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This is colloquially called Hutchinson'’s trace estimator.
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Hutchinson’s estimator? (Stigler’s law of eponymy)

Hutchinson 1989 cites Girard 1987 in the abstract!

ABSTRACT

An unbiased stochastic estimator of tr(I-A), where A is the influence matrix
associated with the calculation of Laplacian smoothing splines, is described.
The estimator is similar to one recently developed by Girard but satisfies a
minimum variance criterion and does not require the simulation of a
standard normal variable. It uses instead simulations of the discrete random
variable which takes the values 1, =1 each with probability 1/2. Bounds on
the variance of the estimator, similar to those established by Girard, are
obtained using elementary methods. The estimator can be used to
approximately minimize generalised cross validation (GCV) when using
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Analysis

Variance analyses appeared in these first papers. Often concentration inequalities
are more useful/informative:

P[|tr(A)—v'Av|<e] < 77

Bai, Fahey, and Golub 1996: Hoeffding (some issues?)
Avron and Toledo 2011: sub-Gaussian concentration

Roosta-Khorasani and Ascher 2014: improved bounds

Cortinovis and Kressner 2021: sub-Gamma concentration



Quantum typicality

In the formalism of quantum mechanics:

observable < Hermitian matrix A | state of system < unit vector v

When we measure an observable A in state v, we get out one of the eigenvalues A, of
A with probability proportional to [u] v|>. Thus,

n
Eqm[measurement of A is state v] = X:)\,-Iu,-TVI2 = v'Av = tr(Avv').
i=1



Quantum expectation value

General state state of the system is described unit-trace matrix

— n T
P =21 PiViVi-

Loosely can be thought of as the “probability p; of being in state v;”.

When we measure an observable A in state p we can view this as picking one of the
state v; and then measuring in that state:

n
E m[measurement of A in state p] = Z pitr(Av,v]) = tr(Ap).
i=1

This is called the quantum expectation value (QEV).



Quantum typicality

When the system is equally likely to be in any possible state, p = n'I so

Em[measurement of A in state p] = ntr(A).

Clearly when v is a uniformly random state (v ~ Unif(S")), then
E,[tr(Avv")] = tr(AE[vv'"]) = tr(An'I) = n"1 tr(A).

That is, the expectation value of a measurement made in a random state is, on
average, the QEV of A.



Theoretical analyses

Are measurements made in a random state are typically near the QEV? That is, do
they concentrate?

- studied from the outset of QM! (Schrédinger 1927; Neumann 1929)

- sub-Gaussian concentration via Levy’s lemma (concentration of measure)
(Popescu, Short, and Winter 2006; Gogolin 2010)

Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi 2010.



Typicality algorithms

The use of random states? in algorithms is fairly old.

%Jin, Willsch, Willsch, Lagemann, Michielsen, and De Raedt 2021.
3Alben, Blume, Krakauer, and Schwartz 1975; Weaire and Williams 1976; Weaire and Williams 1977.



Typicality algorithms

The use of random states? in algorithms is fairly old.

Early work® with density of state as average of local density of states (even one
sample often enough!)

%Jin, Willsch, Willsch, Lagemann, Michielsen, and De Raedt 2021.
3Alben, Blume, Krakauer, and Schwartz 1975; Weaire and Williams 1976; Weaire and Williams 1977.
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Beyond quadratic trace estimation

The variance of v'Av is closely related to || A[2. Decompose
tr(A) = tr(A) — tr(A - &).

If |A — A|lf < ||A[|r and we can compute tr(A) exactly, we have a variance-reduced
estimator.

Recently, Meyer, Musco, Musco, and Woodruff 2021 give an algorithm called
Hutch++ which provably improves dependence on accuracy from 1/¢* to 1/e.

- similar algorithms previously, but no nice analysis afaik.



Some interesting notes

Variance reduction via a control variate suggested in Girard 1987:

La 2éme méthode est, elle, insensible & 1a translation précédente des
valeurs propres. Mais s'il existe une matrice B de trace connue, dont les
valeurs propres sont voisines de A, et si I'on sait calculer le produit By
pour un y donné, on a intérét a prendre comme estimateur:

1 tr(AY = 1/, tr(B)  + (wtAw - wiBw )/wiw,

puisque I'écart type de cet estimateur est Ia dispersion d(A-B) des
valeurs propres de A-B.

Deflation suggested in Weif3e, Wellein, Alvermann, and Fehske 2006.



Summary

NLA/TCS comp. physics typicality
trace estimator 1985s* folklore® 1930s°
variance bounds folklore’ folklore folklore®

concentration  1996,2011-now’ folklore? 2006'°
low-rank approx. 1987,2010s-now"! 712

4Girard 1987; Hutchinson 1989.

5Alben, Blume, Krakauer, and Schwartz 1975; Raedt and Vries 1989; Skilling 1989.

®Schrédinger 1927; Neumann 1929.

"Hanson and Wright 1971.

8Gemmer, Michel, and Mahler 2004.

9Bai, Fahey, and Golub 1996; Avron and Toledo 2011; Roosta-Khorasani and Ascher 2014; Cortinovis and Kressner 2021.
Opopescu, Short, and Winter 2006.

UGirard 1987; Lin 2016; Wu, Laeuchli, Kalantzis, Stathopoulos, and Gallopoulos 2016; Gambhir, Stathopoulos, and Orginos 2017;
Meyer, Musco, Musco, and Woodruff 2021; Persson, Cortinovis, and Kressner 2022; Epperly, Tropp, and Webber 2023.

2\eifle, Wellein, Alvermann, and Fehske 2006; Morita and Tohyama 2020.



Outlook/questions

- Why is it called Hutchinson’s estimator?
- Was it inevitble that these lines of research developed separately in parallel?

- What else are we overlooking in the literature?



Surveys

Kernel polynomial method: Weif3e, Wellein, Alvermann, and Fehske 2006
Typicality: Goldstein, Lebowitz, Mastrodonato, Tumulka, and Zanghi 2010
Typicality algs: Jin, Willsch, Willsch, Lagemann, Michielsen, and De Raedt 2021

Randomized quadrature: Chen, Trogdon, and Ubaru 2021
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