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Abstract

Over the past several decades, Lanczos-based methods have become increas-

ingly standard tools for tasks involving matrix functions. Progress has been

driven by several largely disjoint communities, resulting many innovative and

important advancementswhichwould not have been possible otherwise. How-

ever, this also has resulted in a somewhat fragmented state of knowledge and

thepropagationof anumber of incorrect beliefs about thebehavior of Lanczos-

basedmethods in finite precision arithmetic.

We aim to provide an accessible introduction to Lanczos-based methods for

matrix functions. The intendedaudience is scientists outsideof numerical anal-

ysis, graduate students, and researcherswishing to beginwork in this area. Our

emphasis is on conceptual understanding,with the goal of providing a starting

point to learn more about the remarkable behavior of the Lanczos algorithm.

Hopefully readerswill come away from this textwith a better understanding of

how to think about Lanczos for modern problems involving matrix functions,

particularly in the context of finite precision arithmetic.

Acknowledgements I am grateful to Anne Greenbaum, Cameron Musco, and

ChristoperMusco for our many conversations on the Lanczos algorithmwhich

have greatly influencedmyown understanding of the algorithm.
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1 Introduction

The Lanczos algorithm [Lan50] is one of the most remarkable algorithms in

numerical analysis. As with all Krylov subspace methods (KSMs), the Lanczos

algorithm iteratively extracts information about a matrix through a sequence

of matrix-vector products. However, in contrast to KSMs for non-symmetric

problems, the Lanczos algorithm,which is designed specifically for symmetric

matrices, utilizes a beautiful connection between the problem symmetry and

orthogonalpolynomials toavoidmuchof theexpensivememoryandarithmetic

overheard incurred by general-purpose KSMs. Unfortunately, the theoretical

elegance of the Lanczos algorithm is not without its practical costs—the be-

havior of Lanczos in finite precision arithmetic is very different thanwhat one

might expect from the exact arithmetic theory.

A great deal of effort has gone into obtaining and disseminating theory and

wisdom about KSMs for linear systems and eigenvalue problems, the classical

use cases for KSMs. As such, there are presently many excellent books and

monographs on these topics [Gre97; Saa03; LS13] including includes several

books which focus entirely on Lanczos-based methods, with a heavy emphasis

on their behavior in finite precision arithmetic [CW12; Meu06; MS06]. Thus,

while there aremany interesting questions about KSMs for these classical tasks

which remain open [CLS24], readers have plentyof options, at varying levels of

technicality, to learn about thesemethods.

On the other hand, over the past several decades, KSMs have become in-

creasingly standard tools for other tasks such as low-rank approximation, ap-

plying matrix functions, and approximating spectral densities. While these

more modern tasks are in many ways closely related to eigenvalue problems

and linear systems, the literature on the use of KSMs for these tasks remains

somewhat fragmented. This has, in turn, lead to the unfortunate propagation

of a number of incorrect beliefs about the behavior of KSMs, particularly the

Lanczos algorithm in finite precision arithmetic.

Through a combination of theory and numerical examples,we aim to dispel

with some of themost commonmisconceptions about Lanczos-basedmethods

for matrix functions. The intended audience is scientists outside of numeri-

cal analysis, graduate students, and researchers wishing to work in this area.
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Our emphasis is on conceptual understanding, with the goal of providing re-

searchers fromfieldsadjacent tonumerical analysis a startingpoint to learnmore

about the behavior of Lanczos-based methods. Hopefully readers will come

away from this textwith a better understanding of how to think about Lanczos-

basedmethods for modern problems involvingmatrix functions.

This monograph does not aim to be an authoritative reference on Lanczos-

basedmethods. Indeed,whilewe do state and prove a number of useful results,

more technical theorems, particularly those about algorithms run in finite pre-

cision arithmetic, are often summarized in an informal fashion so as to avoid

obfuscating the essence of the theoremwith the theorem itself.

1.1 Key quantities

Throughout,𝐀will be a 𝑑 × 𝑑 real-symmetric matrixwith eigendecomposition

𝐀 =
𝑑

∑
𝑖=1

𝜆𝑖𝐮𝑖𝐮⊺
𝑖 . (1.1)

Here {𝜆𝑖} are the set of (real) eigenvalues of 𝐀 and {𝐮𝑖} the corresponding or-
thonormal eigenvectors.

The star of this monograph is thematrix function.1

Definition 1.1. Thematrix function 𝑓(𝐀), induced by 𝑓 ∶ ℝ → ℝ and𝐀, is
defined as

𝑓(𝐀) ∶=
𝑑

∑
𝑖=1

𝑓(𝜆𝑖)𝐮𝑖𝐮⊺
𝑖 .

Common matrix functions including the matrix sign, logarithm, exponen-

tial, square root, and inverse square root, each of which has many applications

throughout themathematical sciences.

The Lanczos algorithm falls into a broader class of algorithms called Krylov

subspace methods (KSMs), which make use of the information from a special

subspace called the Krylov subspace.

Definition 1.2. The 𝑘-th Krylov subspace generated by thematrix𝐀 and

vector 𝐛 is defined as

𝒦𝑘(𝐀, 𝐛) ∶= span{𝐛, 𝐀𝐛, … , 𝐀𝑘−1𝐛}.

1Definition 1.1 is compatiblewith the standard definition of matrix polynomials. Indeed, oneverifies𝐀𝑘 =
𝐀𝐀 ⋯ 𝐀⏟

𝑘 times
, and linearity extends this observation to arbitrarily polynomials.
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The 𝑘-th Krylov subspace consists of polynomials of 𝐀, of degree less than
𝑘, applied to 𝐛. Indeed, bydefinition, an arbitraryvector in the Krylov subspace
looks like

𝑐0𝐛 + 𝑐1𝐀𝐛 + ⋯ + 𝑐𝑘−1𝐀𝑘−1𝐛, 𝑐0, … , 𝑐𝑘−1 ∈ ℝ, (1.2)

which is 𝑝(𝐀)𝐛, where 𝑝(𝑥) = 𝑐0 + 𝑐1𝑥 + ⋯ + 𝑐𝑘−1𝑥𝑘−1. The Krylov subspace is also

spannedbypolynomials of this form, sowehaveanequivalent characterization

𝒦𝑘(𝐀, 𝐛) = {𝑝(𝐀)𝐛 ∶ deg(𝑝) < 𝑘}. (1.3)

This makes it clear that KSMs and polynomials are intimately related, and a

major theme of this monograph is that this inherent connection should be

leveraged.

Throughout, we will also make use of two important density functions. In

both definitions, 𝛿(𝑥) is the Dirac delta unit point mass centered at zero.

Definition 1.3. The spectral density 𝜑(𝑥; 𝐀) corresponding to 𝐀 is de-

fined as

𝜑(𝑥) = 𝜑(𝑥; 𝐀) ∶=
𝑑

∑
𝑖=1

𝑑−1𝛿(𝑥 − 𝜆𝑖).

Definition 1.4. The eigenvector spectral density 𝜓(𝑥; 𝐀, 𝐛) correspond-
ing to𝐀 and a vector 𝐛 is defined as

𝜓(𝑥) = 𝜓(𝑥; 𝐀, 𝐛) ∶=
𝑑

∑
𝑖=1

|𝐮⊺
𝑖 𝐛|2𝛿(𝑥 − 𝜆𝑖).

The spectral densityof 𝐀 encodes the location andmultiplicityof the eigen-

values of 𝐀, while the eigenvector spectral density encodes the relationship
between𝐀 and 𝐛 observable to KSMs. In particular, for any orthogonal matrix
𝐐 it holds that

𝜓(𝑥; 𝐀, 𝐛) = 𝜓(𝑥; 𝐐𝐀𝐐⊺, 𝐐𝐛). (1.4)

Thus, the eigenvector density function contains the information about (𝐀, 𝐛)
that is invariant to orthogonal transforms. In many settings this allows us to

understandmore carefully the underlying behavior of KSMs.

1.2 Problems of interest

This monograph is centered on tasks relating to matrix functions for which

Lanczos-basedmethods arewidely used. We nowbriefly introduce these prob-

lems.
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Linear systems In Chapter 5, we discuss Lanczos-based methods for solving

linear systems 𝐀𝐱 = 𝐛. These include the well-known conjugate gradient and
MINRES algorithms. The aim of the aim of this section is to highlight some

conceptswhich are also relevant to understanding the other topics of interest.

Action of matrix functions In Chapter 6, we discuss methods for approximat-

ing 𝑓(𝐀)𝐛. This can be viewed as a generalization of solving a linear system
which corresponds to 𝑓(𝑥) = 𝑥−1.

Quadratic forms and trace approximation In Chapter 7, we discuss methods

for approximating 𝐛⊺𝑓(𝐀)𝐛. This is in many ways conceptually distinct from
the task of computing the action of a matrix function. Through the use of

stochastic trace estimation, methods for quadratic forms of matrix functions

yield estimates for approximating tr(𝑓(𝐀)).

Spectrum approximation In Chapter 8, we discuss methods for obtaining

coarse-grain approximations to the spectral density 𝜑(𝑥; 𝐀). This is closely

related to trace approximation.

1.3 Notation

Unless otherwise stated ‖ ⋅ ‖will denote the Euclidean norm for vectors and the

spectral norm for matrices. The spectrum of 𝐀 is denoted by Λ = {𝜆1, … , 𝜆𝑛},
and the convex closure of the spectrum by ℐ = [𝜆min, 𝜆max]. We will write
Λ(𝐁) and ℐ(𝐛) to denote the analogous quantities for a matrix 𝐁. Given a scalar
function 𝑓(𝑥) and a set 𝑆, we define ‖𝑓‖𝑆 ∶= max𝑥∈𝑆 |𝑓(𝑥)|; i.e. the infinitynorm of

a function 𝑓 over a set 𝑆. Finally, the 𝑘-th canonical basis vector is denoted by𝐞𝑘.
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2 The Arnoldi and Lanczos algorithms

In this section, we describe the Arnoldi and Lanczos algorithms for generating

a orthonormal basis𝐪0, 𝐪1, … , 𝐪𝑘−1 for theKrylov subspace𝒦𝑘(𝐀, 𝐛). First, how-
ever,wemakea fewsimpleobservationsaboutKrylovsubspaces. ClearlyKrylov

subspaces are nested in the sense that

𝒦0(𝐀, 𝐛) ⊆ 𝒦1(𝐀, 𝐛) ⊆ ⋯ ⊆ 𝒦𝑘(𝐀, 𝐛). (2.1)

Eventually (and certainly for some 𝑘 ≤ 𝑑) we must have that 𝒦𝑘+1(𝐀, 𝐛) =
𝒦𝑘+1(𝐀, 𝐛). At this point, the Krylov subspace stabilizes.

Lemma 2.1. Suppose 𝒦𝑘+1(𝐀, 𝐛) = 𝒦𝑘(𝐀, 𝐛). Then 𝒦𝑘+𝑗(𝐀, 𝐛) = 𝒦𝑘(𝐀, 𝐛)
for all 𝑗 > 0.

Proof. If 𝒦𝑘+1(𝐀, 𝐛) = 𝒦𝑘(𝐀, 𝐛), then 𝐀𝑘𝐛 can be written as a linear com-
bination of 𝐛, 𝐀𝐛, … , 𝐀𝑘−1𝐛. But then 𝐀𝑘+1𝐛 = 𝐀(𝐀𝑘𝐛) can be written as
a linear combination of 𝐀𝐛, … , 𝐀𝑘𝐛, and hence of 𝐛, 𝐀𝐛, … , 𝐀𝑘−1𝐛. The
result then follows by repeating this argument. �

The index at which the Krylov subspace stabilizes, sometimes called the

grade, can be exactly characterized in terms of the eigenvector spectral density.

Lemma 2.2. Let 𝑑′ be the number of distinct points of support in

𝜓(𝑥; 𝐀, 𝐛). Then dim(𝒦𝑘(𝐀, 𝐛)) = min{𝑘, 𝑑′}.

Proof. Suppose 𝑘 ≤ 𝑑′. Then for any nonzero polynomial 𝑝(𝑥) of degree
at most 𝑘 − 1, there exists an index 𝑖 such that 𝑝(𝜆𝑖) ≠ 0 and |𝐮⊺

𝑖 𝐛| > 0.
Hence 𝑝(𝐀)𝐛 ≠ 𝟎, so by (1.2), 𝐛, 𝐀𝐛, … , 𝐀𝑘−1𝐛 are linearly independent so
dim(𝒦𝑘(𝐀, 𝐛)) = 𝑘.

Now, suppose 𝑘 = 𝑑′ + 1. Let 𝑝(𝑥) be a nonzero polynomialwith roots
at each of the 𝑑′ points of support of 𝜓(𝑥; 𝐀, 𝐛). Then 𝑝(𝐀)𝐛 = 𝟎, so
𝐛, 𝐀𝐛, … , 𝐀𝑑′𝐛 are linearly dependent. The result for 𝑘 > 𝑑′ + 1 follows
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by Lemma 2.1. �

2.1 The Arnoldi algorithm

Perhaps the simplest approach toobtaininganorthonormalbasis for theKrylov

subspace is to construct a (non-orthogonal) basis and then orthogonalize it (e.g.

using Gram–Schmidt). While this is fine in theory, in practice it can lead to

numerical issues if the resulting basis vectors are notwell-conditioned.

An alternative approach is to alternate between orthogonalizing and ex-

panding the Krylov subspace. In particular, supposewe have already obtain an

orthonormal basis 𝐪0, … , 𝐪𝑛−1 for 𝒦𝑛(𝐀, 𝐛). It is not too hard to verify that

𝒦𝑛+1(𝐀, 𝐛) = span{𝐪0, … , 𝐪𝑛−1, 𝐀𝐪𝑛−1}. (2.2)

Thus, we can obtain an orthonormal basis for 𝒦𝑛+1(𝐀, 𝐛) by orthogonalizing
𝐀𝐪𝑛−1 against the previous basis vectors (or identifying that𝐀𝐪𝑛−1 is in the span

of 𝐪0, … , 𝐪𝑛−1, in which case the Krylov subspace has stabilized, and terminat-

ing). This results in the Arnoldi algorithm (Algorithm 2.3) [Arn51].

Algorithm 2.3 (Arnoldi).

1: Arnoldi(𝐀, 𝐛, 𝑘)
2: 𝐪0 = 𝐛
3: for 𝑛 = 0, 1, … , 𝑘 − 1 do
4: 𝐲𝑛+1 = 𝐀𝐪𝑛
5: for 𝑖 = 0, … , 𝑛 do
6: ℎ𝑖,𝑛 = 𝐪⊺

𝑖 𝐲𝑛+1

7: 𝐳𝑛+1 = 𝐲𝑛+1 − (ℎ0,𝑛𝐪0(𝑥) + ⋯ + ℎ𝑛,𝑛𝐪𝑛(𝑥))
8: ℎ𝑛+1,𝑛 = ‖𝐳𝑛+1‖ ▷ terminate if ℎ𝑛+1,𝑛 = 0
9: 𝐪𝑛+1 = 𝐳𝑛+1/ℎ𝑛+1,𝑛

10: return {𝐪𝑛}, {ℎ𝑖,𝑗}

Observe that

ℎ𝑛+1,𝑛𝐪𝑛+1 = 𝐳𝑛+1 = 𝐲𝑛+1 − (ℎ0,𝑛𝐪0 + ⋯ + ℎ𝑛,𝑛𝐪𝑛), 𝑛 ≥ 0. (2.3)

Thus, using that 𝐲𝑛+1 = 𝐀𝐪𝑛we obtain a recurrence

𝐀𝐪𝑛 = ℎ0,𝑛𝐪0 + ⋯ + ℎ𝑛,𝑛𝐪𝑛 + ℎ𝑛+1,𝑛𝐪𝑛+1, 𝑛 ≥ 0. (2.4)
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Define

𝐐𝑘 ∶=
⎡⎢⎢
⎣

| | |
𝐪0 𝐪1 ⋯ 𝐪𝑘−1
| | |

⎤⎥⎥
⎦

, 𝐇𝑘 ∶=
⎡
⎢
⎢
⎢
⎣

ℎ0,0 ℎ0,1 ⋯ ℎ0,𝑘−1
ℎ1,0 ℎ1,1 ⋯ ℎ1,𝑘−1

⋱ ⋱ ⋮
ℎ𝑘−1,𝑘−2 ℎ𝑘−1,𝑘−1

⎤
⎥
⎥
⎥
⎦

. (2.5)

Then (2.4) can bewritten inmatrix form as

𝐀𝐐𝑘 = 𝐐𝑘𝐇𝑘 + ℎ𝑘,𝑘−1𝐪𝑘𝐞⊺
𝑘, (2.6)

where 𝐞𝑘 is the 𝑘-th canonical basis vector.
Let𝐇𝑘+1,𝑘 be the (𝑘 + 1) × 𝑘matrix obtained byappending the 1 × 𝑘 row-vector

ℎ𝑘,𝑘−1𝐞⊺
𝑘 to the bottom of 𝐇𝑘. Thenwe canmore compactlywrite (2.6) as

𝐀𝐐𝑘 = 𝐐𝑘+1𝐇𝑘+1,𝑘. (2.7)

While equivalent to (2.6), (2.7) is sometimesmore convenient due to its compact

form. We also note that, since 𝐪0, … , 𝐪𝑘 are orthonormal,

𝐐⊺
𝑘𝐀𝐐𝑘 = 𝐐⊺

𝑘𝐇𝑘 + ℎ𝑘,𝑘−1𝐪⊺
𝑘𝐐𝑘𝐞⊺

𝑘 = 𝐇𝑘. (2.8)

2.2 From symmetry, Lanczos

Since 𝐪0, … , 𝐪𝑘 are orthonormal,

𝐐⊺
𝑘𝐀𝐐𝑘 = 𝐐⊺

𝑘𝐇𝑘 + ℎ𝑘,𝑘−1𝐪⊺
𝑘𝐐𝑘𝐞⊺

𝑘 = 𝐇𝑘. (2.9)

Suppose𝐀 is symmetric; that is𝐀 = 𝐀⊺. Then, using (2.9), we see that

𝐇𝑘 = 𝐐⊺
𝑘𝐀𝐐𝑘 = 𝐐⊺

𝑘𝐀⊺𝐐𝑘 = (𝐐𝑘𝐀𝐐𝑘)⊺ = (𝐇𝑘)⊺; (2.10)

that is, 𝐇𝑘 is also symmetric. By construction 𝐇𝑘 is zero below the first sub-

diagonal,1 so 𝐇⊺
𝑘 is zero above the first super-diagonal. Therefore 𝐇𝑘 must be

tridiagonal!

This means that the majority of the coefficients produced by the Arnoldi

algorithm are actually zero a priori. Skipping computing these coefficients (and

takingadvantageof thesymmetrytosaveanadditional innerproduct) results in

the Lanczos algorithm (Algorithm 2.4) [Lan50]. While the Arnoldi and Lanczos

algorithms are mathematically equivalent (i.e. produce the same quantities in

exact arithmetic), theLanczosalgorithmrequires significantlyfewerarithmetic

operations.

