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What is a matrix function?

An 𝑛 × 𝑛 symmetric matrix𝐀 has real eigenvalues and orthonormal eigenvectors:

𝐀 =
𝑛

∑
𝑖=1

𝜆𝑖𝐮𝑖𝐮T
𝑖 .

Thematrix function 𝑓(𝐀), induced by𝑓 ∶ ℝ → ℝ and𝐀, is defined as

𝑓(𝐀) ∶=
𝑛

∑
𝑖=1

𝑓(𝜆𝑖)𝐮𝑖𝐮T
𝑖 .

Common functions are 1/𝑥, exp(−𝛽𝑥),√𝑥, ln(𝑥), etc.



Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure1

(CSEM):

tr(𝑓(𝐀)) = 𝑛 ∫ 𝑓 dΦ, Φ(𝑥) =
𝑛

∑
𝑖=1

𝑛−1𝟙[𝜆𝑖 ≤ 𝑥].

Quadratic forms of matrix functions are integrals against a weighted spectral

measure (wCSEM):

𝐯T𝑓(𝐀)𝐯 = ∫ 𝑓 dΨ, Ψ(𝑥) =
𝑛

∑
𝑖=1

|𝐯T𝐮𝑖|2𝟙[𝜆𝑖 ≤ 𝑥].

If 𝔼[𝐯𝐯T] = 𝑛−1𝐈, thenΨ(𝑥) is an unbiased estimator forΦ(𝑥); see also quadratic
trace estimation2: 𝔼[𝐯T𝐁𝐯] = 𝑛−1 tr(𝐁).

1also called density of states in physics
2Girard 1987; Hutchinson 1989; Skilling 1989, etc.
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Example: CSEM vs wCESM
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Legend: CESMΦ ( ), samples of weighted CESMΨ corresponding to random 𝐯 ( ).



A prototypical algorithm for randomized matrix free quadrature

Many standard algorithms approximate the CESMΦ in two stages:

1. approximateΦ byweighted CESMΨ by sampling 𝐯
2. approximateΨ by a polynomial quadrature [Ψ]∘q

𝑠

Weneed to enforce that low-degree polynomials are integrated exactly. This can be

donewith knowledge of polynomial moments

𝑚𝑖 = ∫ 𝑝𝑖dΨ = 𝐯T𝑝𝑖(𝐀)𝐯.

Moments𝑚0, 𝑚1, … , 𝑚2𝑘 can be computed from the Krylov subspace

𝒦𝑘(𝐀, 𝐯) ∶= span{𝐯, 𝐀𝐯, … , 𝐀𝑘𝐯}.
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Polynomial quadrature

Fix a referencemeasure 𝜇.

Examples of choices of [𝑓]∘p
𝑠 :

– truncated 𝜇-orthogonal polynomial series of 𝑓
– Kernel polynomialmethod3: 𝜇 fixed (e.g. arcsin), possibly apply damping kernel

– polynomial interpolate at roots of an orthogonal polynomial of 𝜇
– Stochastic Lanczos quadrature4: 𝜇 = Ψ (Gaussian quadrature)

KPM and SLQ are probably themostwidely used5 algorithms for spectrum and

spectral sum approximation.

3Skilling 1989; Silver and Röder 1994;Weiße,Wellein, Alvermann, and Fehske 2006.
4Bai, Fahey, and Golub 1996; Golub andMeurant 2009.
5Weiße,Wellein, Alvermann, and Fehske 2006; Lin, Saad, andYang 2016; Ubaru, Chen, and Saad

2017; Martinsson andTropp 2020;Murray et al. 2023.



Choosing the reference measure/approximation
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Legend: KPMwith correct support ( ), 5% too large ( ), 5% too small ( ).



Computing moments

Let 𝑝𝑖 be the orthogonal polynomials of 𝜇with three-term recurrence:

𝑥𝑝𝑖(𝑥) = 𝛽𝑖−1𝑝𝑖−1(𝑥) + 𝛼𝑖𝑝𝑖(𝑥) + 𝛽𝑖𝑝𝑖+1(𝑥).

We can run amatrix version of the recurrence to compute 𝑝𝑖(𝐀)𝐯. Then, to get
moments:

– Compute𝑚𝑖 = 𝐯T𝑝𝑖(𝐀)𝐯 as you go.
– Thisworks fine, butwe only get degree 𝑘 not 2𝑘.

– Instead store basis𝐁 = [𝑝0(𝐀)𝐯, … , 𝑝𝑘(𝐀)𝐯] and compute𝐁T𝐁.
– This gets degree 2𝑘, but requires highmemory.

For Chebyshev polynomials, can get both from6:

𝑇2𝑖(𝑥) = 2𝑇𝑖(𝑥)2 − 1, 𝑇2𝑖+1(𝑥) = 2𝑇𝑖(𝑥)𝑇𝑖+1(𝑥) − 𝑥.

6Skilling 1989;Weiße,Wellein, Alvermann, and Fehske 2006.
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Connection coefficients for more modified moments

The connection coefficient matrix 𝐂 = 𝐂𝜇→𝜈 is the upper triangular matrix

representing a change of basis between the orthogonal polynomials {𝑝𝑖}∞
𝑖=1with

respect to 𝜇 and the orthogonal polynomials {𝑞𝑖}∞
𝑖=1with respect to 𝜈, whose entries

satisfy,

𝑝𝑠(𝑥) = [𝐂]0,𝑠𝑞0(𝑥) + [𝐂]1,𝑠𝑞1(𝑥) + ⋯ + [𝐂]𝑠,𝑠𝑞𝑠(𝑥).

– Connection coefficient matrix can be computed recursively7 from recurrence

formulas for orthogonal polynomials of 𝜇 and 𝜈.
– If we havemomentswith respect to 𝜈, we can get momentswith respect to 𝜇.

7Sack and Donovan 1971;Wheeler 1974;Webb and Olver 2021.



The Lanczos algorithm

The Lanczos algorithm (efficiently) computes an orthonormal basis for the Krylov

subspace 𝒦𝑘(𝐀, 𝐯).

Equivalently, Lanczos computes the orthogonal polynomials of Ψ! Resulting
Gaussian quadrature integrates polynomials of degree 2𝑘 − 1 exactly.

This can be done efficientlywith a three term recurrence:

𝐀𝐪𝑖 = 𝛽𝑖−1𝐪𝑖−1 + 𝛼𝑖𝐪𝑖 + 𝛽𝑖𝐪𝑖+1.

Comparedwith explicit polynomials: we already know themodifiedmoments, but

need to compute the recurrence coefficients.



Example: instability of Lanczos

In finite precision arithmetic, the Lanczos algorithm behaves extremely differently

than in exact arithmetic.

Toy example8:

𝐀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
0.00025

0.0005
0.00075

0.001
10

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, 𝐯 = 1
√6

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
1
1
1
1
1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

8Parlet and Scott 1979.



Example: instability of Lanczos

Denote by𝐓, 𝐐 the finite precision arithmetic output of Lanczos and �̃�, �̃� the

“exact” arithmetic output. Howmanydigits of accuracy dowe have for the following

quantities:

�̃� − 𝐐 �̃� − 𝐓 𝐐T𝐐 − 𝐈

⎡
⎢
⎢
⎢
⎢
⎣

− − 12 7 1
− − 12 7 0
− 17 13 11 0
− − 12 7 0
− − 12 7 1
− 17 8 3 0

⎤
⎥
⎥
⎥
⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

− −
− − −

− − 19
19 14 10

10 5 2
2 0

⎤
⎥⎥⎥⎥⎥
⎦

⎡
⎢⎢⎢⎢⎢
⎣

16 16 17 8 4 0
16 16 12 8 3 0
17 12 16 15 7 4
8 8 15 15 15 9
4 3 7 15 − 17
0 0 4 9 17 −

⎤
⎥⎥⎥⎥⎥
⎦
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Stability of matrix-free quadrature

Practitioners (and theorists) arewary of using Lanczos-basedmethods (𝜇 = Ψ), at
leastwithout reorthogonalization9 (expensive)!

Instead, they prefer methods based on explicit polynomails (𝜇 fixed) such as the
Chevyshev polynomails.

However.. .

– Explicit methods are not adaptive to the spectrum

– Explicit methods are exponentialy unstable unless certain hyperparemeters

are selected properly

9Jaklič and Prelovšek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003;Weiße,Wellein,

Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol,Wan, and Garipov 2019.
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Lanczos in finite precision arithmetic

A lot is known: Perturbed Lanczos recurrence10, CG/Backwards stability11, Matrix

functions12.

Knizhnerman 199613 shows that finite precision Lanczos approximates Chebyshev

moments accurately:

‖ 𝐯T𝑇𝑖(𝐀)𝐯⏟⏟⏟⏟⏟
truemoment

− 𝐞T
1𝑇𝑖(𝐓)𝐞1⏟⏟⏟⏟⏟

Lanczos version

‖ ≤ 𝜖mach ⋅ poly(𝑘).

Proofs straightforward given Paige 1976 and Paige 1980.

Knizhnerman 1996 implies14 that KPM can be implemented stably using Lanczos.

10Paige 1970; Paige 1972; Paige 1976; Paige 1980.
11Greenbaum 1989.
12Druskin and Knizhnerman 1992; Knizhnerman 1996; Musco, Musco, and Sidford 2018.
13Unfortunately this paper is hard to find, sowe included similar proofs in Chen andTrogdon 2023.
14technically, it just shows the Chebyshevmoments can still be obtained accurately
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Choosing the reference measure/approximation revisited
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Legend: KPMwith correct support ( ), 5% too large ( ), 5% too small ( ).



The big picture

The ideaswe described here are old15

, sowhat’s the point?

More interactionwith application domains is needed.

– Practitioners have lots of good algorithms (thatwe’ll re-discover in 10 years)

– We have the tools to improve their algorihms

This talk:

– We can cheaply try out lots of different quadrature rules (decouple
computation from approximation) oncewe’ve run Lanczos.

– This allows variants of KPMwhich are spectrum adaptive
– We do not need to knowhyperparemeters ahead of time!
– This avoids potential instabilities of KPMwith bad parameter choices

– Better explanation of stability of Lanczos-basedmethods

15Gautschi 1970; Sack and Donovan 1971;Wheeler 1974; Golub andMeurant 1994; Gautschi 2006;

Golub andMeurant 2009.
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Example: smooth spectrum with spike
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estimated spikemass: 0.1035

Legend: limiting density ( ), kernel polynomial method: 𝜇 = (1 − 𝑝)𝜇𝑈
𝑎,𝑏 + 𝑝 𝛿(𝑥 − 𝑧)

( ), kernel polynomial method: 𝜇 = 𝜇𝑈
𝑎,𝑏 ( ).



Example: spectrum with disjoint support
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Legend: kernel polynomial method: 𝜇 = 𝜇𝑈
𝑎1,𝑏2

( ), damped kernel polynomial method:

𝜇 = 1
2 𝜇𝑈

𝑎1,𝑏1
+ 1

2 𝜇𝑈
𝑎2,𝑏2

( ).



Example: heat capacity of quantum spin system16

10−4 10−3 10−2 10−1 100 101 102

𝑘𝐵𝑇/|𝐽|
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4

𝐶(
𝛽)

/𝑘
𝐵

Legend: exact diagonalization ( ), stochastic Lanczos quadrature ( ), kernel
polynomial method ( ), and damped kernel polynomial method ( ).

16Schlüter, Gayk, Schmidt, Honecker, and Schnack 2021.



Example: a sparse spectrum
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Legend: true spectrum ( ), stochastic Lanczos quadrature 𝑘 = 12 ( ), kernel polynomial
method 𝑘 = 250 ( )
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