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Introduc on

We o en want to evaluate vT𝑓(A)v where A = U𝚲UT is a 𝑛 × 𝑛 symmetric matrix,
v is an arbitrary vector and 𝑓 is a scalar func on so that 𝑓(A) is

𝑓(A) ∶= U𝑓(𝚲)UT.

For instance, such expressions might arise in randomized algorithms for spectral
sums since whenever 𝔼[vvT] = I we have

𝔼[vT𝑓(A)v] = tr(𝑓(A)).



Approxima on via Lanczos

A common approach to approximate vT𝑓(A)v when A is symmetric is via the
Lanczos algorithm. Lanczos outputs an orthonormal basis Q for Krylov subspace and
a tridiagonal matrix T giving the polynomial recurrence needed to construct this
basis.

The Lanczos approxima on is then defined as

vTQ𝑓(T)QTv = ̂eT𝑓(T)ê

where ê = [1, 0, … , 0]T.



Empirical spectral measure/weighted empirical spectral measure

Empirical spectral measure (ESM):

Φ[A](𝑥) =
𝑛

∑
𝑖=1

1
𝑛1[𝜆𝑖 ≤ 𝑥]

Weighted ESM:

Ψ[A, v](𝑥) =
𝑛

∑
𝑖=1

([U]T∶,𝑖v)2
1[𝜆𝑖 ≤ 𝑥] = vT

1[A ≤ 𝑥]v
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Gaussian quadrature

Gaussian quadrature for 𝜇 defined as

[𝜇]gq𝑘 (𝑥) =
𝑘

∑
𝑖=1

𝜔𝑖1[𝜃𝑖 ≤ 𝑥]

where {𝜔𝑖}𝑘
𝑖=1 and {𝜃𝑖}𝑘

𝑖=1 are chosen so that 𝜇 and [𝜇]gq𝑘 share moments through
degree 2𝑘 − 1.

The 𝑘-point Gaussian quadrature rule [𝜇]gq𝑘 for 𝜇 is obtained from orthogonal
polynomials of 𝜇.
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Gaussian quadrature via Lanczos

If 𝜇 = Ψ[A, v] then T from Lanczos gives upper le 𝑘 × 𝑘 block of Jacobi matrix for
orthogonal polynomials.1 Thus,
– Nodes are eigenvalues of T
– Weights are squares of first components of eigenvectors of T

Thus,

[Ψ[A, v]]gq𝑘 = Ψ[T, ê]

The Lanczos approxima on to the weighted CESM is itself a probability distribu on
func on.

1Golub and Meurant 2009.



Quadra c form as integrals

It’s not hard to see,

vT𝑓(A)v = ∫ 𝑓(𝑥)dΨ[A, v](𝑥), êT𝑓(T)ê = ∫ 𝑓(𝑥)dΨ[A, v](𝑥).

So to study Lanczos approxima on to vT𝑓(A)v we can just study Gaussian
quadrature approxima on of Ψ[A, v].



Average case behavior of the Lanczos method

We will run the Lanczos algorithm on A, ê for 𝑘 itera ons to construct a Gaussian
quadrature rule for Ψ[A, ê] where A ∼ GOE(𝑛) and ê = [1, 0, … , 0]T.

To generate A can generate X with i.i.d. standard normal entries and then define

A = X + XT

2
√

2𝑛 .

Equivalently, for 𝑖 ≤ 𝑗 entries of A are independent with distribu on

2
√

2𝑛[A]𝑖,𝑖 ∼ 𝒩(0, 2), 2
√

2𝑛[A]𝑖,𝑗 ∼ 𝒩(0, 1)

Note that A is unitarily invariant and the eigenvalues eventually lie between [−1, 1]
with high probability.



Weighted empirical spectral measure
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Gaussian quadrature node (Ritz values)
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Gaussian quadrature rule
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Remarks

As 𝑛 → ∞ we see “determinis c behavior”
– What is the limit?
– How fast does it converge?
– What do the fluctua ons look like?

These examples were computed in finite precision arithme c without
reorthogonaliza on
– isn’t the Lanczos algorithm unstable?
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Example: instability of Lanczos method2

In finite precision arithme c, the Lanczos algorithm might behave extremely
differently than in exact arithme c.

A =

⎡
⎢⎢⎢⎢⎢
⎣

0
0.00025

0.0005
0.00075

0.001
10

⎤
⎥⎥⎥⎥⎥
⎦

, v = 1√
6

⎡
⎢⎢⎢⎢⎢
⎣

1
1
1
1
1
1

⎤
⎥⎥⎥⎥⎥
⎦

2Parlet and Sco 1979.



