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This talk

Topic: We’ll see some recent progress on the design and analysis of typicality

methods for spectral densities.

Throughout: I’ll try to provide an accessible introduction to ideas from numerical

analysis that might be relevant to computational physicists.

Takeaway: numerical analysis and computational physics can benefit frommore

collaboration.
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What is a matrix function?

A 𝑑 × 𝑑 symmetric matrix𝐇 has real eigenvalues and orthonormal eigenvectors:

𝐇 =
𝑑

∑
𝑛=1

𝜆𝑛|𝐮𝑛⟩⟨𝐮𝑛|.

Thematrix function 𝑓(𝐇), induced by𝑓 ∶ ℝ → ℝ and𝐀, is defined as

𝑓(𝐇) =
𝑑

∑
𝑛=1

𝑓(𝜆𝑛)|𝐮𝑛⟩⟨𝐮𝑛|

In this talk, think of the dimension 𝑑 as big! E.g. 𝑑 = 106 or 𝑑 = 1010, etc.
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What do we want?

Often,we don’t need 𝑓(𝐇) itself. In this talkwewill discuss:

𝑓(𝐇)𝐯, 𝐯T𝑓(𝐇)𝐯, tr(𝑓(𝐇)) =
𝑑

∑
𝑛=1

𝑓(𝜆𝑛)

Example. If 𝑓(𝑥) = 𝑥−1, then 𝑓(𝐇) = 𝐀−1 and 𝑓(𝐇)𝐯 = 𝐀−1𝐯 is the solution to the
linear system𝐀𝐱 = 𝐯.
– More computationally efficient to compute an approximation to the solution

𝐀−1𝐯 rather than computing𝐀−1 and thenmultiplyingwith 𝐯.
– Even if 𝐀 is sparse, 𝑓(𝐇) is typically dense. Storing a 𝑛 × 𝑛 densematrix might be
intractable.

– 𝑑 = 220 ≈ 1M ⟹ 𝑛 × 𝑛 densematrix requires 8.8 terrabytes of storage
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Applications

Applications inmanyfields: physics, chemistry, biology, statistics, high

performance computing, machine learning, etc.

Common functions: inverse, exponential, square root, sign function.
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Example application: network science

Let𝐺 be a graph (nodes and edges). Howmany triangles are there?

1
Fact. If 𝐀 is the adjacencymatrix for𝐺, then

# of triangles in𝐺 = tr(𝐀3)
6 .
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Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSLwork by splitting the

spectrum of 𝐀 into pieces, which can each be solved on different machines in

parallel.

1
Let 𝟙[𝑎 ≤ 𝑥 ≤ 𝑏] = 1 if 𝑥 ∈ [𝑎, 𝑏] and 0 otherwise. Then

# of eigenvalues in [𝑎, 𝑏] = tr(𝟙[𝑎 ≤ 𝐀 ≤ 𝑏]).

7/46



Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSLwork by splitting the

spectrum of 𝐀 into pieces, which can each be solved on different machines in

parallel.

1
Let 𝟙[𝑎 ≤ 𝑥 ≤ 𝑏] = 1 if 𝑥 ∈ [𝑎, 𝑏] and 0 otherwise. Then

# of eigenvalues in [𝑎, 𝑏] = tr(𝟙[𝑎 ≤ 𝐀 ≤ 𝑏]).

7/46



Example application: high performance computing

State of the art parallel eigensolvers such as FEAST and EVSLwork by splitting the

spectrum of 𝐀 into pieces, which can each be solved on different machines in

parallel.

1
Let 𝟙[𝑎 ≤ 𝑥 ≤ 𝑏] = 1 if 𝑥 ∈ [𝑎, 𝑏] and 0 otherwise. Then

# of eigenvalues in [𝑎, 𝑏] = tr(𝟙[𝑎 ≤ 𝐀 ≤ 𝑏]).

7/46



Example application: quantum thermodynamics

Let𝐀 be the Hamiltonian of a quantum system.

