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Background
Solving the regularized linear system

A`x = b, A` := A + `I, (1)

where A ∈ R3×3 is symmetric positive definite and ` ≥ 0 is a critical
task across the computational sciences.

Krylov Subspace Methods (KSM) make use of the Krylov subspace
KC (A, b) := span{b,Ab, . . . ,AC−1b}. (2)

Nyström preconditioning
If A is poorly conditioned due to the presence of A eigenvalues much
larger than the remaining = − A eigenvalues, then we might hope to learn
a good approximation of the top A eigenvalues and ‘‘correct’’ this ill-
conditioning. In particular, one can form the preconditioner

P` :=
1

\ + `
U(D + `I)UT + (I − UUT), (3)

where \ > 0 is a parameter that must be chosen along with the factoriza-
tion UDUT. It is not hard to verify that

P−1
` = (\ + `)U(D + `I)−1UT + (I − UUT). (4)

In particular, it’s reasonable to take UDUT as the eigendecomposition of
the Nyström approximation

A〈KB〉 := (AKB) (KT
B AKB)†(KT

B A), (5)

where 
 ∈ R3×ℓ is a matrix of independent standard normal random
variables and

KB := [
 A
 · · · AB−1
] ∈ R3×(Bℓ). (6)

This variant of the Nyström approximation is among the most powerful
randomized low-rank approximation algorithms, and can be implemented
using B matrix-loads [TW23].
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Figure. Convergence (in terms of matrix-loads) of block CG ( ) standard CG ( )
and the state of the art Nyström PCG [FTU23] with various choices of hyperparameters
( ). Block CG outperforms these existing methods without the need for selecting
hyperparameters, which may be difficult to do effectively in practice.

Our approach: augmented block-CG
Given a matrix B ∈ R3×< (typically < � 3) with columns b(1), . . . , b(<),
the block Krylov subspace is

KC (A,B) := KC (A, b(1)) + · · · + KC (A, b(<)). (7)

That is, KC (A,B) is the space consisting of all linear combinations of
vectors in KC (A, b(1)), . . . ,KC (A, b(<)).
This naturally gives rise to the block-CG algorithm [OLe80].

Definition. Let B = [b(1) · · · b(<)]. The C-th block-CG iterates are
defined as

bcg(8)
C (`) := argmin

x∈KC (A,B)
‖A−1

` b(8) − x‖A`
.

The block-CG iterates bcg(1)
C (`), . . . , bcg(<)

C (`) can be simultaneously
computed using C − 1 block matrix-vector products with A.

Our first main result is the observation that by augmenting b with 
,
block-CG implicitly enjoys the benefits of certain classes of precondition-
ers built using 
. In particular, we have the following error guarantee:

Theorem. Fix any matrix 
 ∈ R3×< and let P = (I + X)−1 be any
preconditioner where range(X) ⊆ KB+1(A,
). Define the augmented
starting block B = [b 
]. Then, for any C ≥ B, the C-th block-CG iterate
is related to the (C − B)-th preconditioned-CG iterate corresponding to
the preconditioner P` in that

‖A−1
` b − bcg(1)

C (`)‖A`
≤ ‖A−1

` b − pcgC−B(`)‖A`
.

In particular, when UDUT = A〈KB〉, then the deflation preconditioner P`

defined in (3) has the form
P−1 = I + X,where range(X) ⊆ KB(A,
). (8)

Corollary. Let 
 ∈ R3×(A+2)@, where @ ≥ log(1/X)/log(100), be a
random Gaussian matrix and define the augmented starting block B =

[b 
]. Let

YC (`) := 2 exp

(
− C − (3 + log(3))

3
√
(_A+1 + `)/(_3 + `)

)
.

Then the block-CG satisfies, with probability at least 1 − X,{
∀` ≥ 0 :

‖A−1
` b − bcg(1)

C (`)‖A`

‖A−1
` b‖A`

≤ YC (`)
}
.

Takeaway: Block CG automatically matches the
guarantees/performance of Nyström PCG, without
the need to build a preconditioner!

Numerical Experiments
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Figure. Error versus matrix-loads for block-CG ( ), CG ( ), and Nyström PCG
with B = 1 ( ) and B = 3 ( ) on several test problems.
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Figure. Error versus matrix-loads for block-CG ( ) with reorthogonalization for 3
iterations, CG ( ) with reorthogonalization for 3ℓ iterations, and Nyström PCG with
B = 3 ( ) without any reorthgonalization. Light curves show convergence of block-
CG and CG with no reorthgonalization.
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Figure. CG ( ) and Nyström PCG
with B = 1 ( ) without any reorthgo-
nalization.

Figure. CG ( ) with reorthogonaliza-
tion for 22 iterations and Nyström PCG
with B = 1 ( ) without any reorth.
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