Example: instability of Lanczos

Denote by T, Q the exact arithme c output and T̃, Q̃ the finite precision output.
How many digits of accuracy do we have for the following quan es:

Q̃ − Q T̃ − T Q̃TQ̃ − I

⎡
⎢
⎢
⎢
⎣

− − 12 7 1
− − 12 7 0
− 17 13 11 0
− − 12 7 0
− − 12 7 1
− 17 8 3 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

− −
− − −

− − 19
19 14 10

10 5 2
2 0

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

16 16 17 8 4 0
16 16 12 8 3 0
17 12 16 15 7 4
8 8 15 15 15 9
4 3 7 15 − 17
0 0 4 9 17 −

⎤
⎥
⎥
⎥
⎦
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Example: instability of Lanczos

Even for a very small example without any super extreme numbers, the Lanczos
algorithm is not at all forward stable.

There is a lot of theory about Lanczos in finite precision (although no real forward
analysis)3

3Paige 1971; Paige 1976; Paige 1980; Grcar 1981; Simon 1982; Greenbaum 1989; Meurant 2006.



Tridiagonaliza on of GOE

It is well known4 that GOE can be tridiagonalized:

1
2
√

2𝑛

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐺2 𝐺1 ⋯ ⋯ 𝐺1

𝐺1 𝐺2 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ ⋮
⋮ ⋱ ⋱ 𝐺1

𝐺1 ⋯ ⋯ 𝐺1 𝐺2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

unitary
tridiagonaliza on

−−−−−−−−−→ 1
2
√

2𝑛

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐺2 𝜒𝑛−1

𝜒𝑛−1 𝐺2 𝜒𝑛−2

𝜒𝑛−2 ⋱ ⋱
⋱ ⋱ 𝜒1

𝜒1 𝐺2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The transform does not change the first entry of a vector so Lanczos on A, ê will
produce this tridiagonal matrix (in distribu on).

4Tro er 1984; Dumitriu and Edelman 2002.



Tridiagonaliza on of GOE

Let’s look at the top-le 𝑘 × 𝑘 block as 𝑛 → ∞.

lim
𝑛→∞

1
2
√

2𝑛

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐺2 𝜒𝑛−1

𝜒𝑛−1 𝐺2 𝜒𝑛−2

𝜒𝑛−2 ⋱ ⋱
⋱ ⋱ 𝜒𝑛−𝑘

𝜒𝑛−𝑘 𝐺2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
1 0 1

1 ⋱ ⋱
⋱ ⋱ 1

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦
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⎢
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⎥
⎥
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= 1
2

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1
1 0 1

1 ⋱ ⋱
⋱ ⋱ 1

1 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦



Perturba on analysis

We can then analyze êT𝑓(T)ê using that

êT𝑓(T)ê = ∫ 𝑓(𝑥)dΨ[T, ê](𝑥).

To do this we do a perturba on analysis for this integral based on perturba ons of
tridiagonal matrices.



Forward stability of Lanczos on GOE (very brief overview)

Nota on:
– T𝑘, Q𝑘 output of finite precision Lanczos
– T𝑘 limi ng tridiagonal matrix
– K𝑘 = [𝑝0(A)v, … , 𝑝𝑘−1(A)v] (these are

polynomials of T𝑘)
– E𝑘 = Q𝑘 − K𝑘 (can write in terms of

associated polynomials of T𝑘)

T𝑘−1 ≈ T𝑘−1, QT
𝑘−1Q𝑘−1 ≈ I

qT
𝑘Q𝑘−1 ≈ 0 so QT

𝑘Q𝑘 ≈ I

projQ𝑘
(A) ≈ T𝑘

associated OP don’t grow
too much so ‖E‖𝑘 small

projQ𝑘
(A) ≈ projK𝑘

(A)
so T𝑘 ≈ T𝑘

Paige
perturbed 3 term recurrence

Simon

perturba on bound for projec on



Summary

– For fixed 𝑘, the tridiagonal matrix output by the Lanczos algorithm run on a
GOE matrix of size 𝑛 concentrates rapidly as 𝑛 → ∞, and we can study the
“average case” behavior of Lanczos as well as the fluctua ons of Lanczos about
this average case.
– For any matrix and any ball of nonzero radius centered at this matrix, there is a

non-zero probability of sampling a GOE matrix from within that ball
– We observe that Lanczos is (whp) forward stable for sufficiently large matrices5

– We think we can prove this rigorously (probably need 𝜖 = 𝑂(1/𝑛))
– This would give (maybe first true) forward analysis result on Lanczos

5tes ng very big dense matrices is prohibi vely expensive so we haven't done super big tests yet



Final remark

Quote from Edelman and Rao6:
It is a mistake to link psychologically a random matrix with the intui ve no on of
a ‘typical’ matrix or the vague concept of ‘any old matrix’.

6Edelman and Rao 2005.
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