If the system is held in thermal equilibrium at inverse temperature 𝛽 = 𝑘𝐵/𝑇, then
thermodynamic observables such as the specific heat, magnetization, heat capacity,

etc. can be obtained from the partition function:

𝑍(𝛽) = tr(exp(−𝛽𝐀)).
0https://phys.org/news/2023-06-quantum-materials-electron.html
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Part I
Algorithms and convergence theory
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Spectral densities

Given𝐇 (Hamiltonian), we’re interested in the density of states (DOS):

𝜌(𝑥) =
𝑑

∑
𝑛=1

1
𝑑𝛿(𝑥 − 𝜆𝑛)

We probably can’t efficiently (in≪ 𝑑3 time) compute 𝜌(𝑥). Why?

Note that

tr(𝑓(𝐇)) = 𝑑 ∫ 𝑓(𝑥)𝜌(𝑥)d𝑥.

Wemight be interested in functions like:

𝑓(𝑥) = exp(−𝛽𝐸), 𝑓(𝑥) = 𝛽𝐸 exp(−𝛽𝐸), 𝑓(𝑥) = ln(𝑥).
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Weighted spectral densities

Given a state |𝐫⟩, we can define the local density of states (LDOS)

̂𝜌(𝑥) =
𝑑

∑
𝑛=1

|⟨𝐫|𝐮𝑛⟩|2𝛿(𝑥 − 𝜆𝑛).

Note that

⟨𝐫|𝑓(𝐇)|𝐫⟩ = ∫ 𝑓(𝑥) ̂𝜌(𝑥)d𝑥.

We still can’t efficiently compute ̂𝜌(𝑥), butwe can efficiently computemoments:

⟨𝐫|𝐇𝑘|𝐫⟩ = ∫ 𝑥𝑘 ̂𝜌(𝑥)d𝑥

Can computemoments through degree 𝑠 using 𝑠/2matrix-vector productswith𝐇.
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Weighted spectral densities

Note thatwe can computemoments through degree 𝑠 using 𝑠/2matrix-vector
productswith𝐇:

Iteratively compute

|𝐫⟩, 𝐇|𝐫⟩, 𝐇2|𝐫⟩ = 𝐇(𝐇|𝐫⟩), …

Then use𝐇𝑖|𝐫⟩ and𝐇𝑗|𝐫⟩ to compute

⟨𝐫|𝐇𝑗𝐇𝑖|𝐫⟩ = ⟨𝐫|𝐇𝑖+𝑗|𝐫⟩.
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Typicality

If |𝐫⟩ = 1
√𝑑

(|𝐮1⟩ + ⋯ + |𝐮𝑑⟩), then |⟨𝐫|𝐮𝑛⟩|2 = 𝑑−1 and LDOS is exactlyDOS.

Let |𝐫⟩ be a (uniform) random state. By symmetry |⟨𝐫|𝐮𝑛⟩|2 all have the same
distribution, so

|⟨𝐫|𝐮𝑛⟩|2 ≈ 𝑑−1

and hence

̂𝜌(𝑥) ≈ 𝜌(𝑥).

Algorithmically, this lets us approxiamte DOSwith LDOS (perhaps averaged over

several random states).1

1can also be use for partial traces Chen and Cheng 2022
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Implicit trace estimation

In numerical analysis and theoretical computer sciencewe use this idea for trace

estimation. Other distributions for |𝐫⟩ are common (e.g. ±1 entries, Gaussian
entries).

If |𝐫1⟩, … , |𝐫𝑚⟩ are independent copies of |𝐫⟩, we can get concentration inequalities2
such as:

ℙ ⎡⎢
⎣

∣∣∣∣
𝑑−1 tr(𝐀) − 1

𝑚

𝑚

∑
𝑖=1

⟨𝐫𝑖|𝐀|𝐫𝑖⟩
∣∣∣∣
> 𝜖⎤⎥

⎦
< 2 exp (−𝐶 𝑑𝜖2

‖𝐀‖2
2
) .

This roughly sayswe can approximate 𝑑−1 tr(𝐀) to accuracy 𝜖 using𝑂(𝑑−1𝜖−2)
matrix-vector productswith𝐀.

