Near-optimal hierarchical matrix approximation from matrix-vector products

Tyler Chen

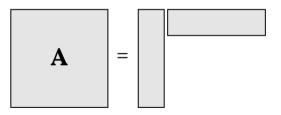
January 11, 2025

chen.pw/slides

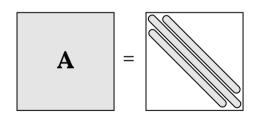
Noah Amsel, Feyza Duman Keles, Diana Halikias, David Persson, Chris Musco, Cameron Musco

Let S be some family of matrices parameterized by a few parameters.

Let S be some family of matrices parameterized by a few parameters.



Let *S* be some family of matrices parameterized by a few parameters.



Recovery: Promised $A \in S$, learn parameterization of A.

 past work for many classes: low-rank, sparse, circulant, hierarchical (HODLR, HSS, etc.), butterfly, etc.¹

Approximation: Arbitrary A, learn (parameterization of) $\widetilde{\mathbf{A}} \in S$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\| \le (1 + \varepsilon) \min_{\mathbf{X} \in S} \|\mathbf{A} - \mathbf{X}\|.$$

- lots theory on low-rank approximation, but not much else

¹Halikias and Townsend 2023.

Recovery: Promised $A \in S$, learn parameterization of A.

 past work for many classes: low-rank, sparse, circulant, hierarchical (HODLR, HSS, etc.), butterfly, etc.¹

Approximation: Arbitrary A, learn (parameterization of) $\widetilde{\mathbf{A}} \in S$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\| \le (1 + \varepsilon) \min_{\mathbf{X} \in S} \|\mathbf{A} - \mathbf{X}\|.$$

- lots theory on low-rank approximation, but not much else

¹Halikias and Townsend 2023.

Access model

Assume we can only access **A** using matrix-vector (matvec) queries $\mathbf{x} \mapsto \mathbf{A}\mathbf{x}$ or $\mathbf{y} \mapsto \mathbf{A}^\mathsf{T}\mathbf{y}$.

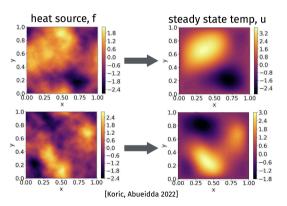
Why might this access model arise?

- if $A = B^{-1}$, we can compute Ax using a fast solver
- the action of A could also correspond to some physical process

L

Operator Learning²

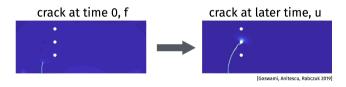
Physical processes often map a function f to a function u. I.e., implement some operator $\Phi(f)=u$.



²Boullé and Townsend 2024.

Operator Learning²

Physical processes often map a function f to a function u. I.e., implement some operator $\Phi(f)=u$.



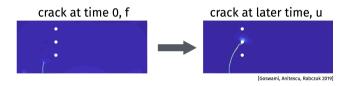
Goal: Learn mapping from input-output pairs: $(f_1, u_1), \dots, (f_m, u_m)$.

Scientific ML: Assume *S* is some parameterized family (e.g. neural net as in DeepONet, DeepGreen, etc.)

²Boullé and Townsend 2024.

Operator Learning²

Physical processes often map a function f to a function u. I.e., implement some operator $\Phi(f) = u$.



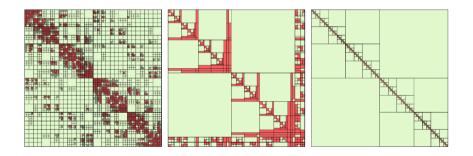
Goal: Learn mapping from input-output pairs: $(f_1, u_1), \dots, (f_m, u_m)$.

Scientific ML: Assume *S* is some parameterized family (e.g. neural net as in DeepONet, DeepGreen, etc.)

²Boullé and Townsend 2024.

