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A randomized estimator

Suppose 𝐯 is a randomvectorwith𝔼[𝑣𝑖] = 0 and𝔼[𝑣𝑖𝑣𝑗] = 1.

Then,

𝔼[𝐯T𝐀𝐯] =
𝑛

∑
𝑖=1

𝑛

∑
𝑗=1

𝐴𝑖,𝑗𝔼[𝑣𝑖𝑣𝑗] =
𝑛

∑
𝑖=1

𝐴𝑖,𝑖 = tr(𝐀).

This is colloquially called Hutchinson’s trace estimator.
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Hutchinson’s estimator? (Stigler’s law of eponymy)

Hutchinson 1989 cites Girard 1987 in the abstract!
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Analysis

Variance analyses appeared in these first papers. Often concentration inequalities

aremore useful/informative:

ℙ[| tr(𝐀) − 𝐯T𝐀𝐯| < 𝜖] ≤ ??

– Bai, Fahey, and Golub 1996: Hoeffding (some issues?)

– Avron andToledo 2011: sub-Gaussian concentration

– Roosta-Khorasani and Ascher 2014: improved bounds

– Cortinovis and Kressner 2021: sub-Gamma concentration
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Quantum typicality

In the formalism of quantummechanics:

observable ⟺ Hermitianmatrix𝐀 , state of system ⟺ unit vector 𝐯

Whenwemeasure an observable𝐀 in state 𝐯, we get out one of the eigenvalues 𝜆𝑖 of

𝐀with probability proportional to |𝐮T
𝑖 𝐯|2. Thus,

𝔼qm[measurement of 𝐀 is state 𝐯] =
𝑛

∑
𝑖=1

𝜆𝑖|𝐮T
𝑖 𝐯|2 = 𝐯T𝐀𝐯 = tr(𝐀𝐯𝐯T).



Quantum expectation value

General state state of the system is described unit-tracematrix

𝛒 = ∑𝑛
𝑖=1 𝑝𝑖𝐯𝑖𝐯T

𝑖 .

Loosely can be thought of as the “probability 𝑝𝑖 of being in state 𝑣𝑖”.

Whenwemeasure an observable𝐀 in state 𝛒we can view this as picking one of the
state 𝐯𝑖 and thenmeasuring in that state:

𝔼qm[measurement of 𝐀 in state 𝛒] =
𝑛

∑
𝑖=1

𝑝𝑖 tr(𝐀𝐯𝑖𝐯T
𝑖 ) = tr(𝐀𝛒).

This is called the quantum expectation value (QEV).



Quantum typicality

When the system is equally likely to be in any possible state, 𝛒 = 𝑛−1𝐈 so

𝔼qm[measurement of 𝐀 in state 𝛒] = 𝑛−1 tr(𝐀).

Clearlywhen 𝐯 is a uniformly random state (𝐯 ∼ Unif(𝕊𝑛−1)), then

𝔼𝐯[tr(𝐀𝐯𝐯T)] = tr(𝐀𝔼[𝐯𝐯T]) = tr(𝐀𝑛−1𝐈) = 𝑛−1 tr(𝐀).

That is, the expectation value of ameasurementmade in a random state is, on

average, the QEVof 𝐀.



Theoretical analyses

Aremeasurementsmade in a random state are typically near the QEV?That is, do

they concentrate?

– studied from the outset of QM1 (Schrödinger 1927; Neumann 1929)

– sub-Gaussian concentration via Levy’s lemma (concentration of measure)

(Popescu, Short, andWinter 2006; Gogolin 2010)

1Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghı̀ 2010.



Typicality algorithms

The use of random states2 in algorithms is fairly old.

Earlywork3with density of state as average of local density of states (even one

sample often enough!)

2Jin,Willsch,Willsch, Lagemann,Michielsen, and De Raedt 2021.
3Alben, Blume, Krakauer, and Schwartz 1975;Weaire andWilliams 1976;Weaire andWilliams 1977.
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Beyond quadratic trace estimation

The variance of 𝐯T𝐀𝐯 is closely related to ‖𝐀‖2
F.

Decompose

tr(𝐀) = tr(�̃�) − tr(𝐀 − �̃�).

If ‖𝐀 − �̃�‖F ≪ ‖𝐀‖F andwe can compute tr(�̃�) exactly, we have a variance-reduced
estimator.

Recently, Meyer, Musco, Musco, andWoodruff 2021 give an algorithm called

Hutch++which provably improves dependence on accuracy from 1/𝜖2 to 1/𝜖.

– similar algorithms previously, but no nice analysis afaik.
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Some interesting notes

Variance reduction via a control variate suggested in Girard 1987:

Deflation suggested inWeiße,Wellein, Alvermann, and Fehske 2006.



Summary

NLA/TCS comp. physics typicality

trace estimator 1985s4 folklore5 1930s6

variance bounds folklore7 folklore folklore8

concentration 1996,2011-now9 folklore? 200610

low-rank approx. 1987,2010s-now11 ?12

4Girard 1987; Hutchinson 1989.
5Alben, Blume, Krakauer, and Schwartz 1975; Raedt andVries 1989; Skilling 1989.
6Schrödinger 1927; Neumann 1929.
7Hanson andWright 1971.
8Gemmer, Michel, andMahler 2004.
9Bai, Fahey, and Golub 1996; Avron andToledo 2011; Roosta-Khorasani and Ascher 2014; Cortinovis and Kressner 2021.
10Popescu, Short, andWinter 2006.
11Girard 1987; Lin 2016;Wu, Laeuchli, Kalantzis, Stathopoulos, and Gallopoulos 2016; Gambhir, Stathopoulos, and Orginos 2017;

Meyer, Musco, Musco, andWoodruff 2021; Persson, Cortinovis, and Kressner 2022; Epperly, Tropp, andWebber 2023.
12Weiße,Wellein, Alvermann, and Fehske 2006;Morita and Tohyama 2020.



Outlook/questions

– Why is it called Hutchinson’s estimator?

– Was it inevitble that these lines of research developed separately in parallel?

– What else arewe overlooking in the literature?



Surveys

Kernel polynomialmethod:Weiße,Wellein, Alvermann, and Fehske 2006

Typicality: Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghı̀ 2010

Typicality algs: Jin,Willsch,Willsch, Lagemann,Michielsen, and De Raedt 2021

Randomized quadrature: Chen, Trogdon, and Ubaru 2021
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