E; [+ (”zbot”F + [ 2ot Qpor top|| )

perturbations classical RSVD bound

When Q has O(k/¢) columns, Q
pseudoinverse:

top 18 @ k X O(k/¢) Gaussian matrix which has a small

IE [ (QIop)TQIop ] = IE [ (Qtopﬂ;rop

)_1] = el

Takeaway: The pseudoinverse will help damp the perturbation E,, but
(unsurprisingly) all of the perturbation E, can propagate.



Generalized Nystrém®

The RSVD tries to compute Q"B directly; this is the solution to:

mXin 1A - QX]lE.

8Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.
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Generalized Nystrém®

The RSVD tries to compute Q"B directly; this is the solution to:
mXin 1A - QX]lE.
Instead, we can solve a sketched problem:
min IPTA -9TQX|.
This means X = (¥TQ)'WTA.
Observation. By adding columns to ¥, we can damp errors in the product ¥TA.

The algorithm is also non-adaptive (we can do products with W in advance)

5Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.



Back to the hard instance
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Another approach: perforated sketches

Because of the structure of peeling, the error happens when blocks of our sketch hit
the error from our approximation of low-rank blocks at previous levels.

What if we just reduce how often this happens?



Perforated Block CountSketch
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Our main result

Theorem. There exist matvec algorithms which use O(klog(n)/B*) products with
A to obtain a HODLR(k) matrix A satisfying

-A log,(n) i -
IA=Rlr < (1+8)% mip, ) 1A~ Hlr



Our main result

Theorem. There exist matvec algorithms which use O(klog(n)/B*) products with
A to obtain a HODLR(k) matrix A satisfying

-A log,(n) i -
IA=Rlr < (1+8)% mip, ) 1A~ Hlr

Corollary. (1 + ¢)-optimal approximation with O(klog(n)*/&*) matvecs

Corollary. n°°!-optimal approximation with O(k log(n)) matvecs




Another experiment

Given points x; € R?, define [A];; = —log(|lx; — x;]))

points x; matrix A
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Lower bounds?

The matrix-vector query model often lets us prove lower-bounds against any matvec
algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding how good algorithms are
(compared to classical numerical analysis).

Theorem. There is a constant C > 0 such that for any k, n, ¢, there exists a ma-
trix A such that getting a (1 + ¢)-optimal HODLR approximation requires at least
C(klog,(n/k) + k/c) matvecs.
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HSS is tricky!

Many papers study HSS recovery.’

The nestedness of column-spaces across levels adds lots of relations which make
the approximation problem much harder.

- No known polynomial algorithm known for constant factor HSS
approximation?!
- In fact, not even clear what to do in exponential time.

We prove:

Theorem. Can get O(log(n)) HSS approximation in O(kn?) time.

"Xia, Chandrasekaran, Gu, and Li 2010; Levitt and Martinsson 2022; Halikias and Townsend 2023.



What's next?

Big goal: general theory for structured matrix approximation problem

Correct log(n) and ¢ rates for the algorithms we study?

- Limited by the best known bounds for Generalized Nystrom: O(k/s*)
True stability analysis (e.g. for floating point arithmetic)

- Working on with students at NYU

Adaptive algorithms

Other hierarchical classes?

|

Better understanding of (non-adaptive) low-rank approximation



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥, = ¥"Qand ¥, = ¥'Q.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
¥'B = ¥7(QQ"+QQ")B = ¥,Q'B + ¥,Q"B.

Therefore:

X = (¥'Q)(¥"B) = ¥]v,Q'B+¥!¥,Q'B = Q"B+ ¥]¥,Q"B.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥; = ¥TQ and ¥, = ¥TQ.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
Y B+E=97(QQ"+QQ")B+E = ¥,Q'B+¥,Q'B+E.
Therefore:

X = (Y7Q)(¥"B+E) = ¥]¥,Q'B+¥]¥,Q'B+ ¥|E = Q"B+ ¥!¥,Q'B+ V]E.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.
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