Hierarchical matrices

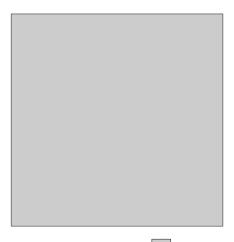
Today, S will be some family of hierarchical matrices.



example classes: hierarchical off-diagonal low-rank (HODLR), hierarchical semi-seperable (HSS), \mathcal{H}^1 , \mathcal{H}^2 , hierarchical off-diagonal butterfly, etc.

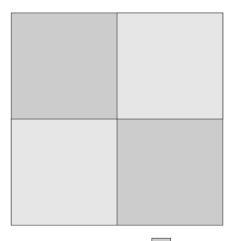
Why hierarchical matrices?

Hierarchical matrices are useful for applications involving physical applications due to the presence of multiscale phenomena.



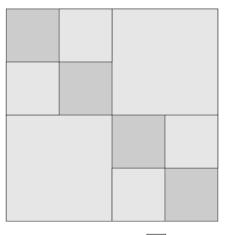
low-rank block

recursive block



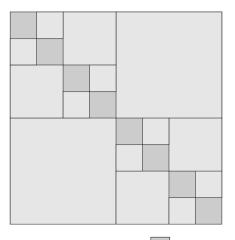
low-rank block

recursive block



low-rank block

recursive block



low-rank block

recursive block

Definition. Fix a rank parameter k. We say a $n \times n$ matrix A is HODLR(k) if $n \le k$ or A can be partitioned into $(n/2) \times (n/2)$ blocks

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix}$$

such that $A_{1,2}$ and $A_{2,1}$ are of rank at most k and $A_{1,1}$ and $A_{2,2}$ are each HODLR(k).

HODLR matries have $O(kn \log(n))$ parameters.

There are several matvec algorithms for the recovery problem.³

³Lin, Lu, and Ying 2011; Martinsson 2016; Levitt and Martinsson 2022; Halikias and Townsend 2023.

Low-rank approximation from matrix-vector products

The Randomized SVD (RSVD) is a well-known algorithm for obtaining a low-rank approximation to a matrix **B**:

- 1. Sample Gaussian matrix Ω
- 2. Form $\mathbf{Q} = \operatorname{orth}(\mathbf{B}\mathbf{\Omega})$
- 3. Compute $\mathbf{X} = \mathbf{Q}^{\mathsf{T}}\mathbf{B}$ (minimize: $\|\mathbf{B} \mathbf{Q}\mathbf{X}\|_{\mathsf{F}}$)
- 4. Output $\mathbf{Q}[\![\mathbf{X}]\!]_k$

Theorem. If **B** is rank-k, and Ω has O(k) columns, then $\mathbb{Q}[\![X]\!]_k = \mathbb{B}$ (a.s.).

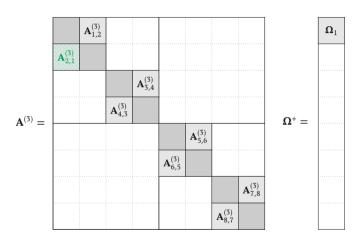
Peeling: an algorithm for the recovery problem⁴

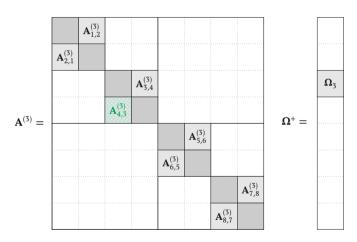
The algorithm works from the top layer down.

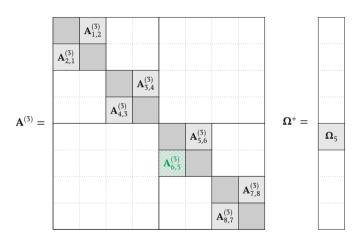
At each level, we simultaneosly apply the RSVD to the low-rank off-diagonal blocks.