1This is called upper-Hessenberg.
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Algorithm 2.4 (Lanczos).

1: Lanczos(𝐀, 𝐛, 𝑘)
2: 𝐪0 = 𝐛/‖𝐛‖, 𝛽−1 = 0, 𝐪−1 = 𝟎
3: for 𝑛 = 0, 1, … , 𝑘 − 1 do
4: 𝐲𝑛+1 = 𝐀𝐪𝑛 − 𝛽𝑛−1𝐪𝑛−1
5: 𝛼𝑛 = 𝐪⊺

𝑛𝐲𝑛+1
6: 𝐳𝑛+1 = 𝐲𝑛+1 − 𝛼𝑛𝐪𝑛
7: orthogonalize against 𝐪0, … , 𝐪𝑛 ▷ optional

8: 𝛽𝑛 = ‖𝐳𝑛+1‖2 ▷ terminate if 𝛽𝑛 = 0
9: 𝐪𝑛+1 = 𝐳𝑛+1/𝛽𝑛

10: return {𝐪𝑛}, {𝛼𝑛}, {𝛽𝑛}.

The basis vectors produced by Lanczos are orthonormal and satisfy a sym-

metric three term recurrence

𝐀𝐪𝑛 = 𝛽𝑛−1𝐪𝑛−1 + 𝛼𝑛𝐪𝑛 + 𝛽𝑛𝐪𝑛+1, 𝑛 ≥ 0 (2.11)

with initial conditions 𝐪−1 = 𝟎 and 𝛽−1 = 0. The coefficients {𝛼𝑛} and {𝛽𝑛}
defining the three term recurrence are also generated by the algorithm. This

recurrence can bewritten inmatrix form as

𝐀𝐐𝑘 = 𝐐𝑘𝐓𝑘 + 𝛽𝑘−1𝐐𝑘𝐞⊺
𝑘 (2.12)

where

𝐐𝑘 ∶=
⎡⎢⎢
⎣

| | |
𝐪0 𝐪1 ⋯ 𝐪𝑘−1
| | |

⎤⎥⎥
⎦

, 𝐓𝑘 ∶=
⎡
⎢
⎢
⎢
⎣

𝛼0 𝛽0
𝛽0 𝛼1 ⋱

⋱ ⋱ 𝛽𝑘−2
𝛽𝑘−2 𝛼𝑘−1

⎤
⎥
⎥
⎥
⎦

. (2.13)

Wemight alsowrite a compact matrix form

𝐀𝐐𝑘 = 𝐐𝑘+1𝐓𝑘+1,𝑘, (2.14)

where𝐓𝑘+1,𝑘 is the (𝑘 + 1) × 𝑘matrix defined by appending 𝛽𝑘−1𝐞⊺
𝑘 below𝐓𝑘.

Remark 2.5. If the orthogonalization step in Line 7 of Algorithm 2.4

is omitted, the Lanczos algorithm can behave very differently in finite

precision arithmetic than exact arithmetic.

Formanyapplications, the observation in Remark 2.5 is not an issue; in fact,

of the main goals of this monograph is to provide insight into the behavior of

Lanczos in finite precision arithmetic. We discuss the behavior of Lanczos in

finite precision arithmetic in detail in Chapter 4, andwe discuss the impacts on

algorithms for relevant tasks as they arise.
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TL;DR

The Arnoldi and Lanczos algorithms iteratively produce an orthonormal basis

for the Krylov subspace. The Lanczos algorithm avoids many of the inner

products in the Arnoldi algorithm by takeing advantage of symmetry.
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3 Orthogonal Polynomials

There is a fundamental relationship between orthogonal polynomials and the

Lanczos algorithmwhichwill be critical in our analysis of KSMs, particularly in

finite precision arithmetic. We now recall some basic facts thatwill be relevant

to our presentation, and For a more detailed treatment of the “beautiful math-

ematical relationships between matrices, moments, orthogonal polynomials,

quadrature rules and the Lanczos [.. .] algorithm”we suggest [GM09].

Suppose 𝜇(𝑥) is a non-negative unit mass density function1 supported on a
subset of the real line with finite moments (i.e. ∫ 𝑥𝑛𝜇(𝑥)d𝑥 < ∞ for all 𝑛 ≥ 0).
Thedensity function 𝜇(𝑥) induces an innerproduct ⟨⋅, ⋅⟩𝜇 andanorm ‖⋅‖𝜇 defined

by

⟨𝑓, 𝑔⟩𝜇 ∶= ∫ 𝑓(𝑥)𝑔(𝑥)𝜇(𝑥)d𝑥, ‖𝑓‖𝜇 ∶= ⟨𝑓, 𝑓⟩1/2
𝜇 . (3.1)

Associatedwith this inner product is an orthonormal sequence 𝑝0(𝑥), 𝑝1(𝑥), … of

polynomialswith deg(𝑝𝑛) = 𝑛 and positive leading coefficient. It is remarkable
fact that these polynomials satisfy the symmetric three-term recurrence,2

𝑥𝑝𝑛(𝑥) = 𝛽𝑛−1𝑝𝑛−1(𝑥) + 𝛼𝑛𝑝𝑛(𝑥) + 𝛽𝑛𝑝𝑛+1(𝑥), 𝑛 ≥ 0 (3.2)

with initial conditions 𝑝0(𝑥) = 1, 𝑝−1(𝑥) = 0 and recurrence coefficients {𝛼𝑛} and
{𝛽𝑛} determined by 𝜇(𝑥).

3.1 Orthogonal polynomials and Lanczos

It is by no means a coincidence that the three-term recurrence (3.2) looks rem-

iniscent of the Lanczos recurrence (2.11). Indeed, it is well-known that the

Lanczos algorithm is closelyrelated to theorthogonalpolynomials of the eigen-

vector density function 𝜓(𝑥; 𝐀, 𝐛) (Definition 1.4).

Theorem3.1. The recurrence coefficients of theorthogonalpolynomials

of 𝜓(𝑥; 𝐀, 𝐛) are identical to coefficients generated by Lanczos run on

1Here we are a bit loose with the term “function”, and allow densities which include point masses; for
example, the eigenvector density function 𝜓(𝑥; 𝐀, 𝐛).

2This fact can be proved similarly to howwe derive the Lanczos algorithm in Chapter 2.
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(𝐀, 𝐛). Moreover, the orthogonal polynomials {𝑝𝑛(𝑥)} of 𝜓(𝑥; 𝐀, 𝐛) are
related to the Lanczos basis vectors {𝐪𝑛} by𝐪𝑛 = 𝑝𝑛(𝐀)𝐛 for each 𝑛 ≥ 0.

Proof. This fact can (and should!) be verified by constructively comput-

ing the orthogonal polynomials of 𝜓(𝑥; 𝐀, 𝐛) using the so-called Stieltjes
algorithm (which is essentially just a continuous version of Lanczos)

[Gau06]. Since ⟨𝑓, 𝑔⟩𝜓 = 𝐛⊺𝑓(𝐀)⊺𝑔(𝐀)𝐛, this yields the Lanczos algo-
rithm. �

The fundamental relationship between the Lanczos algorithm on (𝐀, 𝐛) and
the orthogonal polynomials of 𝜓(𝑥; 𝐀, 𝐛) is critical for understanding many
aspects of the Lanczos algorithm, particularly it’s behavior in finite precision

arithmetic. This is the main motivation for our study of orthogonal polyno-

mials. In particular, in Section 3.2.1 we discuss a fundamental equivalence

between matrices, moments, and quadrature (each of which will subsequently

be defined). This equivalence, in combinationwith Theorem 3.1.

3.2 Matrices, moments, and quadrature

In this section, we define three important mathematical quantities relating to

𝜇(𝑥): the Jacobi matrix, the polynomial moments, and the Gaussian quadrature
rules. The title of this section pays homage to several papers and a book by

Gene Golub and Gérard Meurant [GM93; GM97; GM09] which explore the

relationships between these quantities in great detail.

The coefficients of the orthogonal polynomials of 𝜇(𝑥)will be important.

Definition 3.2. Define the symmetric tridiagonalmatrix giving the first

2𝑘 − 1 recurrence coefficients for the orthogonal polynomials of 𝜇(𝑥) by

𝐌𝑘 = 𝐌𝑘(𝜇) ∶=
⎡
⎢
⎢
⎢
⎣

𝛼0 𝛽0
𝛽0 ⋱ ⋱

⋱ ⋱ 𝛽𝑘−2
𝛽𝑘−2 𝛼𝑘−1

⎤
⎥
⎥
⎥
⎦

. (3.3)

Let 𝑠 be the smallest (possibly infinite) value for which 𝛽𝑠−1 = 0. Then
𝐌𝑠(𝜇) is called the Jacobi matrix corresponding to 𝜇(𝑥).

Another important property of a density function 𝜇(𝑥) is it’s polynomial
moments.
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Definition 3.3. Given a family of polynomials {𝑞𝑛(𝑥)}with deg(𝑞𝑛) = 𝑛,
themodifiedmoments of 𝜇(𝑥)with respect to {𝑞𝑛(𝑥)} are

𝑚𝑛 = 𝑚𝑛(𝜇; {𝑞𝑛(𝑥)}) ∶= ∫ 𝑞𝑛(𝑥)𝜇(𝑥)d𝑥, 𝑛 ≥ 0. (3.4)

Mathematically, the choice of polynomials {𝑞𝑛(𝑥)} is not important (we can
simplyperform a change of basis), so inmany theoretical settings it is common

touse themonomials𝑞𝑛(𝑥) = 𝑥𝑛. However, innumerical settings themonomials

are very poorly conditioned and it is almost always more appropriate to work

with other families of polynomials, for instanceChebyshevpolynomails [BB98;

Gau04]. This will be particularly relevant in our discussion of the behavior of

the Lanczos algorithm in finite precision arithmetic in Chapter 4.

Finally, we introduce the concept of Gaussian quadrature which allows us

to integrate polynomials, and hence functions well-approximated by polyno-

mials. This is the foundation for understanding methods involving quadratic

forms Chapter 7 and will also be critical for understanding the behavior of

Lanczos in finite precision arithmetic.

Definition 3.4. The 𝑘-point Gaussian quadrature rule 𝜇𝑘(𝑥) for 𝜇(𝑥) is
defined by 𝜇𝑘(𝑥) ∶= 𝜓(𝑥; 𝐌𝑘, 𝐞1), where𝐌𝑘 = 𝐌𝑘(𝜇) as in Definition 3.2.

From definition of the eigenvector densityDefinition 1.4, we see the 𝑘-point
Gaussian quadrature rule is supported on 𝑘 points, the eigenvalues of 𝐌𝑘, and

the correspondingweights are the squares of thefirst components of the eigen-

vectors of 𝐌𝑘.

It is well-known that the Gaussian quadrature rule satisfies a moment-

matching property, a proof of whichwewill provide in Section 3.3.2.

Theorem 3.5. For all polynomials 𝑝(𝑥) with deg(𝑝) < 2𝑘, the 𝑘-point
Gaussian quadrature rule 𝜇𝑘(𝑥) for 𝜇(𝑥) satisfies

∫ 𝑝(𝑥)𝜇𝑘(𝑥)d𝑥 = ∫ 𝑝(𝑥)𝜇(𝑥)d𝑥.

The following fact helps us understanding how the cumulative distribution

of theGaussianquadrature relates to the cumulativedistributionof theoriginal

density function.

Theorem 3.6. Let 𝜃1, … , 𝜃𝑘 be the support of 𝜇𝑘(𝑥) and denote by 𝑀(𝑥)
and𝑀𝑘(𝑥) the cumulative distribution functions of 𝜇(𝑥) and 𝜇𝑘(𝑥) respec-
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tively. Then, for each 𝑖 = 1, 2, … , 𝑘,

lim
𝜃→𝜃−

𝑖
𝑀𝑘(𝜃) ≤ 𝑀(𝜃𝑖) ≤ lim

𝜃→𝜃+
𝑖
𝑀𝑘(𝜃+

𝑖 ).

Inparticular, since theGaussianquadrature is supportedon exactly𝑘points,
the distribution function 𝑀𝑘(𝑥) is piecewise constant with jumps at exactly 𝑘
points. Theorem 3.6 asserts that at each of these jumps𝑀𝑘(𝑥) goes from below

𝑀(𝑥) to above𝑀(𝑥). This also implies that between consecutive jumps of 𝑀𝑘(𝑥),
𝑀(𝑥) goes from below𝑀𝑘(𝑥) to above𝑀𝑘(𝑥). This fact is visualized in Figure 3.1.
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Figure 3.1: Cumulative distribution𝑀(𝑥) ( ) and corresponding 𝑘-point Guassian
quadrature cumulative distribution 𝑀𝑘(𝑥) ( ) for 𝑘 = 6. Takeaway: Observe that
𝑀𝑘(𝑥) jumps 𝑘 points, and at each of these jumps goes from below𝑀(𝑥) to above 𝑀(𝑥).
Similarly, between consecutive jumps,𝑀(𝑥) goes from below𝑀𝑘(𝑥) to above𝑀𝑘(𝑥).

Theorem 3.6 is an immediate consequence of the following property about

the cumulative distributions of two density functionswithmatchingmoments;

see for instance [KS72, Theorem 22.1].

Theorem3.7. Suppose 𝜇(𝑥) and 𝜈(𝑥) are density functionswithmatching
moments through degree 2𝑘 − 1. Let 𝑀(𝑥) and 𝑁(𝑥) be their respective
cumulative distribution functions. Then𝑀(𝑥)−𝑁(𝑥) is identically zero or
changes signs at 2𝑘 − 1 points.

3.2.1 A fundamental equivalence The three quantities we have just defined

are fundamentally related; see e.g. [Gau04; GM09].
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Theorem3.8. There is aone-to-onecorrespondencebetween the follow-

ing quantities:

• the upper-leftmost 𝑘 × 𝑘 submatrix of the Jacobi matrix for 𝜇(𝑥)

• the (modified) moments of 𝜇(𝑥) through degree 2𝑘 − 1

• the 𝑘-point Gaussian quadrature rule 𝜇𝑘(𝑥) for 𝜇(𝑥)

This equivalence is critical to understanding many aspects of the Lanczos

algorithm, particularly its behavior in finite precision arithmetic, and we will

return to this equivalence throughout this monograph.

Remark3.9. Exact knowledgeof anyoneof the threequantities inTheo-

rem3.8 implies exact knowledgeof theother two. However, themapsbe-

tween these quantities may be very poorly conditioned [Gau04; OST07].

Therefore, small changes to one of the quantities (e.g the moments) can

lead to large changes in the others (e.g. the tridiagonal matrix).

3.3 Some properties of orthogonal polynomials

Orthogonal polynomials satisfymanyremarkable properties, a fewof whichwe

recall here. Formore detailed treatmentswe turn readers to [Gau04; GM09].

Lemma3.10. Let𝜋𝑘(𝑥) ∝ 𝑝𝑘(𝑥)bemonic. Then ‖𝜋𝑘(𝑥)‖𝜇 isminimalamong

all degree-𝑘monic polynomials.

Proof. Anarbitrarydegree-𝑘polynomial canbewrittenas 𝑝(𝑥) = 𝑐0𝑝0(𝑥)+
⋯+𝑐𝑘𝑝𝑘(𝑥). Byorthonormalityof the {𝑝𝑛}wehave ‖𝑝‖2

𝜇 = |𝑐0|2 +⋯+|𝑐𝑘|2. If
𝑝(𝑥) is monic the choice of 𝑐𝑘 is determined. All other coefficients should

be set to zero. �

Lemma3.11. The roots of 𝑝𝑘(𝑥) are real, simple, and located in the convex
closure of the support of 𝜇(𝑥).

Proof. Let {𝜃𝑗}𝑘′−1
𝑗=0 be thepoints in the convex closure of the support of 𝜇(𝑥)

atwhich 𝑝𝑘 changes signs. Then,

∫ 𝑝𝑘(𝑥)
𝑘′−1

∏
𝑛=0

(𝑥 − 𝜃𝑛)𝜇(𝑥)d𝑥 ≠ 0 (3.5)
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since the integrand does not change signs. This implies 𝑘′ = 𝑘 since 𝑝𝑘 is

orthogonal to all polynomials of lower degree. �

Lemma 3.12. Let 𝜏1, … , 𝜏𝑘−1 be the roots of 𝑝𝑘−1(𝑥) and 𝜃1, … , 𝜃𝑘 the roots

of 𝑝𝑘(𝑥). Then 𝜃1 < 𝜏1 < 𝜃2 < ⋯ < 𝜏𝑘−1 < 𝜃𝑘.

Lemma 3.13. Let (𝑐, 𝑑) be an open interval for which 𝜇(𝑥) = 0 for all 𝑥 ∈
(𝑐, 𝑑). Then 𝑝𝑘(𝑥) has at most one zero in (𝑐, 𝑑).

Proof. Let 𝜋𝑘(𝑥) ∝ 𝑝𝑘(𝑥) be monic. Assume, for the sake of contradiction,
there are two distinct zeros 𝜃𝑖 and 𝜃𝑗 in (𝑐, 𝑑). Write the remaining zeros
as 𝜃𝑛. Nownote

∫ 𝜋𝑘(𝑥) ∏
𝑛≠𝑖,𝑗

(𝑥 − 𝜃𝑛)𝜇(𝑥)d𝑥 = ∫(𝑥 − 𝜃𝑖)(𝑥 − 𝜃𝑗) ∏
𝑛≠𝑖,𝑗

(𝑥 − 𝜃𝑛)2𝜇(𝑥)d𝑥. (3.6)

The left hand expression is zero because 𝜋𝑘(𝑥) is orthogonal to all poly-
nomials of lower degree. However, the right hand side expression is

nonzero because the integrand does not change signs on the support of

𝜇(𝑥). This is a contradiction. �

Lemma 3.14. Suppose 𝜃 is a root of 𝑝𝑘(𝑥). Then

[𝑝0(𝜃), 𝑝1(𝜃), … , 𝑝𝑘−1(𝜃)]⊺
(3.7)

is an eigenvector of 𝐌𝑘with eigenvalue 𝜃.

