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Matrix recovery and approximation

Recovery: Promised A € S, learn parameterization of A.

- past work for many classes: low-rank, sparse, circulant, hierarchical (HODLR,
HSS, etc.), butterfly, etc.!

'Halikias and Townsend 2023.



Matrix recovery and approximation

Approximation: Arbitrary A, learn (parameterization of) A € S such that

IA-&| < (1+¢) min |A-X|.
XeS$

- lots theory on low-rank approximation, but not much else




Access model

Assume we can only access A using matrix-vector (matvec) queries x — Ax or
y+— ATy
Why might this access model arise?

- if A = B!, we can compute Ax using a fast solver

- the action of A could also correspond to some physical process



Operator Learning?

Physical processes often map a function f to a function u. L.e., implement some

operator ®(f) = u.
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2Boullé and Townsend 2024.
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Operator Learning?

Physical processes often map a function f to a function u. L.e., implement some
operator ®(f) = u.

crack attime 0, f crack at later time, u

—

[Goswami, Anitescu, Rabczuk 2019]
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Operator Learning?

Physical processes often map a function f to a function u. L.e., implement some
operator ®(f) = u.

crack attime 0, f crack at later time, u

—

[Goswami, Anitescu, Rabczuk 2019]
Goal: Learn mapping from input-output pairs: (f, uy), ..., (f p Up)-

Scientific ML: Assume S is some parameterized family (e.g. neural net as in
DeepONet, DeepGreen, etc.)

2Boullé and Townsend 2024.



Hierarchical matrices

Today, S will be some family of hierarchical matrices.
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example classes: hierarchical off-diagonal low-rank (HODLR), hierarchical
semi-seperable (HSS), J{!, H?, hierarchical off-diagonal butterfly, etc.



Why hierarchical matrices?

Hierarchical matrices are useful for applications involving physical applications
due to the presence of multiscale phenomena.
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HODLR matrices
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HODLR matrices
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HODLR matrices
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HODLR Matrices

Definition. Fix a rank parameter k. We say a n X n matrix A is HODLR(k) if n < k
or A can be partitioned into (n/2) x (n/2) blocks

A, A
A= |11 1,2]
[Az,l Ay

suchthatA; ,and A, ; are of rank at most kand A, ; and A, , are each HODLR(k).

HODLR matries have O(knlog(n)) parameters.

There are several matvec algorithms for the recovery problem.’

3Lin, Lu, and Ying 2011; Martinsson 2016; Levitt and Martinsson 2022; Halikias and Townsend
2023.



Low-rank approximation from matrix-vector products

The Randomized SVD (RSVD) is a well-known algorithm for obtaining a low-rank
approximation to a matrix B:

1. Sample Gaussian matrix Q

2. Form Q = orth(BQ)

3. ComputeX = Q'B

4. Output Q[X],

Theorem. If B is rank-k, and Q has O(k) columns, then Q[X], = B (a.s.).



Peeling: an algorithm for the recovery problem*

The algorithm works from the top layer down.
At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

We then “peel” off these blocks before proceeding to the next level

#Lin, Lu, and Ying 2011; Martinsson 2016.
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Peeling: an algorithm for the recovery problem
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Peeling: an algorithm for the recovery problem

At each level we use O(k) matrix-vector products with A and A.

There are log,(n/k) < log,(n) levels until the blocks are of size k

- then we can directly recover them at once with k products

Theorem. We can recover a HODLR matrix using O(klog,(n)) matvecs.



Peeling with error?

A variant of the peeling algorithm can be used to approximate the solution operator
of elliptic PDEs (2024 SIAM Linear Algebra Best Paper Prize winner).?

Boullé and Townsend 2022: Is there a peeling-type algorithm that works for
nearly-HODLR matrices?

>Boullé and Townsend 2022.



Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?
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Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles
at each level. Exponential blow-up in the number of levels (linear in n)!
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The HODLR approximation problem®

Problem. Given an n X n matrix A, accessible only by matrix-vector products, a
rank parameter k, and an accuracy parameter ¢, find a HODLR (k) matrix A such
that

IA-Kle < (1+2) _min  |A-HI.

%Chen et al. 2025.
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that
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Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to A is obtained by applying a rank-k SVD to
each low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)
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A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let Q = orth(BQ +E;) and X = Q"B +E,. Then

12
IB - Q[XTlle < [IE; top”F + 2[[E; [+ (”zbot”F + [ 2ot Qpor top|| )

perturbations classical RSVD bound

When Q has O(k/¢) columns, Q
pseudoinverse:

top 18 @ k X O(k/¢) Gaussian matrix which has a small

IE [ (QIop)TQIop ] = IE [ (Qtopﬂ;rop

)_1] = el

Takeaway: The pseudoinverse will help damp the perturbation E,, but
(unsurprisingly) all of the perturbation E, can propagate.



Generalized Nystrém’

The RSVD tries to compute Q"B directly; this is the solution to:

mXin 1A - QX]lE.

"Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.
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Generalized Nystrém’

The RSVD tries to compute Q"B directly; this is the solution to:
mXin 1A - QX]lE.
Instead, we can solve a sketched problem:
min IPTA -9TQX|.
This means X = (¥TQ)'WTA.
Observation. By adding columns to ¥, we can damp errors in the product ¥TA.

The algorithm is also non-adaptive (we can do products with W in advance)

"Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.



Back to the hard instance
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Another approach: perforated sketches

Because of the structure of peeling, the error happens when blocks of our sketch hit
the error from our approximation of low-rank blocks at previous levels.