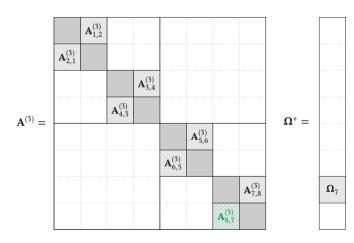
We then "peel" off these blocks before proceeding to the next level

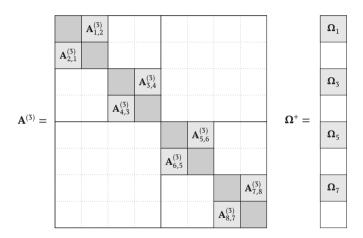
⁴Lin, Lu, and Ying 2011; Martinsson 2016.



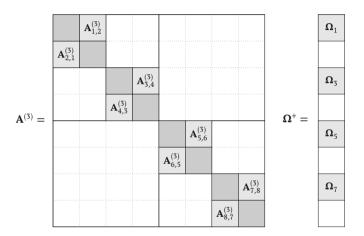








From $\mathbf{A}^{(3)}\mathbf{\Omega}^+$ we get sketches: $\mathbf{A}_{2,1}^{(3)}\mathbf{\Omega}_1$, $\mathbf{A}_{4,3}^{(3)}\mathbf{\Omega}_3$, $\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_5$, $\mathbf{A}_{8,7}^{(3)}\mathbf{\Omega}_7$.



From $\mathbf{A}^{(3)}\mathbf{\Omega}^+$ we get sketches: $\mathbf{A}_{2,1}^{(3)}\mathbf{\Omega}_1$, $\mathbf{A}_{4,3}^{(3)}\mathbf{\Omega}_3$, $\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_5$, $\mathbf{A}_{8,7}^{(3)}\mathbf{\Omega}_7$.

At each level we use O(k) matrix-vector products with **A** and **A**^T.

There are $\log_2(n/k) \le \log_2(n)$ levels until the blocks are of size k

– then we can directly recover them at once with \boldsymbol{k} products

Theorem. We can recover a HODLR matrix using $O(k \log_2(n))$ matvecs.

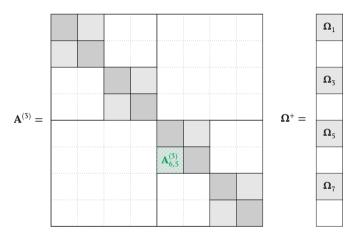
Peeling with error?

A variant of the peeling algorithm can be used to approximate the solution operator of elliptic PDEs (2024 SIAM Linear Algebra Best Paper Prize winner).⁵

Boullé and Townsend 2022: Is there a peeling-type algorithm that works for nearly-HODLR matrices?

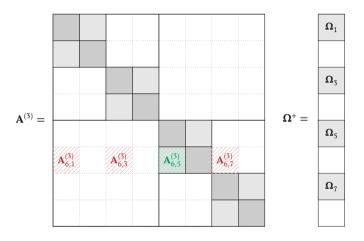
⁵Boullé and Townsend 2022.

Does peeling work on non-HODLR matrices?



 $A_{6,5}^{(3)}\Omega_5$

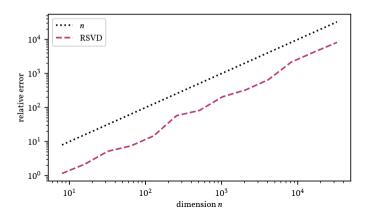
Does peeling work on non-HODLR matrices?



$$\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_5 + \mathbf{A}_{6,1}^{(3)}\mathbf{\Omega}_1 + \mathbf{A}_{6,3}^{(3)}\mathbf{\Omega}_3 + \mathbf{A}_{6,7}^{(3)}\mathbf{\Omega}_7$$

Does peeling work on non-HODLR matrices?

If all the error at a level can propagate to the next level, then the total error doubles at each level. Exponential blow-up in the number of levels (linear in n)!