Proof. Inmatrix form, (3.2) becomes

𝑥 𝐏𝑘(𝑥) = 𝐏𝑘(𝑥)𝐌𝑘 + 𝛽𝑘−1𝑝𝑘(𝑥)𝐞⊺
𝑘. (3.8)

By assumption, 𝑝𝑘(𝜃) = 0. Therefore, evaluating each side of the above
equality at 𝜃 and taking the transpose gives the result. �

Lemma 3.15. Let 𝜃1, … , 𝜃𝑘 be the roots of 𝑝𝑘(𝑥). For each 𝑖 = 1, … , 𝑘



Orthogonal Polynomials page 16

define 𝑠𝑖 ∶= (∑𝑘−1
𝑛=0 𝑝𝑛(𝜃𝑖)2)1/2. Now, define thematrix

𝐒𝑘 =
⎡
⎢
⎢
⎢
⎣

𝑝0(𝜃1) 𝑝0(𝜃2) ⋯ 𝑝0(𝜃𝑘)
𝑝1(𝜃1) 𝑝1(𝜃2) ⋯ 𝑝1(𝜃𝑘)

⋮ ⋮ ⋮
𝑝𝑘−1(𝜃1) 𝑝𝑘−1(𝜃2) ⋯ 𝑝𝑘−1(𝜃𝑘)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

1/𝑠1
1/𝑠2

⋱
1/𝑠𝑘

⎤
⎥
⎥
⎥
⎦

.

Then 𝐒𝑘 is orthogonal and𝐌𝑘 = 𝐒𝑘𝚯𝑘𝐒⊺
𝑘, where𝚯𝑘 = diag(𝜃1, … , 𝜃𝑘).

Proof. ByLemma3.11, there are 𝑘distinct roots of 𝑝𝑘(𝑥). Thus, Lemma3.14
gives all eigenvectors of 𝐌𝑘, and since 𝐌𝑘 is symmetric, the eigenvec-

tors are orthogonal. The result follows by normalizing these eigenvec-

tors. �

Lemma 3.16. It holds that 𝑝𝑘(𝑥) = det(𝑥𝐈 − 𝐌𝑘)/ ∏𝑘
𝑛=0 𝛽𝑛.

Proof. ByLemma 3.14we have that 𝑝𝑘(𝑥) ∝ det(𝑥𝐈 − 𝐌𝑘). That the leading
coefficient is 1/ ∏𝑘

𝑛=0 𝛽𝑛 follows from the recurrence formula (3.2). �

3.3.1 Polynomial approximation and interpolation We begin my noting that

orthogonal projection onto the orthogonal polynomial basis produces the best

approximationwith respect to the 𝜇-norm.

Lemma 3.17. Let 𝑝(𝑥) be the polynomial minimizing ‖𝑝 − 𝑓‖𝜇 among all

polynomials of degree less than 𝑘. Then

𝑝(𝑥) =
⎡⎢⎢
⎣

| | |
𝑝0(𝑥) 𝑝1(𝑥) ⋯ 𝑝𝑘−1(𝑥)

| | |

⎤⎥⎥
⎦

⎡
⎢
⎢
⎢
⎣

⟨𝑓, 𝑝0⟩𝜇
⟨𝑓, 𝑝1⟩𝜇

⋮
⟨𝑓, 𝑝𝑘−1⟩𝜇

⎤
⎥
⎥
⎥
⎦

.

Proof. For any polynomial 𝑞(𝑥) of degree less than 𝑘,

‖𝑓 − 𝑝‖2
𝜇 ≤ ‖𝑓 − 𝑝‖2

𝜇 + ‖𝑝 − 𝑞‖2
𝜇 = ‖(𝑓 − 𝑝) + (𝑝 − 𝑞)‖2

𝜇 = ‖𝑓 − 𝑞‖2
𝜇. (3.9)

Here we have used that 𝑓(𝑥) − 𝑝(𝑥) is orthogonal to all polynomials of
degree less than 𝑘. �

This result allows us to express low-degree polynomials in terms of 𝐌𝑘.
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Lemma 3.18. Suppose 𝑝(𝑥) is a polynomial of degree less than 𝑘. Then

𝑝(𝑥) =
⎡⎢⎢
⎣

| | |
𝑝0(𝑥) 𝑝1(𝑥) ⋯ 𝑝𝑘−1(𝑥)

| | |

⎤⎥⎥
⎦

𝑝(𝐌𝑘)𝐞1.

Proof. ByLemma 3.15, we have that

𝑝(𝐌𝑘)𝐞1 = 𝐒𝑘𝑝(𝚯𝑘)𝐒⊺
𝑘𝐞1.

Since 𝑝0(𝑥) = 1, a direct computation shows that

𝐞𝑚𝐒𝑘𝑝(𝚯𝑘)𝐒⊺
𝑘𝐞1 =

𝑘

∑
ℓ=1

𝑝(𝜃ℓ)𝑝𝑚(𝜃ℓ)/𝑠2
ℓ = ∫ 𝑝(𝑥)𝑝𝑚(𝑥)𝜇𝑘(𝑥)d𝑥.

But now, since 𝑝(𝑥) and 𝑝𝑚(𝑥) both polynomials of degree at most 𝑘, then
𝑝(𝑥)𝑝𝑚(𝑥) is a polynomial of degree atmost 2𝑘−1. Hence, byTheorem3.5,

we have that

∫ 𝑝(𝑥)𝑝𝑚(𝑥)𝜇𝑘(𝑥)d𝑥 = ∫ 𝑝(𝑥)𝑝𝑚(𝑥)𝜇(𝑥)d𝑥 = ⟨𝑝, 𝑝𝑚⟩𝜇.

The result then follows from Lemma 3.17. �

Finally,we state a characterizationof thepolynomialwhich interpolates 𝑓(𝑥)
at the zeros of the degree-𝑘 orthogonal polynomial 𝑝𝑘(𝑥) of 𝜇(𝑥).

Lemma3.19. Let 𝑝(𝑥)be thepolynomial interpolant to𝑓(𝑥)of degree less
than 𝑘 at the zeros of 𝑝𝑘(𝑥). Then

𝑝(𝑥) =
⎡⎢⎢
⎣

| | |
𝑝0(𝑥) 𝑝1(𝑥) ⋯ 𝑝𝑘−1(𝑥)

| | |

⎤⎥⎥
⎦

𝑓(𝐌𝑘)𝐞1.

Proof. By Lemma 3.16, the zeros of 𝑝𝑘(𝑥) are the eigenvalues of 𝐌𝑘. If

𝑝(𝑥) = 𝑓(𝑥) at the eigenvalues of 𝐌𝑘 then 𝑝(𝐌𝑘) = 𝑓(𝐌𝑘). The result then
follows from Lemma 3.19. �

3.3.2 Gaussian quadrature We now have the tools required to prove The-

orem 3.5, asserting that the Gaussian quadrature rule satisfies a moment-

matching property.
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Proof of Theorem 3.5. Let 𝜃1, … , 𝜃𝑘 be the zeros of 𝑝𝑘(𝑥), and obtainweights
𝜔1, … , 𝜔𝑘 by solving the linear system of equations

⎡
⎢
⎢
⎢
⎣

𝑝0(𝜃1) 𝑝0(𝜃2) ⋯ 𝑝0(𝜃𝑘)
𝑝1(𝜃1) 𝑝1(𝜃2) ⋯ 𝑝1(𝜃𝑘)

⋮ ⋮ ⋮
𝑝𝑘−1(𝜃1) 𝑝𝑘−1(𝜃2) ⋯ 𝑝𝑘−1(𝜃𝑘)

⎤
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎣

𝜔1
𝜔2
⋮

𝜔𝑘

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

∫ 𝑝0(𝑥)𝜇(𝑥)d𝑥
∫ 𝑝1(𝑥)𝜇(𝑥)d𝑥

⋮
∫ 𝑝𝑘(𝑥)𝜇(𝑥)d𝑥

⎤
⎥
⎥
⎥
⎦

. (3.10)

Note that the right hand side is 𝐞⊺
1, since 𝑝𝑛(𝑥) is orthogonal to 𝑝0(𝑥) = 1

with respect to 𝜇(𝑥) for all 𝑛 ≥ 1. Denote by 𝐏⊺
𝑘 the coefficient matrix

and recall Lemma3.15 asserts the orthogonal eigenvectormatrix𝐒𝑘 of 𝐌𝑘
satisfies 𝐒𝑘 = 𝐏⊺

𝑘 diag(1/𝑠1, … , 1/𝑠𝑘) for some coefficients {𝑠𝑖}. Then, since
𝑝0(𝑥) = 1, Lemma 3.15 implies

𝝎 = (𝐏𝑘𝐏⊺
𝑘)−1𝐏𝑘𝐞1 = diag(1/𝑠2

1, … , 1/𝑠2
𝑘)𝟏 = 𝐒⊺

𝑘𝐞1.

Therefore, the 𝑘-point Gaussian quadrature rule satisfies

𝜇𝑘(𝑥) =
𝑘

∑
𝑖=1

|𝐞⊺
1𝐬𝑖|2 𝛿(𝑥 − 𝜃𝑖) =

𝑘

∑
𝑖=1

𝜔𝑖 𝛿(𝑥 − 𝜃𝑖). (3.11)

Thus, we could have equivalently defined the Gaussian quadrature rule

by it’s support and enforcing that it integrates polynomials of degree less

than 𝑘 though (3.10).
Let 𝑝(𝑥) be an arbitrary polynomial of degree less than 2𝑘. By the

Euclidian algorithm, we can decompose 𝑝(𝑥) = 𝑞(𝑥)𝑝𝑘(𝑥) + 𝑟(𝑥), where
deg(𝑞) < 𝑘 and deg(𝑟) < 𝑘. Since 𝑝𝑘(𝑥) is an orthogonal polynomial of 𝜇, it
is orthogonal to all polynomials of lower degree. Thus,

∫ 𝑝(𝑥)𝜇(𝑥)d𝑥 = ∫ 𝑞(𝑥)𝑝𝑘(𝑥)𝜇(𝑥)d𝑥 + ∫ 𝑟(𝑥)𝜇(𝑥)d𝑥 = ∫ 𝑟(𝑥)𝜇(𝑥)d𝑥. (3.12)

On the other hand, since 𝑝(𝜃𝑖) = 0 for each 𝑖 = 1, 2, … , 𝑘,

∫ 𝑝(𝑥)𝜇𝑘(𝑥)d𝑥 =
𝑘

∑
𝑖=1

𝜔𝑖𝑝(𝜃𝑖) =
𝑘

∑
𝑖=1

𝜔𝑖(𝑞(𝜃𝑖)𝑝𝑘(𝜃𝑖) + 𝑟(𝜃𝑖)) =
𝑘

∑
𝑖=1

𝜔𝑘𝑟(𝜃𝑖).

(3.13)

Since 𝑟(𝑥) is degree at most 𝑘 − 1, it can be expressed as a linear combi-
nation of 𝑝0(𝑥), … , 𝑝𝑘−1(𝑥). Therefore, by the way we have obtained the
weights𝜔1, … , 𝜔𝑘 in (3.10),

∫ 𝑟(𝑥)𝜇(𝑥)d𝑥 =
𝑘

∑
𝑖=1

𝜔𝑘𝑟(𝜃𝑖). (3.14)

Combining (3.12)–(3.14) gives the result. �
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3.4 Chebyshev polynomials

Two important orthogonal polynomial families are theChebyshevpolynomials

of the first and second kind. These families of polynomials are respectively

defined by the recurrences,

𝑇0(𝑥) ∶= 1, 𝑇1(𝑥) ∶= 𝑥, 𝑇𝑛(𝑥) ∶= 2𝑥𝑇𝑛−1(𝑥) − 𝑇𝑛−2(𝑥), 𝑛 ≥ 2 (3.15)

𝑈0(𝑥) ∶= 1, 𝑈1(𝑥) ∶= 2𝑥, 𝑈𝑛(𝑥) ∶= 2𝑥𝑈𝑛−1(𝑥) − 𝑈𝑛−2(𝑥), 𝑛 ≥ 2. (3.16)

Both families of Chebyshev polynomials have explicit formulas. These formu-

las are often easier toworkwith than the recurrences (3.15) and (3.16).

Lemma 3.20. For all 𝑘 ≥ 0 and all 𝜃 ∈ ℝ

𝑇𝑘(cos(𝜃)) = cos(𝑛𝜃), 𝑈𝑘(cos(𝜃)) sin(𝜃) = sin((𝑛 + 1)𝜃).

Lemma 3.21. For all 𝑘 ≥ 0 and 𝑥 ∈ ℝ

𝑇𝑘(𝑥) = ((𝑥 + √𝑥2 − 1)𝑘 + (𝑥 − √𝑥2 − 1)𝑘)/2

𝑈𝑘(𝑥) = ((𝑥 + √𝑥2 − 1)𝑘+1 − (𝑥 − √𝑥2 − 1)𝑘+1)/(2√𝑥2 − 1).

Define the density functions 𝜇𝑇(𝑥) and 𝜇𝑈(𝑥), each supported on [−1, 1], by

𝜇𝑇(𝑥) ∶= 1
𝜋

1
√1 − 𝑥2

, 𝜇𝑈(𝑥) ∶= 2
𝜋

√1 − 𝑥2. (3.17)

Up to scaling, the Chebyshev polynomials are the orthogonal polynomials of

the respective densities.

Lemma 3.22. For all 𝑘 ≥ 0,

⟨𝑇𝑗, 𝑇𝑘⟩𝜇𝑇
=

⎧{{
⎨{{⎩

1 𝑗 = 𝑘 = 0
1/2 𝑗 = 𝑘 > 0
0 𝑗 ≠ 𝑘

, ⟨𝑈𝑗, 𝑈𝑘⟩𝜇𝑈
=

⎧{
⎨{⎩

1 𝑗 = 𝑘
0 𝑗 ≠ 𝑘

.

Our analysis repeatedly makes use of Chebyshev polynomial approxima-

tions to a function.

Definition 3.23. The degree-𝑘 Chebyshev approximant to 𝑓(𝑥) is

𝑝(𝑥) = 𝑐0𝑇0(𝑥) + 2
𝑘

∑
𝑛=1

𝑐𝑛𝑇𝑛(𝑥), 𝑐𝑛 = ∫ 𝑓(𝑥)𝑇𝑛(𝑥)𝜇𝑇(𝑥)d𝑥, 𝑛 ≥ 0.
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Lemma3.24. The degree-𝑘Chebyshevapproximantminimizes ‖𝑓− 𝑝‖𝜇𝑇

among all degree-𝑘 polynomials.

Proof. This is a immediate consequence of Lemmas 3.17 and 3.22. �

The Chebyshevpolynomials satisfymanyother properties. In fact, there are

entire books just about Chebyshev polynomials [MH03; Riv20]! We now list a

fewof the properties that aremost relevant to this monograph.

We beginwith amaximum growth property.

Lemma 3.25. Fix 𝑘 ≥ 0 and suppose 𝑝(𝑥) is a polynomial such that
deg(𝑝) ≤ 𝑘 and ‖𝑝‖[−1,1] ≤ 1. Then

∀𝑥 ∈ ℝ ∖ (−1, 1) ∶ |𝑇𝑘(𝑥)| ≥ |𝑝(𝑥)|.

In deriving theoretical gurantees for Lanczos in finite precision, we will

repeatedlymakeuse of the fact thatChebyshevpolynomials are relativelysmall

in the vicinity of [−1, 1].

Lemma 3.26. For all 𝑘 ≥ 0,

‖𝑇𝑘‖[−1,1] ≤ 1, ‖𝑈𝑘(𝑥)‖[−1,1] ≤ 𝑘 + 1.

Lemma 3.27. For all 𝑘 ≥ 0, with 𝜂𝑘 = 1/(2𝑘2),

‖𝑇𝑘‖[−1−𝜂𝑘,1+𝜂𝑘] ≤ 2, ‖𝑈𝑘(𝑥)‖[−1−𝜂𝑘,1+𝜂𝑘] ≤ 2(𝑘 + 1).

Proof. A full proof is contained in [CT24, Lemma 3.7]. However, we can

get the intuition forwhy this should be true relatively easily. Suppose 𝑘 is
large and approximate

((1 + 1/(2𝑘2))2 − 1)1/2 ≈ (1 + 𝑘−2 − 1)1/2 ≈ 𝑘−1

so that

(1 + 1/(2𝑘2) + ((1 + 1/(2𝑘2))2 − 1)1/2)𝑘 ≈ (1 + 𝑘−1)𝑘 ≈ e (3.18)

(1 + 1/(2𝑘2) − ((1 + 1/(2𝑘2))2 − 1)1/2)𝑘 ≈ (1 − 𝑘−1)𝑘 ≈ e−1. (3.19)

Then, by Lemma 3.21,

𝑇𝑘(1 + 1/(2𝑘2)) ≈ (e + e−1)/2 ≈ 1.543 ≤ 2. (3.20)
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A similar argument gives a similar result for 𝑈𝑘(1 + 1/(2𝑘2)). �

TL;DR

The Lanczos algorithm is essentially producing the orthogonal polynomials of

the eigenvector density function. This, and the equivalence betweenmoments,

Jacobi matrices, and Gaussian quadrature will help us understand the Lanczos

algorithm. Orthogonal polynomials, and in particular the Chebyshev polyno-

mials, havemanynice properties.
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4 Lanczos in finite precision arithmetic

The computational savings of the Lanczos algorithm come from the fact that

𝐀𝐪𝑛 is automatically orthogonal to 𝐪0, … , 𝐪𝑛−1, and hence does not need to

be orthogonalized against these vectors. In finite precision arithmetic tiny

rounding errorsmean this is no longer the case, and if this orthogonalization is

omitted, these small rounding errors can rapidly propagate.

We use an overline to denote quantities produced by the Lanczos algorithm

in finite precision arithmetic. In particular, let 𝐐𝑘 and 𝐓𝑘 be the outputs of

the Lanczos algorithm run in finite precision arithmetic. The following are

commonly observed effects of finite precision arithmetic. These effects are

illustrated in Figure 4.1.

• Loss of orthogonality: The matrix 𝐐𝑘 can be far from orthogonal, al-

though its exact arithmetic counterpart 𝐐𝑘 is orthogonal. In fact, even

linear independencemay be lost.

• Divergence of tridiagonalmatrix: The entries of the tridiagonalmatrix

𝐓𝑘produced infiniteprecisionarithmeticmaylooknothing like their exact

arithmetic counterparts from𝐓𝑘.

• Ghost Ritz values:1 Theremaybemultiple eigenvalues of 𝐓𝑘 near a single

isolated eigenvalue of 𝐀. This is not possible for 𝐓𝑘, whose eigenvalues

must interlace those of 𝐀 (see Lemmas 3.12 and 3.13).

Because the Lanzcos algorithm behaves drastically differently in finite pre-

cision arithmtic than exact arithmetic, there has been a widespread hesitance

towards Lanczos-based approaches for many problems, at least without com-

plicated/costly reorthogonalization schemes [JP94; Sil+96; Aic+03; Wei+06;

UCS17; GWG19, etc.]. Aswewill discussmore explicitly in the relevant sections,

this hesitance is oftenunfounded, andmanyLanczos-basedmethodsworkfine,

even in the presence of the phenomena described above.