What if we just reduce how often this happens?



Perforated Block CountSketch
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Perforated Block CountSketch
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Another idea: perforated Block CountSketch
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Our main result

Theorem. There exist matvec algorithms which use O(klog(n)/B*) products with
A to obtain a HODLR(k) matrix A satisfying

-A log,(n) i -
IA=Rlr < (1+8)% mip, ) 1A~ Hlr



Our main result

Theorem. There exist matvec algorithms which use O(klog(n)/B*) products with
A to obtain a HODLR(k) matrix A satisfying

-A log,(n) i -
IA=Rlr < (1+8)% mip, ) 1A~ Hlr

Corollary. (1 + ¢)-optimal approximation with O(klog(n)*/&*) matvecs

Corollary. n°°!-optimal approximation with O(k log(n)) matvecs




Another experiment

Given points x; € R?, define [A];; = —log(|lx; — x;]))

points x; matrix A
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Lower bounds?

The matrix-vector query model often lets us prove lower-bounds against any matvec
algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding how good algorithms are
(compared to classical numerical analysis).

Theorem. There is a constant C > 0 such that for any k, n, ¢, there exists a ma-
trix A such that getting a (1 + ¢)-optimal HODLR approximation requires at least
C(klog,(n/k) + k/c) matvecs.



HSS matrices

The low-rank blocks of HSS matrices are related: O(nk) parameters.
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HSS matrices

The low-rank blocks of HSS matrices are related: O(nk) parameters.
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HSS is tricky!

Many papers study HSS recovery.®

The nestedness of column-spaces across levels adds lots of relations which make
the approximation problem much harder.

- No known polynomial algorithm known for constant factor HSS
approximation?!
- In fact, not even clear what to do in exponential time.

We prove:

Theorem. Can get O(log(n))-optimal HSS approximation in O(kn?) time.

8Xia, Chandrasekaran, Gu, and Li 2010; Levitt and Martinsson 2022; Halikias and Townsend 2023.



What's next?

Big goal: general theory for structured matrix approximation problem

Correct log(n) and ¢ rates for the algorithms we study?

- Limited by the best known bounds for Generalized Nystrom: O(k/s*)
True stability analysis (e.g. for floating point arithmetic)

- Working on with students at NYU

Adaptive algorithms

Other hierarchical classes?

|

Better understanding of (non-adaptive) low-rank approximation



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥, = ¥"Qand ¥, = ¥'Q.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
¥'B = ¥7(QQ"+QQ")B = ¥,Q'B + ¥,Q"B.

Therefore:

X = (¥'Q)(¥"B) = ¥]v,Q'B+¥!¥,Q'B = Q"B+ ¥]¥,Q"B.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.



Generalized Nystrom (perturbation) analysis

Extend Q to an orthogonal matrix [Q Q], and write ¥; = ¥TQ and ¥, = ¥TQ.
By orthogonal invariance, ¥, and ¥, are independent Gaussian matrices!

First observe:
Y B+E=97(QQ"+QQ")B+E = ¥,Q'B+¥,Q'B+E.
Therefore:

X = (Y7Q)(¥"B+E) = ¥]¥,Q'B+¥]¥,Q'B+ ¥|E = Q"B+ ¥!¥,Q'B+ V]E.

Adding more columns to ¥ (and hence ¥, ) reduces the error in the second term.



References |

Boullé, Nicolas and Alex Townsend (Jan. 2022). “Learning Elliptic Partial Differential Equations with
Randomized Linear Algebra”. In: Foundations of Computational Mathematics 23.2, pp. 709-739.

— (2024). “A mathematical guide to operator learning”. In: Numerical Analysis Meets Machine Learning.
Elsevier, pp. 83-125.

Chen, Tyler et al. (2025). “Near-optimal hierarchical matrix approximation from matrix-vector
products”. In: Symposium on Discrete Algorithms (SODA).

Clarkson, Kenneth L. and David P. Woodruff (May 2009). “Numerical linear algebra in the streaming
model”. In: Proceedings of the forty-first annual ACM symposium on Theory of computing. STOC '09. ACM.

Halikias, Diana and Alex Townsend (Sept. 2023). “Structured matrix recovery from matrix-vector
products”. In: Numerical Linear Algebra with Applications 31.1.

Levitt, James and Per-Gunnar Martinsson (2022). Randomized Compression of Rank-Structured Matrices
Accelerated with Graph Coloring.

Lin, Lin, Jianfeng Lu, and Lexing Ying (May 2011). “Fast construction of hierarchical matrix
representation from matrix-vector multiplication”. In: Journal of Computational Physics 230.10,
pp- 4071-4087.

Martinsson, Per-Gunnar (Jan. 2016). “Compressing Rank-Structured Matrices via Randomized
Sampling”. In: SITAM Journal on Scientific Computing 38.4, A1959-A1986.

Nakatsukasa, Yuji (2020). “Fast and stable randomized low-rank matrix approximation”. In: ArXiv

abs/2009.11392.
Tropp, Joel A. et al. (Jan. 2017). “Practical Sketching Algorithms for Low-Rank Matrix Approximation”.

In: SIAM Journal on Matrix Analysis and Applications 38.4, pp. 1454-1485.



References Il

Xia, Jianlin et al. (Nov. 2010). “Fast algorithms for hierarchically semiseparable matrices”. In: Numerical
Linear Algebra with Applications 17.6, pp. 953-976.



	References