Problem. Given an $n \times n$ matrix **A**, accessible only by matrix-vector products, a rank parameter k, and an accuracy parameter ε , find a HODLR(k) matrix $\widetilde{\mathbf{A}}$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq \left(1 + \epsilon\right) \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to **A** is obtained by applying a rank-*k* SVD to each low-rank block of **A**.

This is too expensive in the matrix-vector product model (n products)

⁶Chen et al. 2025.

Problem. Given an $n \times n$ matrix **A**, accessible only by matrix-vector products, a rank parameter k, and an accuracy parameter ε , find a HODLR(k) matrix $\widetilde{\mathbf{A}}$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq \left(1 + \epsilon\right) \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to **A** is obtained by applying a rank-*k* SVD to each low-rank block of **A**.

- This is too expensive in the matrix-vector product model (*n* products)

⁶Chen et al. 2025.

Problem. Given an $n \times n$ matrix **A**, accessible only by matrix-vector products, a rank parameter k, and an accuracy parameter ε , find a HODLR(k) matrix $\widetilde{\mathbf{A}}$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq \left(1 + \varepsilon\right) \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to A is obtained by applying a rank-k SVD to each low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)

⁶Chen et al. 2025.

Problem. Given an $n \times n$ matrix **A**, accessible only by matrix-vector products, a rank parameter k, and an accuracy parameter ε , find a HODLR(k) matrix $\widetilde{\mathbf{A}}$ such that

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq \left(1 + \varepsilon\right) \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Theorem. There is an efficient matvec algorithm for HODLR approximation.

Note: The best HODLR approximation to A is obtained by applying a rank-k SVD to each low-rank block of A.

- This is too expensive in the matrix-vector product model (n products)

⁶Chen et al. 2025.

A perturbation bound for the RSVD

We prove a perturbation bound for the RSVD. This is likely of independent interest.

Theorem. Let
$$\mathbf{Q} = \operatorname{orth}(\mathbf{B}\mathbf{\Omega} + \mathbf{E}_1)$$
 and $\mathbf{X} = \mathbf{Q}^\mathsf{T}\mathbf{B} + \mathbf{E}_2$. Then
$$\|\mathbf{B} - \mathbf{Q}[\![\mathbf{X}]\!]_k\|_\mathsf{F} \leq \underbrace{\|\mathbf{E}_1\mathbf{\Omega}_\mathsf{top}^\dagger\|_\mathsf{F} + 2\|\mathbf{E}_2\|_\mathsf{F}}_{\text{perturbations}} + \underbrace{\left(\|\mathbf{\Sigma}_\mathsf{bot}\|_\mathsf{F}^2 + \|\mathbf{\Sigma}_\mathsf{bot}\mathbf{\Omega}_\mathsf{bot}\mathbf{\Omega}_\mathsf{top}^\dagger\|_\mathsf{F}^2\right)^{1/2}}_{\text{classical RSVD bound}}.$$

When Ω has $O(k/\varepsilon)$ columns, Ω_{top} is a $k \times O(k/\varepsilon)$ Gaussian matrix which has a small pseudoinverse:

$$\mathbb{E}\big[(\boldsymbol{\Omega}_{\mathrm{top}}^{\dagger})^{\mathsf{T}}\boldsymbol{\Omega}_{\mathrm{top}}^{\dagger}\big] = \mathbb{E}\big[(\boldsymbol{\Omega}_{\mathrm{top}}\boldsymbol{\Omega}_{\mathrm{top}}^{\mathsf{T}})^{-1}\big] = \epsilon \mathbf{I}.$$

Takeaway: The pseudoinverse will help damp the perturbation \mathbf{E}_1 , but (unsurprisingly) all of the perturbation \mathbf{E}_2 can propagate.