The purpose of this section is to provide an overview of the rich theory

known about the Lanczos algorithm in finite precision arithmetic. We begin, in

1The eigenvalues of 𝐓𝑘 are commonly referred to as Ritz values.
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1
Figure 4.1: Instability of the Lanczos algorithm. Left: magnitude of entries of 𝐓𝑘 − 𝐓𝑘.
Right: magnitude of entries of 𝐐𝑘

⊺𝐐𝑘 − 𝐈. Takeaway: The coefficients 𝐓𝑘 produced by the
finite precision computation are far fromwhat theywould be in exact arithmetic, and
there is a complete loss of orthogonality among the Lanczos vectors 𝐐𝑘. In addition,
while the top eigenvalues of 𝐓𝑘 (and𝐀) are 1000.00, 588.17, 345.97, …., the top eigen-
values of 𝐓𝑘 are1000.00, 1000.00, 1000.00, 588.17, 588.17,…. There aremultiple ghost
eigenvalues of 𝐓𝑘 near the top eigenvalues of 𝐀.

Section 4.1, by introducing thework of Chris Paige,which provides the founda-

tion for most other analyses of the Lanczos algorithm in finite precision arith-

metic. Then, in Section 4.2, we summarize the backwards stability analysis of

Anne Greenbaum. More detailed treatments of the works of Paige and Green-

baum are readily available in textbooks and surveys [Par98; MS06; Meu06]. In

Section 4.3 we discuss in detail a forward stability result of Leonid Knizhner-

man. This result seems to have been mostly overlooked, even by the numerical

analysis community, but elegantly explainswhymanyLanczos-basedmethods

for matrix functions typicallywork fine in finite-precision arithmetic.

As with many results in numerical analysis, it is the intuition conveyed,

rather than the actual bound itself, which is most valuable. Thus, we have tried

to present the ideas of this section as clearlyas possible,without getting bogged

down in technical details. In particular, while we often rely on “≈”, all of the
analyses are significantly more fine-grained, providing explicit dependencies

on the dimension 𝑑, the number of iterations 𝑘, and themachineprecision 𝜖mach.

4.1 Paige’s theory

Paige’s work on the Lanczos algorithm is foundational; see e.g. [Pai72; Pai76;

Pai80]. Here we summarize only the aspects most relevant to methods for
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matrix functions. We refer readers to [Meu06] for a more detailed, but still

accessible, treatment.

While errors can (and do) accumulate in the Lanczos algorithm, we expect

local errors (the errors made at each iteration) to be small. In particular, the

algorithm will still nearly satisfy a three term recurrence, and each Lanczos

vectorwill be nearly orthogonal to the previous Lanczos vector and nearly unit

length:

𝐀𝐪𝑛 ≈ 𝛽𝑛−1𝐪𝑛−1 + 𝛼𝑛𝐪𝑛 + 𝛽𝑛𝐪𝑛+1, 𝐪⊺
𝑛𝐪𝑛+1 ≈ 0, ‖𝐪𝑛‖ ≈ 1. (4.1)

It will be useful towrite

𝐀𝐐𝑘 = 𝐐𝑘𝐓𝑘 + 𝛽𝑘−1𝐪𝑘𝐞
⊺
𝑘 + 𝐅𝑘, (4.2)

where the perturbation term 𝐅𝑘 accounts for local rounding errors made by the

algorithm. Paige’s analysis implies 𝐅𝑘 ≈ 𝟎. In addition, Paige’s analysis shows
that,

Λ(𝐓𝑘) ⊂ [𝜆min(𝐀) − 𝜂𝑘, 𝜆max(𝐀) + 𝜂𝑘], 𝜂𝑘 ≈ 0. (4.3)

We are unfortunately unaware of any intuition for why one might expect 𝜂𝑘 to

be small, and a simple explanationwould be of great interest to the author.

As it relates to the analyses in this monograph, the most important results

of Paige are the following.

Theorem4.1 (informal; see [Pai70; Pai72; Pai76; Pai80]). Treat the input

(𝐀, 𝐛) and hence the dimension 𝑑 as a constant. Suppose the Lanczos
algorithm is run for 𝑘 iterations on a computer with relative machine
precision 𝜖mach = 𝑂(poly(𝑘)−1). Then, the approximate equalities in (4.2)
and (4.3) hold up to additive error𝑂(poly(𝑘) 𝜖mach).

Remark 4.2. The error in the approximate equalities in (4.2) and (4.3)

can be computed directly after the Lanczos algorithm has been run (e.g.

using higher precision arithmetic).

Paige’s work extends beyond what is summarized above. In particular, it

reveals that a loss of orthogonality in 𝐐𝑘 coincides with the convergence of a

Ritz value to an eigenvalue of 𝐀. This analysismotivated a number of schemes,
such as selective reorthogonalization [PS79] and partial reorthogonalization

[Sim84] , which aim to maintain orthogonality in the Lanczos basis𝐐𝑘without

orthogonalizing against all previous Lanczosvectors (full reorthogonalization).

Suchmethods are beyond the scope of our discussion.
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4.2 Greenbaum’s theory

Greenbaum proved a backwards stability2 result for the Lanczos algorithm.

Theorem 4.3 (informal; see [Gre89]). Under the assumptions of Paige’s

analysis, suppose that Lanczos is run in finite precision arithmetic on

(𝐀, 𝐛) for 𝑘 iterations to produce 𝐓𝑘. There is a matrix 𝐀̃ and vector 𝐛̃ so
that the (exact) Lanczos algorithm run on (𝐀̃, 𝐛̃) for 𝑘 iterations produces
𝐓𝑘 and 𝜓(𝑥; 𝐀, 𝐛) ≈ 𝜓(𝑥; 𝐀̃, 𝐛̃) in the following sense:

• Let 𝜆̃ be an eigenvalue of 𝐀̃. Then there exists an eigenvalue 𝜆 of 𝐀
so that 𝜆̃ ≈ 𝜆.

• Let 𝜆𝑖 be an eigenvalue of 𝐀. Define 𝑆𝑖 = {𝑗 ∶ |𝜆̃𝑗 − 𝜆𝑖| = minℓ |𝜆̃𝑗 −
𝜆ℓ|} as the indices the eigenvalues of 𝐀̃ nearer to 𝜆𝑖 than any other

eigenvalue of 𝐀. Then∑𝑗∈𝑆𝑖
|𝐛̃⊺𝐮̃𝑗|2 ≈ |𝐛⊺𝐮𝑖|2.

Note that here the “nearby problem” (𝐀̃, 𝐛̃) is of a different dimension than
(𝐀, 𝐛). Thus, the nearness of (𝐀̃, 𝐛̃) to (𝐀, 𝐛) must be interpreted in terms of
the eigenvector densities 𝜓(𝑥; 𝐀̃, 𝐛̃) and 𝜓(𝑥; 𝐀, 𝐛). In particular, Theorem 4.3

asserts that the support of 𝜓(𝑥; 𝐀̃, 𝐛̃) is contained in tiny intervals about the
support of 𝜓(𝑥; 𝐀, 𝐛), and that the mass of 𝜓(𝑥; 𝐀, 𝐛) on each eigenvalue of 𝐀 is

approximated by themass of 𝜓(𝑥; 𝐀̃, 𝐛̃) on the corresponding eigenvalues of 𝐀̃.
An example of the what 𝜓(𝑥; 𝐀̃, 𝐛̃) could look like in relation to 𝜓(𝑥; 𝐀, 𝐛)

is illustrated in Figure 4.2. Note the presence of clusters of eigenvalues of 𝐀̃
around thoseof 𝐀, and that the totalmassof theeigenvalue clusterof 𝐀̃matches

closely that of the corresponding eigenvalue of 𝐀. The presence of clusters of
eigenvalues of 𝐀̃ explains the Ghost Ritz values of 𝐓𝑘.

A smoothed analysis? Greenbaum’s theory guarantees the existence of a

nearby problem (𝐀̃, 𝐛̃) for which the tridiagonal matrix output by (exact

arithmetic) Lanczos on (𝐀̃, 𝐛̃) exactly matches the output 𝐓𝑘 of finite precision

arithmetic on the original problem (𝐀, 𝐛). One could construct a problem (𝐀̂, 𝐛̂)
qualatatively similar to (𝐀̃, 𝐛̃); i.e with the eigenvalues of 𝐀̂ clustered around

those of 𝐀 and such that the mass on each eigenvalue of 𝐀 is approximated by

themass on the corresponding eigenvalues of 𝐀̂.3 Interestingly, the tridiagonal
matrix output byLanczos on (𝐀̂, 𝐛̂) is often qualatativelyvery similar to𝐓𝑘. This

was explored in [GS92b]; see also [CLS24].

2In numerical analysis, an algorithm is backwards stable if, for anygiven input, the finite precision output is
exactly equal towhat the algorithmwould produce (in exact arithmetic) on some slightly perturbed input.

3This can be thought of as convolving𝜓(𝑥; 𝐀, 𝐛)with some kernelwith support contained in a tiny interval
about zero.
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Figure 4.2: Illustration of the backward stability guarantee of Greenbaum. 𝜓(𝑥; 𝐀, 𝐛)
( ), and 𝜓(𝑥; 𝐀̃, 𝐛̃) ( ), where Lanczos run on (𝐀̃, 𝐛̃) produces 𝐓𝑘, the exact
quantity output byLanczos run on (𝐀, 𝐛) in finite precision arithmetic. Takeaway: 𝐀̃ has
more eigenvalues than 𝐀, but these eigenvalues are closely clustered about those of 𝐀.
The backwards stability result of Greenbaummust be interpreted in terms of 𝜓(𝑥; 𝐀̃, 𝐛̃)
and 𝜓(𝑥; 𝐀, 𝐛).
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Figure 4.3: Diagonal (top) and off-diagonal (bottom) Lanczos coefficientswith ( )

and without ( ) reorthgonalization, and on simulated a problem (𝐀̂, 𝐛̂) with re-
orthgonalization ( ). Takeaway: Qualitative properties of 𝐓𝑘 can be realized in
exact arithmetic by constructing a problem with eigenvalues clustered about those of
the original problem.
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We illustrate this phenomenon in Figure 4.3, where we show the entries

of the tridiagonal matrices generated by Lanczos on (𝐀, 𝐛) in exact and finite
precision arithmetic, as well as those generated by Lanczos on (𝐀̂, 𝐛̂) in exact
arithmetic. Here 𝐀̂ is obtained by replacing each eigenvalue of 𝐀with 10 eigen-

value equally spaced throughout an interval of width 1.2 × 10−13 centered at the

original eigenvalue.

4.3 Knizhnerman’s theory

Knizhnerman’s work [Kni96], which unfortunately seems to have been mostly

overlooked in the literature, asserts that the Chebyshevmoments of the output

of the Lanczos algorithm in finite precision arithmetic are close to the true

Chebyshevmoments. This remarkable fact is illustrated in Figure 4.4.

Theorem4.4 (informal; see [Kni96]). Suppose ‖𝐀‖ = ‖𝐛‖ = 1 and that Lanczos
algorithm is run for 𝑘 iterations on a computerwith relative machine precision
𝜖mach = 𝑂(poly(𝑘)−1). Let 𝜓(𝑥) = 𝜓(𝑥; 𝐀, 𝐛) and 𝜓𝑘(𝑥) = 𝜓(𝑥; 𝐓𝑘, 𝐞0) be the
Gaussian quadrature produced by Lanczos in finite precision arithmetic. Then,

for all 𝑛 ≤ 2𝑘 − 1,

∣ ∫ 𝑇𝑛(𝑥)𝜓(𝑥)d𝑥 − ∫ 𝑇𝑛(𝑥)𝜓𝑘(𝑥)d𝑥∣ = 𝑂(poly(𝑘) 𝜖mach).
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Figure 4.4: Error of the Chebyshevmoments of 𝜓𝑘(𝑥) and 𝜓𝑘(𝑥) for the same example
as Figure 4.1. Takeaway: The Chebyshev moments of 𝜓𝑘(𝑥) and 𝜓𝑘(𝑥) differ only on the
order of themachine precision, even though the recurrence coefficients𝐓𝑘 and𝐓𝑘 differ
greatly. In this sense, the Lanczos algorithm is forward stable!
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Remark 4.5. Despite many claims that Chebyshev-based methods are

“more stable” than Lanczos-basedmethods, the precise version of Theo-

rem 4.4 bounds is almost identical towhat can be obtained for a method

based directly on the Chebyshev recurrence (3.15).

In lightof the fundamental equivalencebetweenthemomentsof 𝜓(𝑥; 𝐀, 𝐛)(𝑥)
and the tridiagonal matrix 𝐓𝑘 output by the Lanczos algorithm, which we

described inSection 3.2.1, Theorem4.4 is a forward stability result for theLanczos

algorithm. As such, one might view the fact that 𝐓𝑘 is far from 𝐓𝑘 as a result

of poor conditioning of the map from moments to tridiagonal matrix (see

Remark 3.9), rather than an instability of the Lanczos algorithm.

TL;DR

The Lanczos algorithm behaves very differently in finite precision arithmetic

than in exact arithmetic. However, much is known about how the algorithm

behaves. In particular, the results of Greenbaum and Knizhnerman, based

on the work of Paige, show that, in a certain sense, the Lanczos algorithm is

actually forward/backward stable.
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5 Linear Systems and least squares problems

One of the most important tasks in all of the computational sciences is solving

the linear system of equations

𝐀𝐱 = 𝐛; (5.1)

i.e. approximating 𝐀−1𝐛. Solving linear systems is also one of the main uses
of KSMs, and there are many textbooks covering this topic. Our presentation

differs from most textbooks in that we do not even write down the typical

iteration for the conjugate gradient or MINRES algorithms. Instead, we define

the algorithms using the quantities generated by the Lanczos algorithm, and

focus primarily on developing key ideas which will be important in Chapter 6

when discussingmore general matrix functions.

5.1 Positive definite systems: conjugate gradient

Throughout this subsection, we assume that 𝐀 is positive definite; that is, that

every eigenvalue of 𝐀 is strictlypositive. In this case,we can define the𝐀-norm
‖ ⋅ ‖𝐀 by ‖𝐱‖𝐀 = (𝐱⊺𝐀𝐱)1/2 = ‖𝐀1/2𝐱‖.

Definition 5.1. The 𝑘-th conjugate gradient iterate 𝐱CG𝑘 is given by

𝐱CG𝑘 = 𝐱CG𝑘 (𝐀, 𝐛) ∶= ‖𝐛‖𝐐𝑘𝐓𝑘
−1𝐞1.

This definition of the CG iterate differs from the more typical implemen-

tation [HS52]. We explain the connection between Definition 5.1 and the more

standard implementation in Section 5.1.3. However, to see that the quantitywe

call CG is indeed equivalent to themore standard definition, it suffices to verify

thewell-known𝐀-norm optimality guarantee.

Theorem5.2. If 𝐀 ispositivedefinite, theCGiterate satisfies the formula

𝐱CG𝑘 = argmin
𝐱∈𝒦𝑘(𝐀,𝐛)

‖𝐀−1𝐛 − 𝐱‖𝐀.
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Proof. Since 𝐐𝑘 is a basis for 𝒦𝑘(𝐀, 𝐛), any vector 𝐱 ∈ 𝒦𝑘(𝐀, 𝐛) can be
written as 𝐱 = 𝐐𝑘𝐜 for some 𝐜 ∈ ℝ𝑘. Using this and the definition of the

𝐀-normwe have

argmin
𝐱∈𝒦𝑘(𝐀,𝐛)

‖𝐀−1𝐛 − 𝐱‖𝐀 = 𝐐𝑘 argmin
𝐜∈ℝ𝑘

‖𝐀−1/2𝐛 − 𝐀1/2𝐐𝑘𝐜‖. (5.2)

The solution to this least squares problem is

𝐐𝑘(𝐐⊺
𝑘𝐀1/2𝐀1/2𝐐𝑘)−1𝐐⊺

𝑘𝐀1/2𝐀−1/2𝐛 = ‖𝐛‖𝐐𝑘𝐓𝑘
−1𝐞1 = 𝐱CG𝑘 . (5.3)

Herewe have used that𝐐⊺
𝑘𝐀𝐐𝑘 = 𝐓𝑘 and that𝐐⊺

𝑘𝐛 = ‖𝐛‖𝐞1. �

5.1.1 Error bounds and estimates We now review several standard error

bounds and estimates. The main goal is to highlight the type results which are

known for approximating𝐀−1𝐛 in order to serve as reference for our discussion
on algorithms for 𝑓(𝐀)𝐛 in Chapter 6. Recall that Λ is the spectrum of 𝐀 and

ℐ = [𝜆min, 𝜆max] is the smallest interval containing Λ.

A priori error bounds The optimality of the CG iterate allows the derivation of

a priori error bounds in terms of spectral quantities of 𝐀 such as the location of

eigenvalues and condition number.

Corollary 5.3. The CG iterate satisfies the error bound

‖𝐀−1𝐛 − 𝐱CG𝑘 ‖𝐀
‖𝐀−1𝐛 − 𝐱CG0 ‖𝐀

≤ min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝‖Λ.

Proof. Observe that

min
𝐱∈𝒦𝑘(𝐀,𝐛)

‖𝐀−1𝐛 − 𝐱‖𝐀 = min
deg(𝑝)<𝑘

‖𝐀−1𝐛 − 𝑝(𝐀)𝐛‖𝐀 (5.4)

= min
deg(𝑝)<𝑘

‖(𝐈 − 𝑝(𝐀)𝐀)𝐀−1𝐛‖𝐀 (5.5)

= min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝(𝐀)𝐀−1𝐛‖𝐀. (5.6)

Now, since 𝐀1/2𝑝(𝐀) = 𝑝(𝐀)𝐀1/2, using the definition of the operator

norm,

‖𝑝(𝐀)𝐀−1𝐛‖𝐀 = ‖𝑝(𝐀)𝐀1/2𝐀−1𝐛‖ ≤ ‖𝑝(𝐀)‖‖𝐀1/2𝐀−1𝐛‖. (5.7)
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Finally, since ‖𝑝(𝐀)‖2 = ‖𝑝‖Λ and ‖𝐀1/2𝐀−1𝐛‖ = ‖𝐀−1𝐛‖𝐀, combing these

expressions and rearranging gives the desired result. �

Corollary 5.4. The CG iterate satisfies the error bound

‖𝐀−1𝐛 − 𝐱CG𝑘 ‖𝐀
‖𝐀−1𝐛 − 𝐱CG0 ‖𝐀

≤ 2 exp ⎛⎜
⎝

−2𝑘
√𝜆max/𝜆min

⎞⎟
⎠

.

Proof. Since Λ ⊂ ℐ, ‖𝑝‖Λ ≤ ‖𝑝‖ℐ and hence

min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝‖Λ ≤ min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝‖ℐ. (5.8)

Observe that

𝑝(𝑥) ∶= 𝑇𝑘(
2𝑥 − 𝜆max − 𝜆min

𝜆max − 𝜆min
)/𝑇𝑘(

−𝜆max − 𝜆min
𝜆max − 𝜆min

) (5.9)

is the Chebyshev polynomial 𝑇𝑘(𝑥) shifted and scaled from [−1, 1] to ℐ
and normalized to take value 1 at the origin. The max-growth property

Lemma 3.25 of the Chebyshevpolynomials implies this is theminimizer

to the right hand side of (5.8). From the explicit formula for Chebyshev

polynomials Lemma 3.21, one then obtains thewell-known bound

min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝‖ℐ = 2 ⎛⎜
⎝

(√𝜅 + 1
√𝜅 − 1

)
𝑘

+ (√𝜅 − 1
√𝜅 + 1

)
𝑘
⎞⎟
⎠

−1

≤ 2 (√𝜅 − 1
√𝜅 + 1

)
𝑘
, (5.10)

where 𝜅 = 𝜆max/𝜆min. While (5.10) is the standard bound in thenumerical

analysis literature, we find the stated bound,which follows immediately

from basic properties of the exponential, easier to parse. �

Remark5.5. Corollary 5.4 asserts that a small conditionnumber implies

fast convergence. However, this is simply an upper bound; CG might

converge very quickly on some ill-conditioned problems depending on

how the eigenvalues are arranged. Thus, it is incorrect to claim that a

smaller condition numbermeans faster convergence of CG.

As an explicit example, the following bound shows that there are very ill-

conditioned systems onwhich it is possible for CG to converge very rapidly.
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Corollary 5.6. For any ℓ < 𝑘 the CG iterate satisfies the bound

‖𝐀−1𝐛 − 𝐱CG𝑘 ‖𝐀
‖𝐀−1𝐛 − 𝐱CG0 ‖𝐀

≤ 2 exp ⎛⎜⎜⎜
⎝

−2(𝑘 − ℓ)

√𝜆ℓ+1/𝜆min

⎞⎟⎟⎟
⎠

.

Proof. Wewill describe the ℓ = 1 case. Consider the polynomial

𝑝(𝑥) ∶= (1 − 𝑥
𝜆max

)𝑇𝑘−1(2𝑥 − 𝜆2 − 𝜆min
𝜆2 − 𝜆min

)/𝑇𝑘−1(−𝜆2 − 𝜆min
𝜆2 − 𝜆min

). (5.11)

This polynomial aims to be small on the interval [𝜆min, 𝜆2]∪{𝜆max} rather
than on all of ℐ. This is done by constructing a shifted and scaled Cheby-
shev polynomial on [𝜆min, 𝜆2] of one degree lower, and then adding a root
at 𝜆max. Since |1 − 𝑥/𝜆max| < 1 on [𝜆min, 𝜆2], we can bound |𝑝(𝑥)| on this
interval using the same technique as we used to bound (5.9), and since

𝑝(𝑥) has a root at 𝜆max it does not matter that the Chebyshev polynomial
might be larger there. The same approach can be used for larger ℓ. �

Comparing this bound to Corollary 5.4, we observe it is weaker in that the

numerator depends on 𝑘 − ℓ rather than 𝑘, but it is stronger in that the denom-
inator depends on the “condition number” of all but the top-ℓ eigenvalues. If
𝜆max ≫ 𝜆ℓ+1 then the better conditionnumber in thedenominator canmake this

boundmuch stronger thanCorollary 5.4. This bound alsomakes it clear that the

convergence of CG does not depend only on the condition number 𝜆max/𝜆min,
but the overall arrangement of the eigenvalues of 𝐀.

Aposteriori error estimates Apriori bounds suchasCorrolaries 5.3, 5.4 and5.6

provide insight into howthe convergence of CG is impacted byproblemparam-

eters such as the condition number or distribution of eigenvalues. However,

such problem parameters are typically unknown, and so these bounds cannot

be instantiated in practice. As such, other methods for estimating or bounding

the error a posteriori are needed. We summarize a few simple approaches,

and turn readers to the book [MT24] for more details and other more advanced

approaches.

The simplest approach,which can be used for anymethod, is to compute the

residual norm ‖𝐛 − 𝐀𝐱𝑘‖. Note that

‖𝐛 − 𝐀𝐱𝑘‖ = ‖𝐀(𝐀−1𝐛 − 𝐱𝑘)‖ = ‖𝐀−1𝐛 − 𝐱𝑘‖𝐀2. (5.12)

That is, the 2-normof the residual is the𝐀2-normof the error. This in turn gives
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Figure 5.1: CG error ‖𝐀−1𝐛 − 𝐱CG𝑘 ‖𝐀/‖𝐀−1𝐛 − 𝐱CG0 ‖𝐀 with ( ) and without ( )
reorthgonalization, bound Corollary 5.3 on Λ ( ), and bound Corollary 5.4 on ℐ
( ). Takeaway: The bound Corollary 5.3 typically accurately predicts the behavior
of CG. The bound Corollary 5.4 can be very pessimistic, even when CG is run in finite
precision arithmetic.

upper and lower bound for the𝐀-norm,

√1/𝜆max‖𝐀−1𝐛 − 𝐱𝑘‖𝐀2 ≤ ‖𝐀−1𝐛 − 𝐱𝑘‖𝐀 ≤ √𝜆min‖𝐀−1𝐛 − 𝐱𝑘‖𝐀2. (5.13)

A more sophisticated approach is to use the 𝐀-norm optimality of the iter-

ates. This optimality implies that for any 𝑑 ≥ 0, 𝐀−1𝐛 − 𝐱𝑘+𝑑 and 𝐱𝑘+𝑑 − 𝐱𝑘 are

𝐀-orthogonal and hence

‖𝐀−1𝐛 − 𝐱𝑘‖2
𝐀 = ‖𝐀−1𝐛 − 𝐱𝑘+𝑑‖2

𝐀 + ‖𝐱𝑘+𝑑 − 𝐱𝑘‖2
𝐀. (5.14)

If ‖𝐀−1𝐛 − 𝐱𝑘+𝑑‖𝐀 ≪ ‖𝐀−1𝐛 − 𝐱𝑘‖𝐀 then

‖𝐀−1𝐛 − 𝐱𝑘‖𝐀 ≈ ‖𝐱𝑘+𝑑 − 𝐱𝑘‖2
𝐀. (5.15)

Since the 𝐀-norm convergence of CG is monotonic, one might hope that this

approximation is good even for small 𝑑. Note also that since (5.14) is an equality,
‖𝐱𝑘+𝑑 − 𝐱𝑘‖𝐀 is in fact a lower-bound for the true error ‖𝐀−1𝐛 − 𝐱𝑘‖𝐀.

5.1.2 Finite precision arithmetic The the main effects of finite precision

arithmetic on CG are a delay of convergence and loss of maximal accuracy;

see for instance [Meu06]. Both are described below and illustrated Figure 5.1.

• Delay of convergence: The error norms of the iterates in finite precision

decreases more slowly than in exact arithmetic.
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• Lost of maximal accuracy: The error norms eventually stops decreasing

and plateau at some level of maximal accuracy.

Suppose theCG iterateDefinition5.1 is computedexactly fromthequantities

𝐐𝑘 and 𝐓𝑘 produced by the Lanczos algorithm in finite precision arithmetic.

Greenbaum’s theory (Section 4.2) implies that one can obtain a bound similar to

Corollary 5.3 where Λ is replacedwith a union of small intervals each centered
at an eigenvalue of 𝐀. This in turn implies a bound similar to Corollary 5.4
still holds. In fact, this is also implied by the analysis in [DK91], and we will

prove a more general version of this claim in Section 6.2. Note that, even in

finite precision arithmetic, Corollary 5.4 is often pessimistic; see for instance

Figure 5.1.

The exact behavior of CG depends on the implementation. Similar qual-

itative effects are observed for standard implementations of CG. However, if

one uses a different implementation, the theoretical guarantees for the Lanczos

algorithm in finite precision arithmetic described in Chapter 4 cannot be direct

applied.

5.1.3 Low-memory implementation Although we have shown the 𝐀-norm
optimalityof theCG iterate fromDefinition 5.1,we aremissing any intuition for

why this formulation is equivalent to the standard conjugate gradient method

[HS52]. Perhaps the most notable difference is that Definition 5.1 involves the

entire Lanczos basis 𝐐𝑘, while a standard CG implementation requires storing

only several vectors of length 𝑑. In this section, we provide a brief argument
showing the CG iterate can be computed without ever storing the 𝑑 × 𝑘 matrix
𝐐𝑘. Amore detailed version of the argument, alongwith a full derivation of the

standard CG algorithm can be found in [LS13, §2.5.1].

Note that since 𝐀 is positive definite so is 𝐓𝑘, and hence it has a Cholesky

factorization𝐓𝑘 = 𝐋𝑘𝐋⊺
𝑘 where 𝐋𝑘 is some lower-triangular matrix. Define

𝐏𝑘 ∶=
⎡⎢⎢
⎣

| | |
𝐩0 𝐩1 ⋯ 𝐩𝑘−1
| | |

⎤⎥⎥
⎦

∶= 𝐐𝑘𝐋−⊺
𝑘 . (5.16)

Observe that the vectors 𝐩0, … , 𝐩𝑘−1 are𝐀-orthogonal since

𝐏⊺
𝑘𝐀𝐏𝑘 = 𝐋−1

𝑘 𝐐⊺
𝑘𝐀𝐐𝑘𝐋−⊺

𝑘 = 𝐋−1
𝑘 𝐓𝑘𝐋−⊺

𝑘 = 𝐈. (5.17)

Moreover, since 𝐋−⊺
𝑘 is upper triangular, we see that

span{𝐩0, … , 𝐩𝑛} = span{𝐪0, … , 𝐪𝑛} = 𝒦𝑛+1(𝐀, 𝐛). (5.18)

Therefore, the 𝐀-norm optimality of CG implies that 𝐱CG𝑘 is obtained by pro-

jecting, in the𝐀-inner product,𝐀−1𝐛 onto the 𝐩0, … , 𝐩𝑘−1. The iterate therefore
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satisfies

𝐱CG𝑘 =
𝑘−1

∑
𝑛=0

(𝐩⊺
𝑛𝐀𝐀−1𝐛)𝐩𝑛 =

𝑘−1

∑
𝑛=0

(𝐩⊺
𝑛𝐛)𝐩𝑛 = 𝐱CG𝑘−1 + (𝐩⊺

𝑘−1𝐛)𝐩𝑘−1. (5.19)

In particular,we observe thatwe can update the iterate 𝐱CG𝑘−1 to obtain the iterate

𝐱CG𝑘 , so long aswe have𝐩𝑘−1. Wewill nowargue thatwe can obtain𝐩𝑘−1 from the

Lanczos vectors 𝐪𝑘−1 and 𝐪𝑘−2. In particular, this meanswe do not need to store

any of the previous Lanczos vectors.

The inverse Cholesky factor has the form

𝐋−1
𝑘 = 𝐋(𝑘−1) ⋯ 𝐋(2)𝐋(1), (5.20)

where 𝐋(𝑛) is chosen so as to a introduce a one on the diagonal by rescaling the

𝑛-th row and to introduce zeros below the diagonal of the 𝑛-th column of

𝐋(𝑛−1) ⋯ 𝐋(2)𝐋(1)𝐓𝑘 (5.21)

by subtracting somemultiple of the 𝑛-th row. Since 𝐓𝑘 is tridiagonal so is (5.21)

and and 𝐋(𝑛) has the form

𝐋(𝑚) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

× 0
× 1

𝐈𝑚−1

𝐈𝑚−𝑘−2

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (5.22)

where we use “×” to indicate nonzero entries of 𝐋(𝑚). This implies that 𝐋−1
𝑘 is in

fact bidiagonal, and hence 𝐋−⊺
𝑘 is also bidiagonal. As such, we can compute 𝐩𝑘−1

from only𝐓𝑘 and 𝐪𝑘−2 and 𝐪𝑘−1 as desired.

There are a number of additional cost savings which can be made. For

instance, the Cholesky factorization of 𝐓𝑘+1 is easily obtained from that of 𝐓𝑘
and the new coefficients generated by the Lanczos algorithm. Moreover, the

only part of the factorization that actually needs saved in order to proceed to

the next step is the bottom right corner. Wewill not explain further.

5.2 Indefinite systems: MINRES

We now consider the case that the coefficient matrix 𝐀 is possibly indefinite.

When 𝐀 is indefinite 𝐓𝑘 can have an eigenvalue at zero, in which case the CG

iterate Definition 5.1 undefined. Instead, it is common to use the minimum

residual method (MINRES) [PS75]. In this section we derive some basic facts
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about MINRES and its relation to CG. We do not comment in detail on practi-

cal aspects such as efficient implementation or convergence in finite precision

arithmetic, both of which are similar in spirit to CG and can be found in other

texts.

Definition 5.7. The 𝑘-thMINRES iterate 𝐱M𝑘 is given by

𝐱M𝑘 = 𝐱M𝑘 (𝐀, 𝐛) ∶= ‖𝐛‖𝐐𝑘(𝐓𝑘+1,𝑘)†𝐞1.

MINRES, as its name suggests, satisfies an residual optimality condition.

Theorem 5.8. If 𝐀 is positive definite, the MINRES iterate satisfies the

formula

𝐱M𝑘 = argmin
𝐱∈𝒦𝑘(𝐀,𝐛)

‖𝐛 − 𝐀𝐱‖.

Proof. Similar to the CG case,

argmin
𝐱∈𝒦𝑘(𝐀,𝐛)

‖𝐛 − 𝐀𝐱‖ = 𝐐𝑘 argmin
𝐜∈ℝ𝑘

‖𝐛 − 𝐀𝐐𝑘𝐜‖ = 𝐐𝑘 argmin
𝐜∈ℝ𝑘

‖𝐛 − 𝐐𝑘+1𝐓𝑘+1,𝑘𝐜‖.

(5.23)

The solution to this least squares problem is

𝐐𝑘((𝐓𝑘+1,𝑘𝐐𝑘+1)⊺𝐐𝑘+1𝐓𝑘+1,𝑘)−1(𝐓𝑘+1,𝑘𝐐𝑘+1)⊺𝐛
= ‖𝐛‖𝐐𝑘((𝐓𝑘+1,𝑘)⊺𝐓𝑘+1,𝑘)−1(𝐓𝑘+1,𝑘)⊺𝐞1. (5.24)

Since ((𝐓𝑘+1,𝑘)⊺𝐓𝑘+1,𝑘)−1𝐓𝑘+1,𝑘
⊺ = (𝐓𝑘+1,𝑘)†, we have the result. �

We remark that, so long as 𝐀 is invertible, the 2-norm of the residual is the

same as the𝐀2-norm of the error:

‖𝐛 − 𝐀𝐱‖ = ‖𝐀(𝐀−1𝐛 − 𝐱)‖ = ‖𝐀−1𝐛 − 𝐱‖𝐀2. (5.25)

So,whileMINRES is typicallystated in termsof a residual optimalitycondition,

it also satisfies an equivalent error optimality condition, albeit in the𝐀2-norm.

5.2.1 Error bounds The optimality of MINRES implies a bound on the spec-

trum of 𝐀 analogous to Corollary 5.3.

Corollary 5.9. TheMINRES iterate satisfies the error bounds

‖𝐛 − 𝐀𝐱M𝑘 ‖
‖𝐛 − 𝐀𝐱M0 ‖

≤ min
deg(𝑝)≤𝑘
𝑝(0)=1

‖𝑝‖Λ.
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Corollary 5.9 allows us to obtain bounds for MINRES in terms of properties

of polynomials. On positive definite system, MINRES satisfies bounds similar

to Corrolaries 5.4 and 5.6. However,MINRES also satisfies bounds on indefinite

systems. For instance, in [Gre97, §3.1] the following bounds are derived.

Corollary5.10. SupposeΛ ⊂ [𝑎, 𝑏]∪[𝑐, 𝑑]where𝑏 < 0 < 𝑐and𝑏−𝑎 = 𝑑−𝑐.
TheMINRES iterate satisfies the error bounds

‖𝐛 − 𝐀𝐱M𝑘 ‖
‖𝐛 − 𝐀𝐱M0 ‖

≤ 2 exp ⎛⎜
⎝

−2⌊𝑘/2⌋
√|𝑎𝑑|/|𝑏𝑐|

⎞⎟
⎠

≤ 2 exp ( −2⌊𝑘/2⌋
𝜆max/𝜆min

) .

If the intervals are not situated symmetrically about zero, then the first

bound can be significantly better than the second. When 𝑏 − 𝑎 ≠ 𝑑 − 𝑐 it is
possible to obtain asymptotic rates for the best polynomial approximation in

terms of Jacobi elliptic functions; see [Fis11, §3.3 and §3.4]. One can also derive

a version of Corollary 5.10 analogous to Corollary 5.6.

5.2.2 Relations betweenMINRES and CG From their formulas, it is clear the

MINRES and CG iterates must be related, so one it is natural to ask whether

the CGproduces reasonable approximations to on indefinite systems. Unfortu-

natelythis isnotgenerallypossible since𝐓𝑘 canhaveeigenvaluesatornearzero,

in which case the CG iterate has infinite or large error. Even so, at iterations

where the CG iterate is defined, onemaywonderwhether the error is similar to

MINRES.

Define the residual vectors

𝐫M
𝑘 ∶= 𝐛 − 𝐀𝐱M𝑘 , 𝐫CG

𝑘 ∶= 𝐛 − 𝐀𝐱CG𝑘 . (5.26)

In Figure 5.2 we plot the residual norm convergence of CG and MINRES on an

indefinite problem. While CG appears to have erratic convergence, its overall

convergence seems to track that of MINRES.

Rearranging [MD20, Theorem 3.12], which is derived from a factorization

of upper-Hessenbergmatrices, theMINRES and CG residual norms satisfy the

following relationship.

Theorem 5.11. TheMINRES residual norms are related to the CG resid-

ual norms in that

‖𝐫M
𝑘 ‖ = 1

√∑𝑘
𝑛=0 1/‖𝐫CG𝑛 ‖2

.

Theorem5.11 implieswhat is perhaps themostwell-known relation between

the CG and MINRES residual norms. The following can also be derived more
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directly [Bro91; CG96].

Theorem 5.12. The CG residual norms are related to theMINRES resid-

ual norms in that

‖𝐫CG
𝑘 ‖ = ‖𝐫M

𝑘 ‖
√1 − ‖𝐫M

𝑘 ‖2/‖𝐫M
𝑘−1‖2

.

Both Theorems 5.11 and 5.12 imply the well-known plateau-peak phe-

nomenon: on iterations where MINRESmakes good progress ‖𝐫M
𝑘 ‖2 ≪ ‖𝐫M

𝑘−1‖2,

the CG residual is similar to the MINRES residual, but on iterations where

MINRES stagnates, the CG residual spikes. However, as stated, neither bound

makes it clear whether it is necessary that CG encounter small residuals as 𝑘
increases.

In [CM24], Theorem5.11 is used to showthat the overall convergence of CGon

indefinite problems is similar to that of MINRES in that the smallest CG resid-

ual norm seen so far is never much bigger than the current MINRES residual

norm.

Theorem 5.13. The overall residual norm convergence of CG is related

to theMINRES residual norm in that

min
0≤𝑛≤𝑘

‖𝐫CG
𝑛 ‖ ≤ √𝑘 + 1 ‖𝐫M

𝑘 ‖.

Proof. Bounding each term in the sum in Theorem 5.11 by the maximum

we obtain

‖𝐫M
𝑘 ‖2 ≥ 1

√(𝑘 + 1) max0≤𝑗≤𝑘 1/‖𝐫F
𝑗 ‖2

2

= 1
√𝑘 + 1

min
0≤𝑗≤𝑘

‖𝐫CG
𝑗 ‖2, (5.27)

Rearranging gives the desired result. �

It is also proved that this bound is sharp; i.e. that there exist problems (𝐀, 𝐛)
forwhich the inequality is an equality.

5.3 Preconditioning

We conclude this section with a brief discussion on preconditioning, which

in many ways has enabled the widespread use of KSMs for linear systems by

transforming difficult problems to easier ones. While there are some “black-

box” preconditioners, it is often the case that preconditioners are designed to
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Figure 5.2: Convergence of CG ( ) and MINRES ( ) on an indefinite linear
system. Observe the spikes of CG correspond to stagnation of MINRES, as described
in Theorem 5.12. Moreover, despite intermittent spikes, the overall convergence of CG
matches closely that of MINRES, as described in Theorem 5.13. Takeaway: While CG’s
convergence on indefinite systemsmayseem erratic, it is actuallyvery closely related to
the convergence of the optimalMINRES algorithm.

work for systems arising from particular application areas [Saa03; Che05]. We

do not discuss any specifics.

If 𝐌 is invertible, then 𝐀−1𝐛 = 𝐌⊺(𝐌𝐀𝐌⊺)−1𝐌𝐛. Thus, we can obtain the
solution to𝐀𝐱 = 𝐛 from the system of equations

𝐌𝐀𝐌⊺𝐲 = 𝐌𝐛, 𝐱 = 𝐌⊺𝐲. (5.28)

Here𝐌 is called a preconditioner, and (5.28) is referred to as the preconditioned

system.

Note that𝐌𝐀𝐌⊺ is symmetric, and if 𝐀 is positivedefinite, thenso is𝐌𝐀𝐌⊺.

If 𝐌𝐀𝐌⊺ has better properties than𝐀, the the convergence of KSMs like CG or
MINRES required to reach a given accuracy may be reduced. For instance, the

best possible preconditioner would be 𝐌 = 𝐀−1/2 in which case the precondi-

tioned systemis solved ina single iterationbyan iterativemethod likeCG, and if

𝐌𝐀𝐌⊺hasasmall conditionnumber, the fast convergenceof CGisguaranteed.1

Of course, running an iterativemethod on the preconditioned system (5.28)

ismore expensive that on theoriginal system. First, thepreconditionedmust be

constructed, and second, the cost of an iteration is nowincreased. In particular,

we must performmatrix-vector products with𝐌𝐀𝐌⊺ (which is typically done

byfirst multiplying the vectorwith𝐌⊺, thenwith𝐀, and finallywith𝐌). Thus,

1This does notmean that if the conditionnumber of 𝐌𝐀𝐌⊺ is smaller than that of 𝐀 convergence is faster.
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𝐌must be chosen so as to be efficient to build and apply, while simultaneously

improving the convergence properties of iterativemethods.

TL;DR

The convergence of Lanczos-based methods like CG and MINRES for linear

systems depends onfine-grained spectral properties of 𝐀. Bounds based on the
condition number are typicallypessimistic, even in finite precision arithmetic.
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6 Matrix functions times vectors

In this section we discuss methods for approximating the action of a matrix

function on a vector,

𝑓(𝐀)𝐛. (6.1)

In the special case 𝑓(𝑥) = 1/𝑥, this corresponds to solving a linear system𝐀𝐱 =
𝐛 which we discussed in Chapter 5. Beyond the multitude of applications of
linear systems, matrix functions applied to vectors are used for computing the

overlap operator in quantum chromodynamics [Esh+02], solving differential

equations in applied math [Saa92; HL97], Gaussian process sampling in statis-

tics [Ple+20], principle component projection and regression in data science

[JS19], and a range of other applications [Hig08].

6.1 The Lanczos method for matrix function approximation

Perhaps the most successful general purpose KSM for approximating the ac-

tion of symmetric matrix functions is the Lanczos method for matrix function

approximation (Lanczos-FA). Early uses of Lanczos-FAwere focused primarily

on computing matrix exponentials applied to a vector; i.e. 𝑓(𝑥) = exp(𝛽𝑥),
and a number of papers studying the algorithm and its convergence properties

werepublishedaround the same time [NW83; PL86; Vor87;DK88;DK89;GS92a;

Saa92]. These early works were quickly followed by a several papers demon-

strating the effectiveness of Lanczos-FA in finite precision arithmetic [DK91;

DK95; DGK98], a topicwe discuss further in Section 6.2.

Definition 6.1. The 𝑘-th Lanczos-FA approximation to 𝑓(𝐀)𝐛 is

lan-FA𝑘(𝑓) = lan-FA𝑘(𝑓; 𝐀, 𝐛) ∶= ‖𝐛‖𝐐𝑘𝑓(𝐓𝑘)𝐞1.

Understanding why this simple algorithm works so well in practice is an

ongoing topic of research [DK91; Dru08; DGK98; OSV12; MMS18; Che+22;

Ams+23]. In the next several sections wewill aim to provide some insight into

the remarkable behavior of Lanczos-FA in exact andfinite precision arithmetic.
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6.1.1 Exactness of Lanczos-FA It is well-known that the Lanczos-FA iterate

is exact for low-degree polynomials.

Theorem 6.2. Suppose deg(𝑝) < 𝑘. Then,

lan-FA𝑘(𝑝) = 𝑝(𝐀)𝐛.

Theorem 6.2 is an immediate consequence of Lemma 3.19 on polynomial

interpolation and Theorem 3.1 relating Lanczos to orthogonal polynomials.

It is also an immediate consequence of Theorem 6.5 which, as we discuss in

Section 6.2, provides insight into the finite precision behavior of the algorithm.

We provide a third proof here.

Proof. By linearity, it suffices toverify that lan-FA𝑘(𝑥𝑛) = 𝐀𝑛𝐛 for all 𝑛 < 𝑘.
Observe that𝐐𝑘𝐐⊺

𝑘 is the orthogonal projector onto𝒦𝑘(𝐀, 𝐛). Hence, since
𝐛, 𝐀𝐛, … , 𝐀𝑛𝐛 ∈ 𝒦𝑘(𝐀, 𝐛),

𝐀𝑛𝐛 = 𝐐𝑘𝐐⊺
𝑘𝐀𝑛𝐛 (6.2)

= 𝐐𝑘𝐐⊺
𝑘𝐀𝐐𝑘𝐐⊺

𝑘𝐀𝑛−1𝐛 (6.3)

= 𝐐𝑘𝐓𝑘𝐐⊺
𝑘𝐀𝑛−1𝐛 (6.4)

⋮ (6.5)

= 𝐐𝑘𝐓𝑛
𝑘𝐐⊺

𝑘𝐛. (6.6)

The result then follows from the fact that𝐐⊺
𝑘𝐛 = ‖𝐛‖𝐞1. �

Theorem 6.2 also provides an interesting characterization of Lanczos-FA.

Corollary 6.3. Let 𝑝(𝑥) be the polynomial interpolant to 𝑓(𝑥) of degree
less than 𝑘 at the eigenvalues of 𝐓𝑘. Then

lan-FA𝑘(𝑓) = 𝑝(𝐀)𝐛.

Proof. Since𝐓𝑘 is of 𝑘 × 𝑘 and 𝑝(𝑥) is, by definition, the interpolant to 𝑓(𝑥)
and the eigenvalues of 𝐓𝑘, we have that 𝑝(𝐓𝑘) = 𝑓(𝐓𝑘). Therefore, using
Theorem 6.2,

lan-FA𝑘(𝑓) = ‖𝐛‖𝐐𝑘𝑓(𝐓𝑘)𝐞1 = ‖𝐛‖𝐐𝑘𝑝(𝐓𝑘)𝐞1 = 𝑝(𝐀)𝐛.

�
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6.1.2 A simple error bound We can use Theorem 6.2 to derive a simple

error bound for Lanczos-FA in terms of polynomial approximation on ℐ =
[𝜆min, 𝜆max]. This bound essentially appears in [DK89; Saa92] and guarantees
exponential convergence of Lanczos-FA formanymatrix functions.

Corollary 6.4. The Lanczos-FA iterate satisfies

‖𝑓(𝐀)𝐛 − lan-FA𝑘(𝑓)‖ ≤ 2‖𝐛‖ min
deg(𝑝)<𝑘

‖𝑓 − 𝑝‖ℐ.

Proof. For any polynomial 𝑝(𝑥) with deg(𝑝) < 𝑘, Theorem 6.2 asserts

𝑝(𝐀)𝐛 = lan-FA𝑘(𝑝). Then, by the triangle inequality

‖𝑓(𝐀)𝐛−lan-FA𝑘(𝑓)‖ ≤ ‖𝑓(𝐀)𝐛−𝑝(𝐀)𝐛‖+‖ lan-FA𝑘(𝑓)−lan-FA𝑘(𝑝)‖. (6.7)

Introduce thenotation 𝑒(𝑥) ∶= 𝑓(𝑥)−𝑝(𝑥). Using thedefinitionof operator
norm and the fact that Λ ⊂ ℐ,

‖𝑒(𝐀)𝐛‖ ≤ ‖𝑒(𝐀)‖‖𝐛‖ = ‖𝑒‖Λ‖𝐛‖ ≤ ‖𝑒‖ℐ‖𝐛‖. (6.8)

Similarly, since 𝐐𝑘 is orthogonal, and using Lemma 3.12 which implies

that Λ(𝐓𝑘) ⊂ ℐ,

‖𝐐𝑘𝑒(𝐓𝑘)𝐐⊺
𝑘𝐛‖ ≤ ‖𝐐𝑘‖‖𝑒(𝐓𝑘)‖‖𝐐⊺

𝑘‖‖𝐛‖ ≤ ‖𝑒‖Λ(𝐓𝑘)‖𝐛‖ ≤ ‖𝑒‖ℐ‖𝐛‖. (6.9)

Plugging (6.8) and (6.9) in (6.7) gives the result. �

Note that Corollary 6.4 is analogous to the bound Corollary 5.4,which guar-

antees CG converges exponentiallyat a rate depending on the square root of the

condition number 𝜆max/𝜆min. In particular, as with Corollary 5.4, Corollary 6.4
is typically not indicative of the true convergence behavior of Lanczos-FA.

6.1.3 Spectrum adaptivity When 𝑓(𝑥) = 1/𝑥, Lanczos-FA is mathematically
equivalent to the CG iterate defined in Definition 5.1, and therefore satisfies

strong spectrum dependent error guarantees such as Corollary 5.3 and Theo-

rem 5.13. In practice, Lanczos-FA enjoys similar spectrum adaptivity for other

functions 𝑓(𝑥), and as illustrated in Figure 6.1, often converges significantly
faster than the bound Corollary 6.4. We now aim to provide some intuition for

why this is the case, by relating Lanczos-FA to CG.

Inmany cases, 𝑓(𝑥) can be expressed as an integral of the form

𝑓(𝑥) = ∫
Γ

𝑔(𝑧)(𝑥 − 𝑧)−1d𝑧, (6.10)
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Figure 6.1: Comparison of the Euclidian norm convergence of Lanczos-FA ( ),
optimal KSM ( ), and bound Corollary 6.4 ( ) for 𝑓(𝑥) = √𝑥. Takeaway:
In many instances, Lanczos-FA exhibits nearly optimal convergence and the bound
Corollary 6.4 is not at all indicative of the convergence of the algorithm.

where 𝑔(𝑧) is some function and Γ a contour of integration. For instance, the
inverse square root has the expression

1
√𝑥

= 1
𝜋 ∫

(−∞,0]
|𝑧|−1/2(𝑥 − 𝑧)−1d𝑧. (6.11)

This is an example of a Markov/Stieltjes function. Similarly, the indicator

function that 𝑥 is inside a simple contour Γ has the expression

𝑓(𝑥) = 1
2𝜋i ∫

Γ
(𝑥 − 𝑧)−1d𝑧. (6.12)

This is an example of the Cauchy Integral Formula. Finally, a rational function

𝑓(𝑥) = ∑𝑖 𝑤𝑖(𝑥 − 𝑧𝑖)−1with simple poles {𝑧𝑖} can be expressed as

𝑓(𝑥) = ∫
∞

−∞
(∑𝑖 𝑤𝑖 𝛿(𝑧 − 𝑧𝑖))(𝑥 − 𝑧)−1d𝑧, (6.13)

where 𝛿(𝑧) is a Dirac delta function centered at zero.
So long as (6.10) holds for each of the eigenvalues of 𝐀,

𝑓(𝐀)𝐛 = ∫
Γ

𝑔(𝑧)(𝐀 − 𝑧𝐈)−1𝐛d𝑧. (6.14)

Similarly, so long as (6.10) holds for each of the eigenvalues of 𝐓𝑘,

lan-FA𝑘(𝑓) = ∫
Γ

𝑔(𝑧)‖𝐛‖𝐐𝑘(𝐓𝑘 − 𝑧𝐈)−1𝐛d𝑧 (6.15)
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= ∫
Γ

𝑔(𝑧) lan-FA𝑘((𝑥 − 𝑧)−1)d𝑧. (6.16)

Assuming (6.14) and (6.16) hold,we canwrite theLanczos-FAerror as an integral

𝑓(𝐀)𝐛 − lan-FA𝑘(𝑓) = ∫
Γ

𝑔(𝑧)[(𝐀 − 𝑧𝐈)−1𝐛 − lan-FA𝑘((𝑥 − 𝑧)−1)]d𝑧. (6.17)

This in turn leads to bounds for the norm of the Lanczos-FA error (6.17)

‖𝑓(𝐀)𝐛 − lan-FA𝑘(𝑓)‖ ≤ ∫
Γ

|𝑔(𝑧)|‖(𝐀 − 𝑧𝐈)−1𝐛 − lan-FA𝑘((𝑥 − 𝑧)−1)‖d𝑧. (6.18)

Thus, to understand the Lanczos-FA error, it suffices to understand the error of

the integrand at each value 𝑧 in the contour Γ.
The key observation is that

lan-FA𝑘((𝑥 − 𝑧)−1) (6.19)

is equivalent to the CG iterate Definition 5.1 applied to the linear system (𝐀 −
𝑧𝐈)𝐱 = 𝐛. Indeed, the Lanczos factorization (2.12) can be shifted (even for
complex 𝑧) to obtain

(𝐀 − 𝑧𝐈)𝐐𝑘 = 𝐐𝑘(𝐓𝑘 − 𝑧𝐈) + 𝛽𝑘−1𝐪𝑘𝐞⊺
𝑘. (6.20)

That is, Lanczosapplied to (𝐀, 𝐛) for 𝑘 stepsproducesoutput𝐐𝑘 and𝐓𝑘 satisfying

(2.12)whileLanczosapplied to (𝐀−𝑧𝐈, 𝐛) for𝑘 stepsproducesoutput𝐐𝑘 and𝐓𝑘−𝑧𝐈
satisfying (6.20). Thus, the norm of the error ‖(𝐀 − 𝑧𝐈)−1𝐛 − lan-FA𝑘((𝑥 − 𝑧)−1)‖
can be bounded (a priori or a posteriori) using theory about CG Chapter 5.

This general approach is commonly used to derive bounds for Lanczos-FA and

related algorithms [FS08b; FS09; ITS09; Fro+13; FGS14; FS15; Che+22].

6.1.4 Is Lanczos-FA nearly optimal? If 𝑓(𝑥) = 1/𝑥, the Lanczos-FA iterate co-
incideswith the CG iterate defined in Definition 5.1 and is therefore an optimal

approximation (in the𝐀-norm) if 𝐀 is positive definite; see Theorem 5.2. Even

when𝐀 is not positive definite, Lanczos-FA is often nearly optimal in the sense

of overall convergence; see Theorem 5.13.

One may wonder whether Lanczos-FA exhibits similar near-optimality

guarantees for other functions. In Figure 6.1 we show the convergence of

Lanczos-FA, as well as the optimal KSM error and the bound Corollary 6.4. In

this example the convergence of Lanczos-FA closely tracks the convergence of

the optimal KSM, converging significantly faster than the bound Corollary 6.4.

In fact, it is hard to find exampleswhere similar behavior is not observed.

While some partial progress on the near-optimalityof Lanczos-FAhas been

made [Ams+23; CM24], the practical performance of the algorithm is still not

well-explained by the best known theory.
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6.2 Finite precision arithmetic

Themain qualitative effects on Lanczos-FA are a delay of convergence and loss

of maximal accuracy, similar towhatwe described in Section 5.1.2 for CG.

Themain theoretical guarantee for Lanczos-FA infiniteprecisionarithmetic

asserts that Lanczos-FA accurately applies Chebyshev polynomials.

Theorem 6.5 (informal; see [DK91]). Suppose ‖𝐀‖ = ‖𝐛‖ = 1 and that
Lanczos algorithm is run for 𝑘 iterations on a computer with relative
machine precision 𝜖mach = 𝑂(poly(𝑘)−1). Then, for all 𝑛 ≤ 𝑘 − 1,

‖𝑇𝑛(𝐀)𝐛 − 𝐐𝑘𝑇𝑛(𝐓𝑘)𝐞1‖ = 𝑂(poly(𝑘) 𝜖mach).

We can then use Theorem 6.5 to derive a bound similar to Corollary 6.4 in

finite precision arithmetic. This bound is implicit in [DK91]; see also [MMS18]

for amore detailed analysis and some extensions.

Corollary 6.6. Suppose ‖𝐀‖ = ‖𝐛‖ = 1 and that Lanczos algorithm is

run for 𝑘 iterationsonacomputerwith relativemachineprecision 𝜖mach =
𝑂(poly(𝑘)−1). Then,with ℐ = [−1 − 𝜂𝑘, 1 + 𝜂𝑘]where 𝜂𝑘 = 𝑂(poly(𝑘) 𝜖mach),

‖𝑓(𝐀)𝐛 − 𝐐𝑘𝑓(𝐓𝑘)𝐞1‖ ≤ 𝑂(𝑘) min
deg(𝑝)<𝑘

‖𝑓 − 𝑝‖ℐ + 𝑂(‖𝑓‖ℐ poly(𝑘) 𝜖mach).

Wewill prove these results in Section 6.2.1,

Remark 6.7. Corollary 6.6 is for the quantity ‖𝐛‖𝐐𝑘𝑓(𝐓𝑘)𝐞1 and not the

quantity 𝐐𝑘𝑓(𝐓𝑘)𝐐
⊺
𝑘𝐛. Indeed, while these quantities are equivalent in

exact arithmetic, theymight not even be nearby in finite precision arith-

metic. Lemma 3.19 provides intuition into why the analyzed quantity is

the right one, without requiring the full analysis of Corollary 6.6. The

convergence of these quantities is illustrated in Figure 6.2, where we

observe the latter quantity does not even converge.

Remark6.8. Despitewidespread claims thatChebyshev-basedmethods

are “more stable” than Lanczos-based methods, the precise version of

Corollary 6.6 is almost identical to what can be obtained for a method

based directly on the Chebyshev recurrence (3.15); see also Remark 4.5.
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Figure 6.2: Comparison of the Euclidean error approximating 𝑓(𝐀)𝐛 of ‖𝐛‖𝐐𝑘𝑓(𝐓𝑘)𝐞1

( ) and𝐐𝑘𝑓(𝐓𝑘)𝐐
⊺
𝑘𝐛 ( ) for 𝑓(𝑥) = exp(−𝑥) in finite precision arithmetic. Take-

away: Use the expression ‖𝐛‖𝐐𝑘𝑓(𝐓𝑘)𝐞1, otherwise Lanczos-FAmight not converge!!!

6.2.1 Proofs Wewill use the following standard fact about perturbed Cheby-

shevrecurrences [Cle55]. This is a special case of amore general formula involv-

ing the associated polynomials of some family of orthogonal polynomials.

Lemma 6.9. Suppose that, for 𝑛 = 2, 3, …,

𝑑0 = 0, 𝑑1 = 𝑓0, 𝑑𝑛(𝑥) = 2𝑥𝑑𝑛−1(𝑥) − 𝑑𝑛−2(𝑥) + 2𝑓𝑛−1.

Then, introducing the notation 𝑈−1(𝑥) = 0, for 𝑛 = 0, 1, … ,

𝑑𝑛(𝑥) = 𝑈𝑛−1(𝑥)𝑓0 + 2
𝑛

∑
𝑖=2

𝑈𝑛−𝑖(𝑥)𝑓𝑖−1.

Proof. Suppose the lemma holds for 𝑖 < 𝑛. Then,

𝑑𝑛(𝑥) = 2𝑥𝑑𝑛−1(𝑥) − 𝑑𝑛−2(𝑥) + 2𝑓𝑛−1 (6.21)

= 2𝑥⎛⎜
⎝

𝑈𝑛−2(𝑥)𝑓0 + 2
𝑛−1

∑
𝑖=2

𝑈𝑛−1−𝑖(𝑥)𝑓𝑖−1
⎞⎟
⎠

− ⎛⎜
⎝

𝑈𝑛−3(𝑥)𝑓0 + 2
𝑛−2

∑
𝑖=2

𝑈𝑛−2−𝑖(𝑥)𝑓𝑖−1
⎞⎟
⎠

+ 2𝑓𝑛−1 (6.22)

= (2𝑥𝑈𝑛−2(𝑥) − 𝑈𝑛−3(𝑥))𝑓0
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+ 2⎛⎜
⎝

𝑛−2

∑
𝑖=2

(2𝑥𝑈𝑛−1−𝑖(𝑥) − 𝑈𝑛−2−𝑖(𝑥))𝑓𝑖−1
⎞⎟
⎠

+ 4𝑥𝑓𝑛−2 + 2𝑓𝑛−1

(6.23)

= 𝑈𝑛−1(𝑥)𝑓0 + 2⎛⎜
⎝

𝑛−2

∑
𝑖=2

𝑈𝑛−𝑖(𝑥)𝑓𝑖−1
⎞⎟
⎠

+ 2𝑈1(𝑥)𝑓𝑛−2 + 2𝑈0(𝑥)𝑓𝑛−1 (6.24)

= 𝑈𝑛−1(𝑥)𝑓0 + 2
𝑛

∑
𝑖=2

𝑈𝑛−𝑖(𝑥)𝑓𝑖−1. (6.25)

The result follows as the base case is assumed. �

The proofs of Theorem 6.5 and Corollary 6.6 are now straightforward.

Proof of Theorem 6.5. For notational brevity, define the vectors

𝐭𝑛 ∶= 𝑇𝑛(𝐀)𝐯, 𝐭𝑛 ∶= 𝑇𝑛(𝐓𝑘)𝐞1, 𝐝𝑛 ∶= 𝐭𝑛 − 𝐐𝑘𝐭𝑛. (6.26)

Since 𝑘 > 1, using the notation in (6.26) and recalling the perturbed
recurrence (4.2), we have

𝐝0 = 𝐯 − 𝐐𝑘𝐞1 = 𝟎, 𝐝1 = 𝐀𝐯 − 𝐐𝑘𝐓𝑘𝐞1 = (𝛽𝑘𝐪𝑘−1𝐞⊺
𝑘 + 𝐅𝑘)𝐞1 = 𝐅𝑘𝐭0.

(6.27)

For𝑛 = 2, … , 𝑘−1,we canuse thedefinitions of 𝐭𝑛 and 𝐭𝑛, the definitionof

the Chebyshev polynomials, and the perturbed recurrence (4.2) towrite

𝐝𝑛 = (2𝐀𝐭𝑛−1 − 𝐭𝑛−2) − (2𝐐𝑘𝐓𝑘𝐭𝑛−1 − 𝐐𝑘𝐭𝑛−2) (6.28)

= 2(𝐀𝐭𝑛−1 − (𝐀𝐐𝑘 + 𝛽𝑘𝐪𝑘−1𝐞⊺
𝑘 + 𝐅𝑘)𝐭𝑛−1) − (𝐭𝑛−2 − 𝐐𝑘𝐭𝑛−2) (6.29)

= 2(𝐀𝐭𝑛−1 − (𝐀𝐐𝑘𝐭𝑛−1 + 𝛽𝑘𝐪𝑘−1𝐞⊺
𝑘𝐭𝑛−1 + 𝐅𝑘𝐭𝑛−1)) − 𝐝𝑛−2 (6.30)

Note that (𝐓𝑘)𝑖 has half bandwidth 𝑖, so (𝐓𝑘)𝑖 is zero in the bottom left

entry provided 𝑖 < 𝑘 − 1. Since 𝑇𝑖 is a degree 𝑖 polynomial, this implies
that that 𝐞⊺

𝑘𝐭𝑖 = 𝐞⊺
𝑘𝑇𝑖(𝐓𝑘)𝐞1 = 0 for any 𝑖 < 𝑘 − 1. Since 𝑛 < 𝑘, applying this

with 𝑖 = 𝑛 − 1we find

𝐝𝑛 = 2𝐀𝐝𝑛−1 − 𝐝𝑛−2 + 2𝐅𝑘𝐭𝑛−1. (6.31)

Lemma 6.9with 𝑥 → 𝐀, 𝑑𝑛(𝑥) → 𝐝𝑛, and 𝑓𝑛 → 𝐅𝑘𝐭𝑛 allows us to obtain an

explicit expression

𝐝𝑛 = 𝑈𝑛−1(𝐀)𝐅𝑘𝐭0 + 2
𝑛

∑
𝑖=2

𝑈𝑛−𝑖(𝐀)𝐅𝑘𝐭𝑖−1. (6.32)
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Intuitively (6.32) is small because 𝐅𝑘 is small (by Paige’s analysis in Sec-

tion4.1) and theChebyshevpolynomials𝑈ℓ(𝑥) and𝑇ℓ(𝑥) are notvery large
on [−1, 1]. It is slightly annoying to prove this though, since it is possible
that ‖𝐓𝑘‖ can be slightly larger one.

Our assumption on 𝜖mach and Theorem 4.1 guarantees that ‖𝐓𝑘‖ ≤ 1 +
1/(2𝑘). Hence, Lemma 3.27 guarantees

‖𝑇ℓ(𝐓𝑘)‖ ≤ 2, ‖𝑈ℓ(𝐀)‖ ≤ 𝑘. (6.33)

Theorem 4.1 also gives the bound ‖𝐅𝑘‖ = 𝑂(poly(𝑘) 𝜖mach).
Therefore, we can apply the triangle inequality to (6.32), apply the

above bounds, and use the fact 𝑛 ≤ 𝑘 to obtain the bound

‖𝐝𝑛‖ ≤ 2
𝑛

∑
𝑖=1

‖𝑈𝑛−𝑖(𝐀)‖‖𝐅𝑘‖‖𝐭𝑖−1‖ = 𝑂(poly(𝑘) 𝜖mach). (6.34)

This is the desired result. �

Proof of Corollary 6.6. This result intuitively follows because any function

bounded in [−1, 1] has a Chebyshev series with bounded coefficients. As
with the proof of Theorem 6.5, the result is slightly complicated by the

fact that ‖𝐓𝑘‖ can be greater than one.
Theorem 4.1 ensures Λ(𝐓𝑘) ⊂ ℐ. Choose

𝑝(𝑥) ∶= argmin
deg(𝑝)<𝑘

‖𝑓 − 𝑝‖ℐ. (6.35)

For anypolynomial 𝑝(𝑥) define 𝑒(𝑥) ∶= 𝑓(𝑥) − 𝑝(𝑥). The triangle inequality
gives

‖𝑓(𝐀)𝐛−𝐐𝑘𝑓(𝐓𝑘)𝐞1‖ ≤ ‖𝑝(𝐀)𝐛−𝐐𝑘𝑝(𝐓𝑘)𝐞1‖+‖𝑒(𝐀)𝐛‖+‖𝐐𝑘𝑒(𝐓𝑘)𝐞1‖. (6.36)

According to Lemma 3.24we can expand 𝑝(𝑥) in the Chebyshev basis

𝑝(𝑥) = 𝑐0𝑇0(𝑥) + 2
𝑘−1

∑
𝑛=1

𝑐𝑛𝑇𝑛(𝑥), 𝑐𝑛 = ∫ 𝑝(𝑥)𝑇𝑛(𝑥)𝜇𝑇(𝑥)d𝑥. (6.37)

Applying the triangle inequality and Theorem 6.5we find that

‖𝑝(𝐀)𝐛 − 𝐐𝑘𝑝(𝐓𝑘)𝐞1‖ = ∥
𝑘−1

∑
𝑛=0

𝑐𝑛(𝑇𝑛(𝐀)𝐛 − 𝐐𝑘𝑇𝑛(𝐓𝑘)𝐞1)∥ (6.38)

≤
𝑘−1

∑
𝑛=0

|𝑐𝑛|‖𝑇𝑛(𝐀)𝐛 − 𝐐𝑘𝑇𝑛(𝐓𝑘)𝐞1‖. (6.39)
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By the triangle inequality and our choice of 𝑝(𝑥),

‖𝑝‖ℐ ≤ ‖𝑓‖ℐ + ‖𝑓 − 𝑝‖ℐ ≤ ‖𝑓‖ℐ + ‖𝑓 − 0‖ℐ = 2‖𝑓‖ℐ (6.40)

Hence, using Lemma 3.26which asserts ‖𝑇𝑛‖ℐ ≤ 1,

|𝑐𝑛| ≤ ∫ |𝑝(𝑥)||𝑇𝑛(𝑥)|𝜇𝑇(𝑥)d𝑥 ≤ ‖𝑝‖ℐ ∫ 𝜇𝑇(𝑥)d𝑥 = 2‖𝑓‖ℐ. (6.41)

Plugging this bound into (6.39)we get a bound

‖𝑝(𝐀)𝐛 − 𝐐𝑘𝑝(𝐓𝑘)𝐞1‖ ≤ ‖𝑓‖ℐ𝑂(poly(𝑘) 𝜖lan). (6.42)

In addition,we have that

‖𝑒(𝐀)𝐛‖ ≤ ‖𝑒‖Λ ≤ ‖𝑒‖ℐ ≤ ‖𝑒‖ℐ. (6.43)

From Theorem 4.1 we have ‖𝐪𝑛‖ ≤ 1 + 𝑂(poly(𝑘)𝜖mach). Our assumption
on 𝜖mach ensures ‖𝐪𝑛‖ = 𝑂(1) and hence ‖𝐐𝑘‖ = 𝑂(𝑘). Therefore

‖𝐐𝑘𝑒(𝐓𝑘)𝐞1‖ ≤ ‖𝐐𝑘‖‖𝑒‖Λ(𝐓𝑘)
≤ 𝑂(𝑘)‖𝑒‖ℐ. (6.44)

Finally, plugging (6.42)–(6.44) into (6.36) gives the result. �

6.3 Low-memory algorithms

An apparent downside of Lanczos-FA compared with explicit polynomial ap-

proaches or CG is that the Krylov basis 𝐐𝑘 must be stored. However, there are

severalways to avoid this storage cost.

6.3.1 Two-pass Lanczos-FA This storage cost can be avoided by incurring ad-

ditional computational cost. In particular,we can use an implementation called

twopassLanczos-FA [Bor00; FS08a]. On thefirstpass, the tridiagonalmatrix𝐓𝑘
is computedusing the short-recurrenceversionof Lanczos; i.e.,without storing

all of 𝐐𝑘. Once𝐓𝑘 has been computed, 𝑓(𝐓𝑘)𝐞1 can be evaluated. Lanczos is then

run again and the vector 𝐐𝑘𝑓(𝐓𝑘)𝐞1 is computed as the columns of 𝐐𝑘 become

available. Note that on the second run, the exact same1 Lanczos vectors can be

computedwithout any inner products by using the values computed in the first

run and stored in𝐓𝑘.

Such an approach can be generalized by re-generating the Lanczos recur-

rence from multiple points simultaneously on the second pass [Li22]. Specif-

1This is true, even in finite precision arithmetic, so long as computations are done deterministically.
However, in many computing environments computations may be nondetermsitic. There are several efforts
to ensure reproducibility in such environments [Iak+15; ADN20].
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ically, on the first pass, vectors 𝐪𝑗 and 𝐪𝑗−1 can be saved for 𝑗 = 0, 𝑞, 2𝑞, ….
Then, on the second pass, the rest of the Lanczos vectors can be constructed by

continuing the three-term Lanczos recurrence (2.12) from each of the roughly

𝑑/𝑞 start points in parallel. Thus, the number of matrix-loads is reduced by a
factor of roughly 𝑞 at the cost of storing roughly 2𝑑/𝑞 vectors. The case 𝑞 = 𝑑
gives the original two-pass approach.

6.3.2 Multi-shift CG/MINRES Often 𝑓(𝑥) iswell approximationed by a ratio-
nal function

𝑓(𝑥) ≈
𝑞

∑
𝑖=1

𝑤𝑖
𝑥 − 𝑧𝑖

. (6.45)

For instance, the integral representation (6.10) can be discretized using a

quadrature rule. In this case,

𝑓(𝐀)𝐛 ≈
𝑞

∑
𝑖=1

𝑤𝑖(𝐀 − 𝑧𝑖𝐈)−1𝐛. (6.46)

Using the shift-invariance property of Krylov subspaces (6.20), we can simulta-

neously apply a low-memory implementation of CG or MINRES to the shifted

linear systems (𝐀 − 𝑧𝑖𝐈)𝐱𝑖 = 𝐛without using additional matrix-vector products
with 𝐀. This requires 𝑞 times the memory of a single run of CG or MINRES,

but does not increase the number of matrix-vector products. For a survey on

methods of this flavor, see [GS21].

Remark6.10. The accuracyof (6.46) is limited bynot onlyhowwell each

term in the rational function is approximated by CG/MINRES, but also

by the accuracy of the the rational approximation (6.45).

TL;DR

Lanczos-FA is a general purposemethod for approximating 𝑓(𝐀)𝐛. Themethod
is closely related to CG, and therefore enjoys similar spectrum adaptivity, often

exhibiting similar behavior to the best possible KSM. Bounds for Lanczos-FA

based on best polynomial approximation on an interval are often pessimistic,

but still hold in finite precision arithmetic.
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7 Quadratic forms and trace approximation

In this section we discuss quadrature-based methods for approximating the

quadratic form

𝐛⊺𝑓(𝐀)𝐛. (7.1)

We are particularly interested in such approximations because, as discussed in

Section 7.3, they are useful in approximating the trace of amatrix function

tr(𝑓(𝐀)) =
𝑑

∑
𝑖=1

𝑓(𝜆𝑖), (7.2)

also referred to as a spectral sum.

Applications of spectral sums include characterizing the degree of protein

folding in biology [Est00], studying the thermodynamics of spin systems in

quantum physics and chemistry [Wei+06; SS10; SRS20; Jin+21], benchmarking

quantum devices in quantum information theory [Joz94], maximum likelihood

estimation in statistics [BP99; PL04], designing better public transit in urban

planning [BS22; Wan+21], and finding triangle counts and other structure in

network science [Avr10; DBB19; BB20].

7.1 Lanczos quadrature

In Chapter 6, we described a Lanczos-based method for approximating 𝑓(𝐀)𝐛
called the Lanczos method for matrix function approximation (Lanczos-FA). A

similar approach,whichwe call theLanczosmethod for quadratic formapprox-

imation (Lanczos-QF), can be used to approximate the quadratic form 𝐛⊺𝑓(𝐀)𝐛.

Definition 7.1. The 𝑘-th Lanczos-QF approximation to 𝐛⊺𝑓(𝐀)𝐛 is

lan-QF𝑘(𝑓) = lan-QF𝑘(𝑓; 𝐀, 𝐛) ∶= ‖𝐛‖2𝐞⊺
1𝑓(𝐓𝑘)𝐞1.

Note that lan-QF𝑘(𝑓) = 𝐛⊺ lan-FA𝑘(𝑓). However, it is typically more useful
to think of lan-QF𝑘(𝑓) in terms of quadrature. In particular, unlike the Lanczos-
FA iterate, the Lanczos-QF iterate can be computedwithout every looking at the

Lanczos basis𝐐𝑘.
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7.1.1 Exactness and error bounds Similar to Lanczos-FA, Lanczos-QF is

exact for low-degree polynomials.

Theorem 7.2. Suppose ‖𝐛‖2 = 1. Let 𝜓𝑘(𝑥; 𝐀, 𝐛) be the 𝑘-point Gaussian
quadrature for 𝜓(𝑥; 𝐀, 𝐛). Then

lan-QF𝑘(𝑓) = ∫ 𝑓(𝑥)𝜓𝑘(𝑥; 𝐀, 𝐛)d𝑥.

Proof. This is an immediate consequence of Theorem 3.1 the relationship

between the Lanczos algorithm and orthogonal polynomials and the

definition of Gaussian quadrature (Definition 3.4). �

As an immediate consequence of Theorem7.2 and the exactness of Gaussian

quadrature rules (Theorem 3.5), we have the following.1

Corollary 7.3. Let 𝑝(𝑥) be a polynomialwith deg(𝑝) < 2𝑘. Then

lan-QF𝑘(𝑝) = 𝐛⊺𝑝(𝐀)𝐛.

Therefore, analogous toTheorem9.8wehave an error bound in termsof best

polynomial approximation on ℐ = [𝜆min, 𝜆max].

Corollary 7.4. The Lanczos-QF iterate satisfies

∣𝐛⊺𝑓(𝐀)𝐛 − lan-QF𝑘(𝑓)∣ ≤ 2‖𝐛‖2 min
deg(𝑝)<2𝑘

‖𝑓 − 𝑝‖ℐ.

7.2 Finite precision arithmetic

In Section 4.3 we described Theorem 4.4, which is effectively a bound for how

well Lanczos-QF applies Chebyshev polynomials.

Theorem4.4 (informal; see [Kni96]). Suppose ‖𝐀‖ = ‖𝐛‖ = 1 and that Lanczos
algorithm is run for 𝑘 iterations on a computerwith relative machine precision
𝜖mach = 𝑂(poly(𝑘)−1). Let 𝜓(𝑥) = 𝜓(𝑥; 𝐀, 𝐛) and 𝜓𝑘(𝑥) = 𝜓(𝑥; 𝐓𝑘, 𝐞0) be the
Gaussian quadrature produced by Lanczos in finite precision arithmetic. Then,

for all 𝑛 ≤ 2𝑘 − 1,

∣ ∫ 𝑇𝑛(𝑥)𝜓(𝑥)d𝑥 − ∫ 𝑇𝑛(𝑥)𝜓𝑘(𝑥)d𝑥∣ = 𝑂(poly(𝑘) 𝜖mach).

1This can also be proved directly using Theorem 6.2; see Theorem 9.10.
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The proof of Theorem 4.4 in [Kni96] is based on the bound Theorem 6.5

for Lanczos-FA described in Chapter 6 and the analysis of Paige described

in Section 4.1. The analysis of Knizhnerman is more-or-less rederived using

notation similar to this monograph in [CT24].

We can obtain a bound for Lanczos-QF in finite precision arithmetic

analagous to Corollary 7.4. The argument is the same as we used to prove

Corollary 6.6 for Lanczos-FA,

Corollary 7.5 (informal; see [Kni96]). Suppose ‖𝐀‖ = ‖𝐛‖ = 1 and

that Lanczos algorithm is run for 𝑘 iterations on a computerwith relative
machine precision 𝜖mach = 𝑂(poly(𝑘)−1). Then, with ℐ = [−1 − 𝜂𝑘, 1 + 𝜂𝑘]
where 𝜂𝑘 = 𝑂(poly(𝑘) 𝜖mach),

∣𝐛⊺𝑓(𝐀)𝐛 − 𝐞⊺
1𝑓(𝐓𝑘)𝐞1∣ = 𝑂(𝑘) min

deg(𝑝)<2𝑘
‖𝑓 − 𝑝‖ℐ + 𝑂(‖𝑓‖ℐ poly(𝑘) 𝜖mach).

7.3 Stochastic trace estimation

Fix a matrix𝐌 and independently draw a randomvector 𝐛 for which 𝔼[𝐛𝐛⊺] =
𝑑−1𝐈 (for instance, each entry of 𝐛 could be an independent standard normal

randomvariable, and independent ±1 randomvariable). Then, using the cyclic

property of the trace and the linearity of the expectation,we have that

𝔼[𝐛⊺𝐌𝐛] = 𝔼[tr(𝐛⊺𝐌𝐛)] = 𝔼[tr(𝐌𝐛𝐛⊺)] = tr(𝐌𝔼[𝐛𝐛⊺]) = 𝑑−1 tr(𝐌). (7.3)

The history of estimators of this form is somewhat murky. In numerical

analysis and theoretical computer science, such estimators are often attributed

to Hutchinson [Hut89], particularly when 𝐛 has iid ±𝑑−1/2 entries [AT11; RA14;

Mey+21]. However, the abstract of [Hut89] itself cites Girard [Gir87], who also

used themethod for estimating the trace of amatrix and provided a theoretical

analysis. In computational physics, the use of random vectors to produce

empirical averages of quantities of interest has been used since at least themid

1970s [Alb+75; WW76; WW77; RV89]; see [Jin+21] for a review. More broadly,

expressions like (7.3) have close relation to the concept of typicality in quantum

physics and appear as early as the late 1920s [Sch27; Neu29]; see [Gol+10] for a

review.

Let 𝕊𝑑−1 = {𝐱 ∈ ℝ𝑑 ∶ ‖𝐱‖ = 1} be the unit hypersphere in ℝ𝑑. Suppose 𝐛 =
𝐠/‖𝐠‖, where the entries of 𝐠 ∈ ℝ𝑑 are independent standard normal random

variables. Then 𝐛 ∼ Unif(𝕊𝑑−1), the uniform distribution on 𝕊𝑑−1. It is well-

known that 𝐛⊺𝐌𝐛 concentrates strongly about its expectation value 𝑑−1 tr(𝐌).
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Theorem 7.6. There is a universal constant 𝐶 > 0 such that for any 𝜀 > 0
and 𝑑 × 𝑑 matrix 𝐌 the following holds. Let 𝐛1, … , 𝐛𝑚 ∼ Unif(𝕊𝑑−1) be
independent samples. Then

ℙ[∣1𝑑 tr(𝐌) − 1
𝑚

𝑚

∑
ℓ=1

𝐛⊺
ℓ𝐌𝐛ℓ∣ > √‖𝐌‖ log(2/𝛿)

𝐶𝑑𝑚 ] ≤ 𝛿.

Proof. We follow the approach of [PSW06]. Define 𝐹(𝐱) ∶= 𝐱⊺𝐌𝐱 and
observe that

∣𝐹(𝐱) − 𝐹(𝐲)∣ = ∣𝐱⊺𝐌𝐱 − 𝐲⊺𝐌𝐲∣ (7.4)

= 1
2∣(𝐱 + 𝐲)⊺𝐌(𝐱 − 𝐲) + (𝐱 − 𝐲)⊺𝐌(𝐱 + 𝐲)∣ (7.5)

≤ 1
2∣(𝐱 + 𝐲)⊺𝐌(𝐱 − 𝐲)∣ + 1

2∣(𝐱 − 𝐲)⊺𝐌(𝐱 + 𝐲)∣. (7.6)

We also have that

∣(𝐱 + 𝐲)⊺𝐌(𝐱 − 𝐲)∣ ≤ ‖𝐱 + 𝐲‖‖𝐌‖‖𝐱 − 𝐲‖ ≤ (‖𝐱‖ + ‖𝐲‖)‖𝐌‖‖𝐱 − 𝐲‖, (7.7)

and an analogous bound for |(𝐱 − 𝐲)⊺𝐌(𝐱 + 𝐲)|. Since ‖𝐱‖ = ‖𝐲‖ = 1 and
‖𝐌⊺‖ = ‖𝐌‖we therefore find that 𝐹(𝐱) is 2‖𝐌‖-Lipshitz on 𝕊𝑑−1.

By Lévy’s lemma (see for instance [Ver18, Theorem 5.1.4]), there is a

universal constant 𝐶 such that, if 𝐛 ∼ Unif(𝕊𝑑−1),

ℙ[|𝐹(𝐛) − 𝔼[𝐹(𝐛)]| > 𝜀] ≤ 2 exp ( −𝐶𝑑𝜀2

(2‖𝐌‖)2 ) .

The final result holds by a standard bound for the average of iid copies

of a sub-Gaussian random variable (see for instance [Ver18, §2.5 and

Theorem 2.6.2]) and relabeling 𝐶. �

For simplicity we consider only the case of uniform unit vectors, but other

choices of distribution, such as random sign vectors, are also common [MT20,

§4]. In addition, we note that potentially sharper bounds, with ‖𝐌‖2 replaced

by ‖𝐌‖2
F/𝑑, are known for many distributions [CK21; Mey+21]. Such details are

beyond the scope of this monograph.

7.4 Stochastic Lanczos quadrature

It is natural to combine Lanczos quadraturewith stochastic trace estimation to

obtain a method for approximating tr(𝑓(𝐀)). The resulting algorithm is com-
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monly called stochastic Lanczos quadrature (SLQ) [BFG96; BG96; UCS17].

Definition 7.7. Let 𝐛1, … , 𝐛𝑚 ∼ Unif(𝕊𝑑−1) be independent samples. The
(𝑘, 𝑚)-th SLQ approxiamtion to 𝑑−1 tr(𝑓(𝐀)) is

SLQ𝑘,𝑚(𝑓) = SLQ𝑘,𝑚(𝑓; 𝐀) ∶= 1
𝑚

𝑚

∑
ℓ=1

lan-QF𝑘(𝑓; 𝐀, 𝐛ℓ).

We can use the triangle inequality to decompose the SLQ error into a term

which accounts for the statistical noise from the stochastic trace estimator and

a termwhich accounts for errors made by Lanczos quadrature. Specifically, we

have that

∣1𝑑 tr(𝑓(𝐀)) − SLQ𝑘,𝑚(𝑓)∣

≤ ∣1𝑑 tr(𝑓(𝐀)) − 1
𝑚

𝑚

∑
ℓ=1

𝐛⊺
ℓ𝑓(𝐀)𝐛ℓ∣

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
trace estimator noise

+ 1
𝑚

𝑚

∑
ℓ=1

∣𝐛⊺
ℓ𝑓(𝐀)𝐛ℓ − lan-QF𝑘(𝑓; 𝐀, 𝐛ℓ)∣

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Lanczos quadrature error

. (7.8)

The first term is made small by increasing 𝑚, while the second term is made

small by increasing 𝑘. This allows us to obtain theoretical guarantees various
values of 𝑘 and𝑚. A prototypical theoretical guarantee is the following.

Theorem 7.8. There is a universal constant 𝐶 > 0 such that, for any
function 𝑓(𝑥) and failure probability 𝛿, the (𝑘, 𝑚)-th SLQ approximation
to 𝑑−1 tr(𝑓(𝐀)) satisfies

ℙ[∣𝑑−1 tr(𝑓(𝐀)) − SLQ𝑘,𝑚(𝑓)∣ > √‖𝑓‖ℐ log(2/𝛿)
𝐶𝑑𝑚 + min

deg(𝑝)<2𝑘
‖𝑓 − 𝑝‖ℐ] ≤ 𝛿.

Proof. First, using Theorem 7.6 and that ‖𝑓(𝐀)‖ ≤ ‖𝑓‖ℐwe have

ℙ[∣1𝑑 tr(𝑓(𝐀)) − 1
𝑚

𝑚

∑
ℓ=1

𝐛⊺
ℓ𝑓(𝐀)𝐛ℓ∣ > √‖𝑓‖ℐ log(2/𝛿)

𝐶𝑑𝑚 ] ≤ 𝛿. (7.9)

Next, using Corollary 7.5 and the fact that ‖𝐛ℓ‖ = 1, we have that

∣𝐛⊺
ℓ𝑓(𝐀)𝐛ℓ − lan-QF𝑘(𝑓; 𝐀, 𝐛ℓ)∣ ≤ 2 min

deg(𝑝)<2𝑘
‖𝑓 − 𝑝‖ℐ. (7.10)

Finally, using (7.8) gives the result. �
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Bounds like Theorem 7.8were first derived in [UCS17]. In particular, [UCS17]

gives explicit bounds for 𝑚 and 𝑘 required to get 𝜀 error with probability 1 − 𝛿.
Theorem 7.8 already reveals howwe must set 𝑚 (and in particular 𝑚 = 𝑂(𝜀−2).
To get an explicit bound for 𝑘, [UCS17] considers particular cases of functions
𝑓(𝑥); e.g. 𝑓(𝑥) analytic on a Bernstein ellipse containing ℐ. In these cases one
can derive specific bounds for the the number of Lanczos steps 𝑘 required using
classic approximation theory. For instance, for bounded functions analytic on

some Bernstein ellipse containing ℐ, it suffices to take 𝑘 = 𝑂(log(1/𝜀)) [Tre19].

7.4.1 Variance reduction By the linearity of the tracewe have that

tr(𝐀) = tr(𝐀̃) + tr(𝐀 − 𝐀̃), (7.11)

for any matrix 𝐀̃. If one can obtain a matrix 𝐀̃ for which the exact trace can

be computed efficiently, then we can apply the stochastic trace estimator to

approximate the residual term tr(𝐀−𝐀̃). If ‖𝐀−𝐀̃‖ ≪ ‖𝐀‖, then this can result in
significantly lower variance than trying to apply stochastic trace estimation to

tr(𝐀)directly. For the regular trace estimationproblem, suchanobservationhas
beenmade several times [Gir87; GSO17; Mey+21]. Notably, [Mey+21] introduces

Hutch++,whichuses sketching-based low-rankapproximation toobtain 𝐀̃. This
provably reduces the number of matrix-vector products with 𝐀 from 𝑂(𝜀−2) to
𝑂(𝜀−1); see also [PCK22; ETW24].

One can naturally implement Hutch++ to approximate tr(𝑓(𝐀)) by using
black-box methods like Lanczos-FA from Chapter 6 to approximate matrix-

vector products with 𝑓(𝐀). However, it is often better to open up the black-
box, and look more closely at how the variance reduction and Krylov subspace

methods interact [CH23; PMM23; PCM24].

TL;DR

Methods for approximating traces and quadratic forms of matrix functions are

closely related to quadrature. As with Lanczos-FA, Lanczos-QF works fine in

finite precision arithmetic.
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8 Spectrum approximation

Computing the spectral density𝜑(𝑥; 𝐀) is equivalent to computing the spectrum
of 𝐀 and is therefore infeasible in many settings. However, approximations

to 𝜑(𝑥) are also useful in that they provide a global picture of the spectrum
of 𝐀. Such coarse grained approximations are used in electronic structure

computations andother tasks inphysics1 [Wei+06; Jin+21], probing thebehavior

of neural networks in machine learning [GKX19; Pap19; GWG19; Yao+20], un-

derstanding the structure of networks in spectral graph theory [KV17; BKM22],

loadbalancingmodernparallel eigensolvers innumerical linear algebra [Pol09;

Li+19], and computing the product of matrix functionswith vectors [Fan+19].

We remark that spectrum approximation is closely related to spectral sum

approximation, discussed in Chapter 7. In particular,

𝑑−1 tr(𝑓(𝐀)) = ∫ 𝑓(𝑥)𝜑(𝑥; 𝐀)d𝑥. (8.1)

This connection iswill be essential to analyzingmethods for spectrum approx-

imation.

8.1 Stochastic Lanczos Quadrature

Using the same arguments as in Section 7.3, is not hard to see that if 𝔼[𝐛𝐛⊺] =
𝑑−1𝐈, then for each value 𝑥

𝔼[𝜓(𝑥; 𝐀, 𝐛)] = 𝜑(𝑥; 𝐀). (8.2)

While computing𝜓(𝑥; 𝐀, 𝐛) isnot easy,wecancompute theGaussianquadrature
approximation 𝜓𝑘(𝑥; 𝐀, 𝐛) to 𝜓(𝑥; 𝐀). Averaging repeated copies of 𝜓𝑘(𝑥; 𝐀, 𝐛)
to reduce statistical noise yields the SLQ approximation to the spectral density

function.

Definition8.1. Let𝐛1, … , 𝐛𝑚 ∼ Unif(𝕊𝑑−1)be independentvectorsdrawn
from the unit hypersphere. For each ℓ = 1, … , 𝑚, denote by𝜓𝑘(𝑥; 𝐀, 𝐛ℓ) be
the 𝑘-point Guassian quadrature approximation to 𝜓(𝑥; 𝐀, 𝐛ℓ). The (𝑘, 𝑚)

1In physics, 𝜑(𝑥) is often called the density of states (DOS).
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SLQ approximation 𝜓SLQ𝑘,𝑚 (𝑥) to 𝜑(𝑥; 𝐀) is defined as

𝜓SLQ𝑘,𝑚 (𝑥) = 𝜓SLQ𝑘,𝑚 (𝑥; 𝐀) ∶= 1
𝑚

𝑚

∑
ℓ=1

𝜓𝑘(𝑥; 𝐀, 𝐛ℓ)

UsingTheorem7.2we see that the SLQ trace estimator is compatiblewith the

SLQ spectral density estimator.

Lemma8.2. The (𝑘, 𝑚)SLQapproximationSLQ𝑘,𝑚(𝑓) to tr(𝑓(𝐀)) is related
to the (𝑘, 𝑚)-th SLQ approximation 𝜓SLQ𝑘,𝑚 (𝑥) to 𝜑(𝑥; 𝐀) by

SLQ𝑘,𝑚(𝑓) = ∫ 𝑓(𝑥)𝜓SLQ𝑘,𝑚 (𝑥)d𝑥. (8.3)

In order to obtain theoretical guarantees for SLQ spectrum approximation,

we must establish a measure of distance between two densities. A common

way of defining the distance between to densities is the Wasserstein distance.

A visual explication is given in Figure 8.1.

Definition 8.3. Let 𝜇1(𝑥) and 𝜇2(𝑥) be two probability density functions
and let 𝑀1(𝑥) and 𝑀2(𝑥) be their respective cumulative distribution
functions. The Wasserstein distance between 𝜇1(𝑥) and 𝜇2(𝑥), denoted
dW(𝜇1, 𝜇2), is defined by

dW(𝜇1, 𝜇2) = ∫ |𝑀1(𝑥) − 𝑀2(𝑥)|d𝑥.

SLQ satisfies the followingWasserstein convergence guarantee.

Theorem 8.4. Suppose

𝑚 ≥ log2(𝜀−1) log(𝜀−1𝛿−1)
𝑑𝜀2 , 𝑘 ≥ 1

𝜀 .

Then, the (𝑘, 𝑚)-SLQ approximation to 𝜑( ⋅ ; 𝐀) satisfies

ℙ[ dW(𝜑( ⋅ ; 𝐀), 𝜓SLQ𝑘,𝑚 ) > |𝜆max − 𝜆min| 𝑂(𝜀)] ≤ 𝛿.

In particular, note that if 𝜀 ≫ 𝑑−0.499, then we can instantiate Theorem 8.4

with 𝑚 = 1 (i.e. a single random test vector), in which case one can obtain a

𝑂(𝜖)-accurateWasserstein approximationwith 𝜀−1 matrix-vector products.
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Figure 8.1: Cumulative distribution functions𝑀1(𝑥) ( ) and𝑀2(𝑥) ( ) corre-
sponding to densities 𝜇1(𝑥) and 𝜇2(𝑥). The Wasserstein distance dW(𝜇1, 𝜇2) is the total
area of the shaded region between the two curves.

To the best of our knowledge, the first theoretical bounds for SLQ were

established in [CTU21]. Our proof technique here more closely follows the ap-

proachof [BKM22] for thekernelpolynomialmethoddescribed inSection8.2. A

related, butmore complicated, algorithmwhichgives an 𝜖-accurateWasserstein
approximation with roughly 𝜀−1 matrix-vector products for any 𝜀 ≫ 𝑑−1 is

described in [Mus+24].

8.1.1 Proof of Theorem 8.4 It iswell-known (see for instance [Vil09, Remark

6.5]) that theWasserstein distance is equivalently defined by

dW(𝜇1, 𝜇2) = sup {∫ 𝑓(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥 ∶ 