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What is a matrix function?

An n X n symmetric matrix A has real eigenvalues and orthonormal eigenvectors:
n
A = E A,-u,-u;r.
i=1

The matrix function f(A), induced by f : R - R and A, is defined as

f(A) = im»uiuz .

Common functions are 1/x, exp(—fx), Vx, In(x), etc.



Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure!

(CSEM):
tr(f(A)) = n f fdo, @@= n1[A <1l

i=1

lalso called density of states in physics
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Spectral sums and spectral measures

Spectral sums are integrals against a cumulative empirical spectral measure!

(CSEM):

n

tr(f(A)) = n f fdo, @@= n1[A <1l

i=1

Quadratic forms of matrix functions are integrals against a weighted spectral
measure (WCSEM):

V(A = j FAY,  W(x) = Z VT P1A; < x].

If E[vv"] = n™'I, then ¥(x) is an unbiased estimator for ®(x); see also quadratic
trace estimation®: E[v'Bv] = n"! tr(B).

lalso called density of states in physics
2Girard 1987; Hutchinson 1989; Skilling 1989, etc.



Example: CSEM vs wCESM
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Legend: CESM @ ( —— ), samples of weighted CESM ¥ corresponding to random v (
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A prototypical algorithm for randomized matrix free quadrature

Many standard algorithms approximate the CESM & in two stages:

1. approximate ® by weighted CESM ¥ by sampling v
2. approximate ¥ by a polynomial quadrature [¥]34

We need to enforce that low-degree polynomials are integrated exactly. This can be
done with knowledge of polynomial moments

m; = I pid¥ = v'p(A)v.
Moments my, my, ..., my;, can be computed from the Krylov subspace

K.(A,v) := span{v,Av, ..., Akv).



Polynomial quadrature

Fix a reference measure p.

Examples of choices of [f]:F:

- truncated u-orthogonal polynomial series of f

- Kernel polynomial method®: u fixed (e.g. arcsin), possibly apply damping kernel
- polynomial interpolate at roots of an orthogonal polynomial of u

- Stochastic Lanczos quadrature*: u = ¥ (Gaussian quadrature)

KPM and SLQ are probably the most widely used® algorithms for spectrum and
spectral sum approximation.

3Skilling 1989; Silver and Réder 1994; Weife, Wellein, Alvermann, and Fehske 2006.

#Bai, Fahey, and Golub 1996; Golub and Meurant 2009.

SWeife, Wellein, Alvermann, and Fehske 2006; Lin, Saad, and Yang 2016; Ubaru, Chen, and Saad
2017; Martinsson and Tropp 2020; Murray et al. 2023.



Choosing the reference measure/approximation
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Legend: KPM with correct support ( —— ), 5% too large ( —— ), 5% too small (



Computing moments

Let p; be the orthogonal polynomials of p with three-term recurrence:

xpi(x) = Bi1pic(x) + aipi(x) + Bipia (x)-

6Skilling 1989; Weifie, Wellein, Alvermann, and Fehske 2006.



Computing moments

Let p; be the orthogonal polynomials of p with three-term recurrence:

xpi(x) = Biapi1(x) + api(x) + Bipia (x).
We can run a matrix version of the recurrence to compute p;(A)v. Then, to get
moments:
- Compute m; = v'p;(A)v as you go.
- This works fine, but we only get degree k not 2k.
- Instead store basis B = [py(A)v, ..., p,(A)v] and compute B'B.
- This gets degree 2k, but requires high memory.

For Chebyshev polynomials, can get both from®:

Ty(x) = 2T;(x)* - 1, Toia(x) = 2T(x) Ty (x) — x.

6Skilling 1989; Weifie, Wellein, Alvermann, and Fehske 2006.



Connection coefficients for more modified moments

The connection coefficient matrix C = C,_,, is the upper triangular matrix
representing a change of basis between the orthogonal polynomials {p;}?2, with
respect to u and the orthogonal polynomials {g,}{2; with respect to v, whose entries

satisfy,
ps(x) = [Closq0(x) + [Cly 541 (x) + - + [C; q5(%)-

- Connection coefficient matrix can be computed recursively’ from recurrence
formulas for orthogonal polynomials of y and v.

- If we have moments with respect to v, we can get moments with respect to p.

"Sack and Donovan 1971; Wheeler 1974; Webb and Olver 2021.



The Lanczos algorithm

The Lanczos algorithm (efficiently) computes an orthonormal basis for the Krylov
subspace Ky(A, v).

Equivalently, Lanczos computes the orthogonal polynomials of ¥! Resulting
Gaussian quadrature integrates polynomials of degree 2k — 1 exactly.

This can be done efficiently with a three term recurrence:

Aq; = B;19;1 + %9; + Biqi41-

Compared with explicit polynomials: we already know the modified moments, but
need to compute the recurrence coefficients.



Example: instability of Lanczos

In finite precision arithmetic, the Lanczos algorithm behaves extremely differently
than in exact arithmetic.

Toy example®:
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8parlet and Scott 1979.



Example: instability of Lanczos

Denote by T, Q the finite precision arithmetic output of Lanczos and T, Q the
“exact” arithmetic output. How many digits of accuracy do we have for the following
quantities:



Example: instability of Lanczos

Denote by T, Q the finite precision arithmetic output of Lanczos and T, Q the
“exact” arithmetic output. How many digits of accuracy do we have for the following

quantities:
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Stability of matrix-free quadrature

Practitioners (and theorists) are wary of using Lanczos-based methods (u = ¥), at
least without reorthogonalization? (expensive)!

Instead, they prefer methods based on explicit polynomails (u fixed) such as the
Chevyshev polynomails.

°Jakli¢ and Prelovsek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003; Weifie, Wellein,
Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol, Wan, and Garipov 2019.
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Stability of matrix-free quadrature

Practitioners (and theorists) are wary of using Lanczos-based methods (u = ¥), at
least without reorthogonalization? (expensive)!

Instead, they prefer methods based on explicit polynomails (u fixed) such as the
Chevyshev polynomails.

However...

- Explicit methods are not adaptive to the spectrum

- Explicit methods are exponentialy unstable unless certain hyperparemeters
are selected properly

°Jakli¢ and Preloviek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003; Weifie, Wellein,
Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol, Wan, and Garipov 2019.



Lanczos in finite precision arithmetic

A lot is known: Perturbed Lanczos recurrence!®, CG/Backwards stability!!, Matrix

functions'.

Opaige 1970; Paige 1972; Paige 1976; Paige 1980.

'Greenbaum 1989.

2Druskin and Knizhnerman 1992; Knizhnerman 1996; Musco, Musco, and Sidford 2018.
BUnfortunately this paper is hard to find, so we included similar proofs in Chen and Trogdon 2023.
“technically, it just shows the Chebyshev moments can still be obtained accurately



Lanczos in finite precision arithmetic

A lot is known: Perturbed Lanczos recurrence!®, CG/Backwards stability!!, Matrix

functions'.

Knizhnerman 1996" shows that finite precision Lanczos approximates Chebyshev
moments accurately:

” VTTi(A)V - eITi(T)el ” < €mach pOIY(k)

_ _ 7 =
true moment Lanczos version

Proofs straightforward given Paige 1976 and Paige 1980.

Knizhnerman 1996 implies!* that KPM can be implemented stably using Lanczos.

Opaige 1970; Paige 1972; Paige 1976; Paige 1980.

'Greenbaum 1989.

2Druskin and Knizhnerman 1992; Knizhnerman 1996; Musco, Musco, and Sidford 2018.
BUnfortunately this paper is hard to find, so we included similar proofs in Chen and Trogdon 2023.
“technically, it just shows the Chebyshev moments can still be obtained accurately



Choosing the reference measure/approximation revisited
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The big picture

The ideas we described here are old®®

BGautschi 1970; Sack and Donovan 1971; Wheeler 1974; Golub and Meurant 1994; Gautschi 2006;
Golub and Meurant 2009.
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The big picture

The ideas we described here are 0ld'®, so what’s the point?

More interaction with application domains is needed.

- Practitioners have lots of good algorithms (that we’ll re-discover in 10 years)

— We have the tools to improve their algorihms

This talk:

- We can cheaply try out lots of different quadrature rules (decouple
computation from approximation) once we’ve run Lanczos.
— This allows variants of KPM which are spectrum adaptive
- We do not need to know hyperparemeters ahead of time!
- This avoids potential instabilities of KPM with bad parameter choices

- Better explanation of stability of Lanczos-based methods

BGautschi 1970; Sack and Donovan 1971; Wheeler 1974; Golub and Meurant 1994; Gautschi 2006;
Golub and Meurant 2009.



Example: smooth spectrum with spike
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Legend: limiting density ( ), kernel polynomial method: u = (1 - p)ul, + p 6(x — z)

( — ), kernel polynomial method: p = pl, ( —— ).



Example: spectrum with disjoint support
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Legend: kernel polynomial method: y = yf{l,bz( —— ), damped kernel polynomial method:
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Example: heat capacity of quantum spin system'®
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Legend: exact diagonalization ( ), stochastic Lanczos quadrature ( —— ), kernel
polynomial method ( -—— ), and damped kernel polynomial method ( —— ).

16Schliiter, Gayk, Schmidt, Honecker, and Schnack 2021.



Example: a sparse spectrum

10! 4
100 4
10—1 4
10—2 4

—
-1 -9 -7 -5 -3 -1 2 4 6 8 10 12

Legend: true spectrum ( [ ), stochastic Lanczos quadrature k = 12( « ), kernel polynomial
method k = 250( —— )
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