Generalized Nyström⁷

The RSVD tries to compute $\mathbf{Q}^T\mathbf{B}$ directly; this is the solution to:

$$\min_{X} \|A - QX\|_{\text{F}}.$$

Instead, we can solve a sketched problem:

$$\min_{X} \| \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{A} - \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{X} \|_{\mathsf{F}}.$$

This means $\mathbf{X} = (\mathbf{\Psi}^{\mathsf{T}}\mathbf{Q})^{\dagger}\mathbf{\Psi}^{\mathsf{T}}\mathbf{A}$.

Observation. By adding columns to Ψ , we can damp errors in the product $\Psi^T A$.

The algorithm is also non-adaptive (we can do products with Ψ in advance)

⁷Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.

Generalized Nyström⁷

The RSVD tries to compute $\mathbf{Q}^T\mathbf{B}$ directly; this is the solution to:

$$\min_{X}\|A-QX\|_{\text{F}}.$$

Instead, we can solve a sketched problem:

$$\min_{X} \| \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{A} - \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{X} \|_{\mathsf{F}}.$$

This means $\mathbf{X} = (\mathbf{\Psi}^{\mathsf{T}} \mathbf{Q})^{\dagger} \mathbf{\Psi}^{\mathsf{T}} \mathbf{A}$.

Observation. By adding columns to Ψ , we can damp errors in the product $\Psi^T A$.

The algorithm is also non-adaptive (we can do products with Ψ in advance)

⁷Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.

Generalized Nyström⁷

The RSVD tries to compute $\mathbf{Q}^T\mathbf{B}$ directly; this is the solution to:

$$\min_{X}\|A-QX\|_{\text{F}}.$$

Instead, we can solve a sketched problem:

$$\min_{\boldsymbol{v}} \|\boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{A} - \boldsymbol{\Psi}^{\mathsf{T}} \boldsymbol{Q} \boldsymbol{X} \|_{\mathsf{F}}.$$

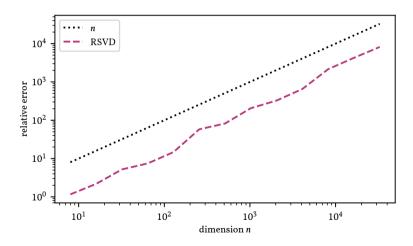
This means $\mathbf{X} = (\mathbf{\Psi}^{\mathsf{T}} \mathbf{Q})^{\dagger} \mathbf{\Psi}^{\mathsf{T}} \mathbf{A}$.

Observation. By adding columns to Ψ , we can damp errors in the product $\Psi^T A$.

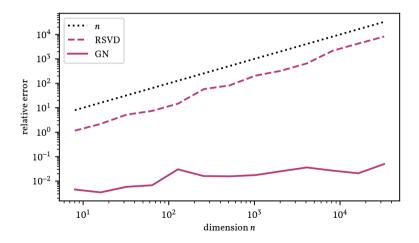
The algorithm is also non-adaptive (we can do products with Ψ in advance)

⁷Clarkson and Woodruff 2009; Tropp, Yurtsever, Udell, and Cevher 2017; Nakatsukasa 2020.

Back to the hard instance



Back to the hard instance

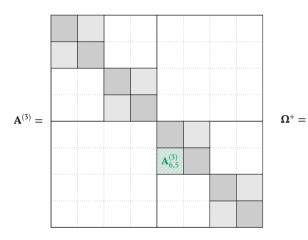


Another approach: perforated sketches

Because of the structure of peeling, the error happens when blocks of our sketch hit the error from our approximation of low-rank blocks at previous levels.

What if we just reduce how often this happens?