2Reimann 2007; Popescu, Short, andWinter 2006; Avron andToledo 2011; Roosta-Khorasani and

Ascher 2014; Cortinovis and Kressner 2021.
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Implicit trace estimation: beyond Monte Carlo

Recent trace estimation algorithms3 can improve this to𝑂(𝑑−1𝜖−1). These produce a
low-rank approximation �̃� to𝐀 andmake use of the fact that

tr(𝐀) = tr(�̃�) + tr(𝐀 − �̃�).

This is closely related to deflation.4

A number of improvements:

– Practical parameters5

– More efficient deflation6

– What if 𝐀 = 𝑓(𝐇)?7
3Meyer, Musco, Musco, andWoodruff 2021.
4Girard 1987;Weiße,Wellein, Alvermann, and Fehske 2006; Gambhir, Stathopoulos, and Orginos

2017.
5Persson, Cortinovis, and Kressner 2022.
6Epperly, Tropp, andWebber 2023.
7Persson and Kressner 2023; Chen and Hallman 2023.
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Back to spectral densities: approximating a density from its moments

We can’t (efficiently) compute LDOS ̂𝜌(𝑥), butwe can compute it’s moments. How
canwe use this to approximate ̂𝜌(𝑥) and in turn integrals against ̂𝜌(𝑥)?

Both KPM and SLQ address use themoment data to get approximations:

KPM: Approximate a functionwith it’s Chebyshev approximation of degree 𝑠, then
integrate this approximation usingmoment data.

SLQ: Construct a discrete approximationwith 𝑘Diracs and usemoment data to
enforce that polynomials up to degree 2𝑘 − 1 are integrated exactly.

16/46



Back to spectral densities: approximating a density from its moments

We can’t (efficiently) compute LDOS ̂𝜌(𝑥), butwe can compute it’s moments. How
canwe use this to approximate ̂𝜌(𝑥) and in turn integrals against ̂𝜌(𝑥)?

Both KPM and SLQ address use themoment data to get approximations:

KPM: Approximate a functionwith it’s Chebyshev approximation of degree 𝑠, then
integrate this approximation usingmoment data.

SLQ: Construct a discrete approximationwith 𝑘Diracs and usemoment data to
enforce that polynomials up to degree 2𝑘 − 1 are integrated exactly.

16/46



The kernel polynomial method

Fix a reference density 𝜎(𝑥) and let {𝑝𝑛} be the orthonormal polynomials:

∫ 𝑝𝑛(𝑥)𝑝𝑚(𝑥)𝜎(𝑥)d𝑥 = 𝛿𝑚𝑛.

Expand the ratio ̂𝜌(𝑥)/𝜎(𝑥) in the orthogonal polynomial basis:

̂𝜌(𝑥)
𝜎(𝑥) =

∞

∑
𝑛=0

(∫ ̂𝜌(𝑥)
𝜎(𝑥)𝑝𝑛(𝑥)𝜎(𝑥)d𝑥) 𝑝𝑛(𝑥) =

∞

∑
𝑛=0

(∫ 𝑝𝑛(𝑥) ̂𝜌(𝑥)d𝑥) 𝑝𝑛(𝑥).

Truncate this series at degree 𝑠 andmultiply by𝜎(𝑥):

𝜌KPM(𝑥) ∶= 𝜎(𝑥)
𝑠

∑
𝑛=0

(∫ 𝑝𝑛(𝑥) ̂𝜌(𝑥)d𝑥) 𝑝𝑛(𝑥) = 𝜎(𝑥)
𝑠

∑
𝑛=0

⟨𝐫|𝑝𝑛(𝐇)|𝐫⟩𝑝𝑛(𝑥).

Maybe also add damping to ensure approximation is non-negative.
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How do we compute the moments?

Themain computational cost is to compute themoments ⟨𝐫|𝑝𝑛(𝐇)|𝐫⟩.

A common reference density8 is 𝜎(𝑥) ∝ (1 + 𝑥)−1/2(1 − 𝑥)−1/2 inwhich case the

orthongonal polynomials are (up to scaling) the Chebyshev polynomials:

𝑇𝑛(𝑥) = 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥), 𝑇1(𝑥) = 2𝑥, 𝑇0(𝑥) = 1.

One can compute 𝑇𝑛(𝐇)|𝐫⟩ by

𝑇𝑛(𝐇)|𝐫⟩ = 2𝐇𝑇𝑛−1(𝐇)|𝐫⟩ − 𝑇𝑛−2(𝐇)|𝐫⟩, 𝑇1(𝐇)|𝐫⟩ = 2𝐇|𝐫⟩, 𝑇0(𝐇)|𝐫⟩ = |𝐫⟩.

To get additional cost saving, use the identities

𝑇2𝑛(𝑥) = 2𝑇𝑛(𝑥)2 − 1, 𝑇2𝑛+1(𝑥) = 2𝑇𝑛+1(𝑥)𝑇𝑛(𝑥) − 𝑇1(𝑥).

8To use this density, onemust scale𝐇 so the spectrum is contained in [−1, 1].
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Numerical Example

The higher the degree 𝑠, the better the approximation: resolution∼ 𝑠−1.
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Lanczos

The Lanczos algorithm iteratively produces an orthonormal basis {|𝐯𝑛⟩} for the
Krylov subspace

span{|𝐫⟩, 𝐇|𝐫⟩, … , 𝐇𝑘|𝐫⟩} = {𝑝(𝐇)|𝐫⟩ ∶ deg(𝑝) ≤ 𝑘}. (1)

This is done via a symmetric three-term recurrence

|𝐯𝑛+1⟩ = 1
𝛽𝑛

(𝐇|𝐯𝑛⟩ − 𝛼𝑛|𝐯𝑛⟩ − 𝛽𝑛−1|𝐯𝑛−1⟩) (2)

with initial conditions |𝐯1⟩ = (1/𝛽0)(𝐇|𝐯0⟩ − 𝛼0|𝐯0⟩) and |𝐯0⟩ = |𝐫⟩.

At each step 𝛼𝑛 is chosen so that ⟨𝐯𝑛+1|𝐯𝑛⟩ = 0 and then 𝛽𝑛 is chosen so that

⟨𝐯𝑛+1|𝐯𝑛+1⟩ = 1.
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Lanczos

We canwrite this inmatrix form: 𝐇𝐕 = 𝐕𝐇𝑘 + |𝐯⟩⟨𝐞𝑘|

𝐇
⎡⎢⎢
⎣

| | |
𝐯0 𝐯1 ⋯ 𝐯𝑘
| | |

⎤⎥⎥
⎦

=
⎡⎢⎢
⎣

| | |
𝐯0 𝐯1 ⋯ 𝐯𝑘
| | |

⎤⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝛼0 𝛽0
𝛽0 𝛼1 ⋱

⋱ ⋱ 𝛽𝑛−1
𝛽𝑛−1 𝛼𝑘

⎤
⎥
⎥
⎥
⎦

+ 𝛽𝑘|𝐪𝑛+1⟩⟨𝐞𝑘|.

The orthogonality of the {|𝐯𝑛⟩} implies:

𝐇𝑘 = 𝐕T𝐇𝐕.
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A distribution function?

Define

𝜌SLQ(𝑥) =
𝑘

∑
𝑛=1

|⟨𝐬𝑛|𝐞𝑛⟩|2𝛿(𝑥 − 𝜃𝑛),

where 𝜃𝑛 are the eigenvalues of 𝐇𝑘 and 𝐬𝑛 are the eigenvectors. Since this is a

discrete distribution, it is common to replace 𝛿(𝑥 − 𝜃𝑛)with a blurred version (i.e. a
Gaussian of a givenwidth).

Note that

∫ 𝑓(𝑥)𝜌SLQ(𝑥)d𝑥 = ⟨𝐞1|𝑓(𝐇𝑘)|𝐞1⟩.
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SLQ moments match LDOS momements

Let 𝑝 be any polynomial of degree at most 2𝑘 − 1. Then

⟨𝐫|𝑝(𝐇)|𝐫⟩ = ∫ ̂𝜌(𝑒)𝑝(𝑥)d𝑥 = ∫ 𝜌SLQ(𝑥)𝑝(𝐸)d𝑥 = ⟨𝐞1|𝑝(𝐇𝑘)|𝐞1⟩.

Proof: Suppose𝐇𝑛−1|𝐫⟩ = 𝐕𝐇𝑛−1
𝑘 |𝐞1⟩. Since |𝐫⟩ = 𝐕|𝐞1⟩, write

𝐇𝑛|𝐫⟩ = 𝐇𝐕𝐇𝑛−1
𝑘 |𝐞1⟩ = 𝐕𝐇𝑛

𝑘|𝐞1⟩ + |𝐯⟩⟨𝐞𝑘|𝐇𝑛
𝑘|𝐞1⟩ = 𝐕𝑘𝐇𝑛

𝑘|𝐞1⟩.

In last equality: since𝐇𝑘 is tridiagonal,𝐇𝑛
𝑘 has bandwidth 2𝑛 + 1 and ⟨𝐞𝑘|𝐇𝑛

𝑘|𝐞1⟩ = 0
provided 𝑛 < 𝑘.

Nowuse𝐕T𝐕 = 𝐈 and𝐕T𝐇𝐕 = 𝐇𝑘 to get ⟨𝐫|𝐇𝑛|𝐫⟩ for 𝑛 < 2𝑘.
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Numerical Example

The higher the degree 𝑠 = 2𝑘 − 1, the better the approximation: resolution∼ 𝑠−1.
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Measuring the similarity of distributions

TheWasserstein distancemeasures the similarity between distributions:

𝑑W(𝜓1, 𝜓2) = ∫ |Ψ1(𝑥) − Ψ2(𝑥)|d𝑥.
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This is equivalent to

𝑑W(𝜓1, 𝜓2) = max {∣∫ 𝑓(𝑥)𝜓1(𝑥)d𝑥 − ∫ 𝑓(𝑥)𝜓2(𝑥)d𝑥∣ ∶ |𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦| ∀𝑥, 𝑦}
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Theoretical analysis (high level)9

Fact: 1-Lipshitz functions can be approximated to accuracy 𝜖with a degree
𝑠 = 𝑂(𝜖−1) polynomial. This polynomial has decaying Chebyshev coefficients.

Fact: if two distributions have exactly the samemoments through degree 𝑘, the the
Wasserstein distance is𝑂(𝑘−1).

9Braverman, Krishnan, andMusco 2022; Chen, Trogdon, and Ubaru 2022.
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Chebyshev moments vs monomial moments

While two distribution functionswith exactly the same first 𝑘moments have
Wasserstein distance𝑂(𝑘−1), if themonomial moments are even a little different,
theWasserstein distance can be big.

Instead, one should look at Chebyshevmoments, sinceWasserstein distance is

stablewith respect to perturbations in thesemoments.
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Theoretical analysis (high level)10

Approach:

– ShowKPM/SLQ approximation has almost the same Chebyshevmoments as

DOS (i.e. that Chebyshev polynomials are integrated almost exactly) through

some degree (by averaging enough LDOSs).

– Show this implies all Lipshitz functions are integrated nearly correctly (by

using enoughmoments)

For a single fixed Lipshitz function, there are easier approaches, but to get a

Wasserstein bound,we need something that holds for all Lipshitz functions

simultaneously.

10Braverman, Krishnan, andMusco 2022; Chen, Trogdon, and Ubaru 2022.
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Theoretical analysis (details sketch)

Claim. Suppose that for all 𝑛 = 0, 1, … , 𝑠:

∣∫ 𝑇𝑛(𝑥)(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣ ≤ 𝜂.

Then, for any degree 𝑠 polynomial 𝑝𝑠(𝑥) = 𝑐0 + 𝑐1𝑇1(𝑥) + ⋯ + 𝑐𝑠𝑇𝑠(𝑥),

∣∫ 𝑓(𝑥)(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣ ≤ 2‖𝑓(𝑥) − 𝑝𝑠(𝑥)‖[−1,1] + 2𝜂
𝑠

∑
𝑛=1

|𝑐𝑛|.

Proof. Triangle inequality:

∣∫ 𝑓(𝑥)(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣ ≤ ∣∫(𝑓(𝑥) − 𝑝𝑠(𝑥))(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣+∣∫ 𝑝𝑠(𝑥)(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣ .
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Theoretical analysis (details sketch)

Fact.11 Suppose 𝑓(𝑥) is 1-Lipshitz (|𝑓(𝑥) − 𝑓(𝑦)| ≤ |𝑥 − 𝑦|) and set 𝑝𝑠(𝑥) as the degree 𝑠
Jackson’s damped Chebyshev approximation to 𝑓(𝑥). Then,

‖𝑓(𝑥) − 𝑝𝑠(𝑥)‖[−1,1] ≤ 6
𝑠 , ∣∫ 𝑝𝑠(𝑥)𝑇𝑛(𝑥)𝜇𝑇(𝑥)d𝑥∣ ≤ 4

𝜋𝑛.

Thus, since 1 + 1/2 + 1/3 + ⋯ 1/𝑠 ≤ 1 + ln(𝑠),

∣∫ 𝑓(𝑥)(𝜓1(𝑥) − 𝜓2(𝑥))d𝑥∣ ≤ 12
𝑠 + 8 ln(𝑠)𝜂

𝜋 .

Maximizing over 𝑓, we then get

𝑠 = 𝑂(𝜖−1), 𝜂 = 𝑂(ln(𝑠)−1𝜖) ⟹ 𝑑W(𝜓1, 𝜓2) ≤ 𝜖.

This gives us gurantees for SLQ (slight modification for damped KPM).
11Rivlin 1981; Trefethen 2019.
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Part II
Implementation and finite precision arithmetic
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A spectrum adaptive KPM12

In the KPM, the only expensive computationwas computingmoments: ⟨𝐫|𝑝𝑛(𝐇)|𝐫⟩.

If we’ve compute𝐇𝑘 using Lanczos, thenwe know for polyniamsl 𝑝(𝑥) of degree
< 2𝑘:

⟨𝐫|𝑝(𝐇)|𝐫⟩ = ⟨𝐞1|𝑝(𝐇𝑘)|𝐞1⟩.

So,we can use Lanczos to implement KPM!

This meanswe can test out lots of different reference densities 𝜎(𝑥) for essentially
free (i.e. without accessing𝐇 again).

12Chen 2023.
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Demo

Some basic functionality is implemented in the spectral_density package.13

pip install spectral_density

The design paradigm for spectral_density is that computation and approximation

should be decoupled. In particular, approximations are obtained in two steps:

– computation: repeatedly run the Lanczos algorithm on thematrix of interest

with random starting vectors

– approximation: use the output of the previous step to obtain spectral density

approximations

This package focuses only on the second step; users are free to use any Lanczos

implementation for the first step.

13https://github.com/tchen-research/spectral_density
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Demo: setup

import spectral_density as spec

# import Hamiltonian

H = sp.io.mmread('./Ga41As41H72.mtx')

H.tocsr()

d = H.shape[0]

# run Lanczos several times

m = 3

αβ_list = []

for _ in range(m):

v = np.random.randn(d)

v /= np.linalg.norm(v)

k = 150

αβ_list.append(spec.lanczos(H,v,k,reorth=False))
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Demo: SLQ

ρ_SLQ = spec.SLQ(αβ_list) # build SLQ instance

axs[0].plot(x,ρ_SLQ(x,width=.6)) # plot (specifying width)

axs[1].plot(x,ρ_SLQ(x,width=.01))

35/46



Demo: KPM

σ = spec.get_arcsin_density(-2,1302) # specify reference density

ρ_KPM = spec.KPM(αβ_list,σ) # build KPM instance

axs[0].plot(x,ρ_KPM(x)) # plot

axs[1].plot(x,ρ_KPM(x))

36/46



Demo: KPM

# use Lanczos output to determine two intervals containing spectrum

a_L = np.min(ρ_SLQ.θ)-4e-1

b_L = np.max(ρ_SLQ.θ[ρ_SLQ.θ<200])+4e-1

a_R = np.min(ρ_SLQ.θ[ρ_SLQ.θ>1200])-4e-1

b_R = np.max(ρ_SLQ.θ)+4e-1

# build a density on each interval

σ_L = spec.get_uniform_density(a_L,b_L)

σ_R = spec.get_semicircle_density(a_R,b_R)

# combine densities to specify reference density

σ = .95*σ_L + .05*σ_R
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Demo: KPM

ρ_KPM = spec.KPM(αβ_list,σ) # build KPM instance

axs[0].plot(x,ρ_KPM(x)) # plot

axs[1].plot(x,ρ_KPM(x))
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Wait, isn’t Lanczos unstable?

In the previous demo,we used the output of Lanczoswithout reorthogonalization!

There is a general fear of using Lanczos-basedmethodswithout expensive

reorthogonalization schemes14

But.. . there is plenty of evidince that SLQ and related algorithmswork finewithout

reorthogonalization:Long, Prelovšek, Shawish, Karadamoglou, and Zotos 2003;

Schnack, Richter, and Steinigeweg 2020, etc.

In fact, there is even theory.

14Jaklič and Prelovšek 1994; Aichhorn, Daghofer, Evertz, and Linden 2003;Weiße,Wellein,

Alvermann, and Fehske 2006; Ubaru, Chen, and Saad 2017; Granziol,Wan, and Garipov 2019.
39/46



Numerical Example

Peopleworry about a loss of orthogonality, and appearence of “ghost eigenvalues”.

But do these impact themoments used for KPM?
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Finite precision theory

In finite precision artihmetic, while𝐕mayno longer be orthogonal, we still have15

𝐇𝐕 = 𝐕𝐇𝑘 + |𝐯⟩⟨𝐞𝑘| + 𝐅, ‖𝐅‖ = 𝑂(𝜖mach poly(𝑘)).

From this, one can derive16

∥ ̃𝑇𝑛(𝐇)|𝐫⟩ − 𝐕 ̃𝑇𝑛(𝐇𝑘)|𝐞1⟩∥ = 𝑂(𝜖mach poly(𝑘)).

This can then be upgraded to17

∣⟨𝐫| ̃𝑇𝑛(𝐇)|𝐫⟩ − ⟨𝐞1| ̃𝑇𝑛(𝐇𝑘)|𝐞1⟩∣ = 𝑂(𝜖mach poly(𝑘)).

In otherwords, SLQ’s Chebyshevmoments are still almost exact.

15Paige 1971; Paige 1976; Paige 1980.
16Druskin and Knizhnerman 1992; Musco, Musco, and Sidford 2018.
17Knizhnerman 1996.
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A taste of how these anlyses work

Recall we have a perturbed recurrence: 𝐇𝐕 = 𝐕𝐇𝑘 + |𝐯⟩⟨𝐞𝑘| + 𝐅.

Define: |𝐭𝑛⟩ = 𝑇𝑛(𝐇)|𝐫⟩, | ̄𝐭𝑛⟩ = 𝑇𝑛(𝐇𝑘)|𝐞1⟩, |𝐝𝑛⟩ = |𝐭𝑛⟩ − 𝐕| ̄𝐭𝑛⟩.

Then, using that ⟨𝐞𝑘| ̄𝐭𝑛−1⟩ = 0 (bc𝐇𝑘 is tridiagonal):

|𝐝𝑛⟩ = (2𝐇|𝐭𝑛−1⟩ − |𝐭𝑛−2⟩) − (2𝐕𝐇𝑘| ̄𝐭𝑛−1⟩ − 𝐕| ̄𝐭𝑛−2⟩)
= 2(𝐇|𝐭𝑛−1⟩ − (𝐇𝐕 − |𝐯⟩⟨𝐞𝑘| − 𝐅)| ̄𝐭𝑛−1⟩) − (|𝐭𝑛−2⟩ − 𝐕| ̄𝐭𝑛−2⟩)
= 2𝐇|𝐝𝑛−1⟩ − |𝐝𝑛−2⟩ − 𝐅| ̄𝐭𝑛−1⟩

This is a perturbed Chebyshev recurrence. One can show:

|𝐝𝑛⟩ = 𝑈𝑛−1(𝐇)𝐅| ̄𝐭0⟩ + 2
𝑛

∑
𝑖=2

𝑈𝑛−𝑖(𝐇)𝐅| ̄𝐭𝑖−1⟩.

Note that Cheyshev-𝑈 polynomials don’t growquickly, so this implies |𝐝𝑛⟩ is small!
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Outlook

– While Lanczos is unstable, the instability has structure

– partial traces Chen and Cheng 2022; Chen, Chen, Li, Nzeuton, Pan, andWang

2023
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