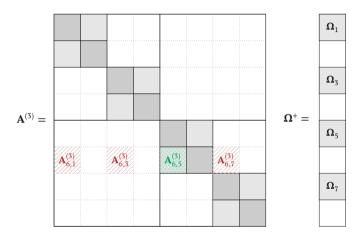
Perforated Block CountSketch



 Ω_1 Ω_3 Ω_5 Ω_7

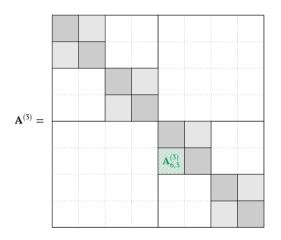
 $\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_{5}$

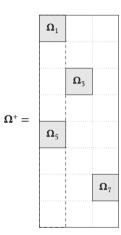
Perforated Block CountSketch

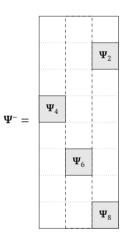


$$\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_5 + \mathbf{A}_{6,1}^{(3)}\mathbf{\Omega}_1 + \mathbf{A}_{6,3}^{(3)}\mathbf{\Omega}_3 + \mathbf{A}_{6,7}^{(3)}\mathbf{\Omega}_7$$

Another idea: perforated Block CountSketch

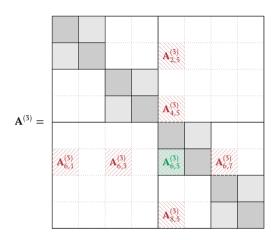


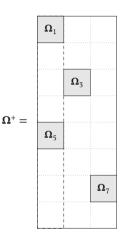


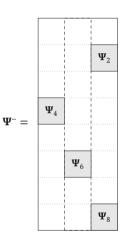


$$\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_{5}$$

Another idea: perforated Block CountSketch







$$\mathbf{A}_{6,5}^{(3)}\mathbf{\Omega}_5 + \mathbf{A}_{6,1}^{(3)}\mathbf{\Omega}_1$$

Our main result

Theorem. There exist matvec algorithms which use $O(k \log(n)/\beta^3)$ products with **A** to obtain a HODLR(k) matrix $\widetilde{\mathbf{A}}$ satisfying

$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq (1 + \beta)^{\log_2(n)} \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Corollary. $(1 + \varepsilon)$ -optimal approximation with $O(k \log(n)^4/\varepsilon^3)$ matvecs

Corollary. $n^{0.01}$ -optimal approximation with $O(k \log(n))$ matvecs

Our main result

Theorem. There exist matvec algorithms which use $O(k \log(n)/\beta^3)$ products with **A** to obtain a HODLR(k) matrix $\widetilde{\mathbf{A}}$ satisfying

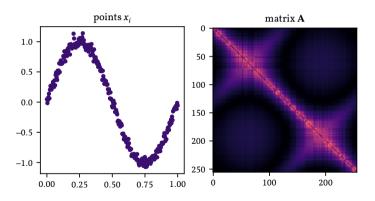
$$\|\mathbf{A} - \widetilde{\mathbf{A}}\|_{\mathsf{F}} \leq (1 + \beta)^{\log_2(n)} \min_{\mathbf{H} \in \mathrm{HODLR}(k)} \|\mathbf{A} - \mathbf{H}\|_{\mathsf{F}}.$$

Corollary. $(1+\varepsilon)$ -optimal approximation with $O(k\log(n)^4/\varepsilon^3)$ matvecs

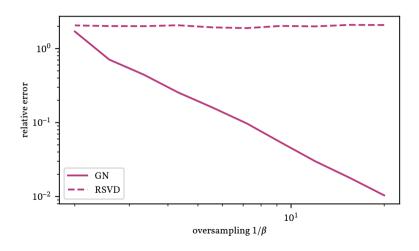
Corollary. $n^{0.01}$ -optimal approximation with $O(k \log(n))$ matvecs

Another experiment

Given points $x_i \in \mathbb{R}^2$, define $[\mathbf{A}]_{i,j} = -\log(\|x_i - x_j\|)$



Another experiment



Lower bounds?

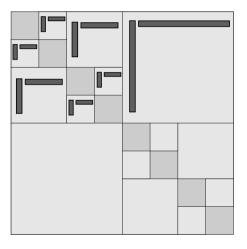
The matrix-vector query model often lets us prove lower-bounds against any matvec algorithm for a given task; i.e. study the complexity of a task.

This provides a very different approach for understanding how good algorithms are (compared to classical numerical analysis).

Theorem. There is a constant C > 0 such that for any k, n, ε , there exists a matrix **A** such that getting a $(1 + \varepsilon)$ -optimal HODLR approximation requires at least $C(k \log_2(n/k) + k/\varepsilon)$ matvecs.

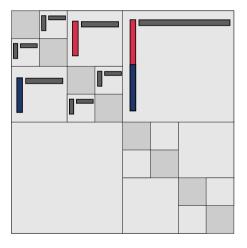
HSS matrices

The low-rank blocks of HSS matrices are related: O(nk) parameters.



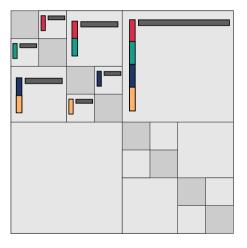
HSS matrices

The low-rank blocks of HSS matrices are related: O(nk) parameters.



HSS matrices

The low-rank blocks of HSS matrices are related: O(nk) parameters.



HSS is tricky!

Many papers study HSS recovery.8

The nestedness of column-spaces across levels adds lots of relations which make the approximation problem much harder.

- No known polynomial algorithm known for constant factor HSS approximation?!
- In fact, not even clear what to do in exponential time.

We prove:

Theorem. Can get $O(\log(n))$ -optimal HSS approximation in $O(kn^2)$ time.

⁸Xia, Chandrasekaran, Gu, and Li 2010; Levitt and Martinsson 2022; Halikias and Townsend 2023.

What's next?

Big goal: general theory for structured matrix approximation problem

- Correct $\log(n)$ and ε rates for the algorithms we study?
 - Limited by the best known bounds for Generalized Nyström: $O(k/\epsilon^3)$
- True stability analysis (e.g. for floating point arithmetic)
 - Working on with students at NYU
- Adaptive algorithms
- Other hierarchical classes?
- Better understanding of (non-adaptive) low-rank approximation

Generalized Nyström (perturbation) analysis

Extend **Q** to an orthogonal matrix $[\mathbf{Q} \widehat{\mathbf{Q}}]$, and write $\mathbf{\Psi}_1 = \mathbf{\Psi}^\mathsf{T} \mathbf{Q}$ and $\mathbf{\Psi}_2 = \mathbf{\Psi}^\mathsf{T} \widehat{\mathbf{Q}}$.

By orthogonal invariance, Ψ_1 and Ψ_2 are independent Gaussian matrices!

First observe:

$$\boldsymbol{\Psi}^\mathsf{T} \boldsymbol{B} = \boldsymbol{\Psi}^\mathsf{T} (\boldsymbol{Q} \boldsymbol{Q}^\mathsf{T} + \widehat{\boldsymbol{Q}} \widehat{\boldsymbol{Q}}^\mathsf{T}) \boldsymbol{B} = \boldsymbol{\Psi}_1 \boldsymbol{Q}^\mathsf{T} \boldsymbol{B} + \boldsymbol{\Psi}_2 \widehat{\boldsymbol{Q}}^\mathsf{T} \boldsymbol{B}.$$

Therefore:

$$\mathbf{X} = (\mathbf{\Psi}^\mathsf{T} \mathbf{Q})^\dagger (\mathbf{\Psi}^\mathsf{T} \mathbf{B}) = \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_1 \mathbf{Q}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_2 \widehat{\mathbf{Q}}^\mathsf{T} \mathbf{B} = \mathbf{Q}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_2 \widehat{\mathbf{Q}}^\mathsf{T} \mathbf{B}.$$

Adding more columns to Ψ (and hence Ψ_1) reduces the error in the second term.

Generalized Nyström (perturbation) analysis

Extend \mathbf{Q} to an orthogonal matrix $[\mathbf{Q} \widehat{\mathbf{Q}}]$, and write $\mathbf{\Psi}_1 = \mathbf{\Psi}^\mathsf{T} \mathbf{Q}$ and $\mathbf{\Psi}_2 = \mathbf{\Psi}^\mathsf{T} \widehat{\mathbf{Q}}$.

By orthogonal invariance, Ψ_1 and Ψ_2 are independent Gaussian matrices!

First observe:

$$\boldsymbol{\Psi}^{\mathsf{T}}\boldsymbol{B} + \boldsymbol{E} = \boldsymbol{\Psi}^{\mathsf{T}}(\boldsymbol{Q}\boldsymbol{Q}^{\mathsf{T}} + \widehat{\boldsymbol{Q}}\widehat{\boldsymbol{Q}}^{\mathsf{T}})\boldsymbol{B} + \boldsymbol{E} = \boldsymbol{\Psi}_{1}\boldsymbol{Q}^{\mathsf{T}}\boldsymbol{B} + \boldsymbol{\Psi}_{2}\widehat{\boldsymbol{Q}}^{\mathsf{T}}\boldsymbol{B} + \boldsymbol{E}.$$

Therefore:

$$\mathbf{X} = (\mathbf{\Psi}^\mathsf{T} \mathbf{Q})^\dagger (\mathbf{\Psi}^\mathsf{T} \mathbf{B} + \mathbf{E}) = \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_1 \mathbf{Q}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_2 \widehat{\mathbf{Q}}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{E} = \mathbf{Q}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{\Psi}_2 \widehat{\mathbf{Q}}^\mathsf{T} \mathbf{B} + \mathbf{\Psi}_1^\dagger \mathbf{E}.$$

Adding more columns to Ψ (and hence Ψ_1) reduces the error in the second term.

References I

- Boullé, Nicolas and Alex Townsend (Jan. 2022). "Learning Elliptic Partial Differential Equations with Randomized Linear Algebra". In: Foundations of Computational Mathematics 23.2, pp. 709–739.
- (2024). "A mathematical guide to operator learning". In: *Numerical Analysis Meets Machine Learning*. Elsevier, pp. 83–125.
- Chen, Tyler et al. (2025). "Near-optimal hierarchical matrix approximation from matrix-vector products". In: Symposium on Discrete Algorithms (SODA).
- Clarkson, Kenneth L. and David P. Woodruff (May 2009). "Numerical linear algebra in the streaming model". In: *Proceedings of the forty-first annual ACM symposium on Theory of computing*. STOC '09. ACM.
- Halikias, Diana and Alex Townsend (Sept. 2023). "Structured matrix recovery from matrix-vector products". In: Numerical Linear Algebra with Applications 31.1.
- Levitt, James and Per-Gunnar Martinsson (2022). Randomized Compression of Rank-Structured Matrices Accelerated with Graph Coloring.
- Lin, Lin, Jianfeng Lu, and Lexing Ying (May 2011). "Fast construction of hierarchical matrix representation from matrix–vector multiplication". In: *Journal of Computational Physics* 230.10, pp. 4071–4087.
- Martinsson, Per-Gunnar (Jan. 2016). "Compressing Rank-Structured Matrices via Randomized Sampling". In: SIAM Journal on Scientific Computing 38.4, A1959–A1986.
- Nakatsukasa, Yuji (2020). "Fast and stable randomized low-rank matrix approximation". In: *ArXiv* abs/2009.11392.
- Tropp, Joel A. et al. (Jan. 2017). "Practical Sketching Algorithms for Low-Rank Matrix Approximation". In: SIAM Journal on Matrix Analysis and Applications 38.4, pp. 1454–1485.

References II

Xia, Jianlin et al. (Nov. 2010). "Fast algorithms for hierarchically semiseparable matrices". In: *Numerical Linear Algebra with Applications* 17.6, pp. 953–976.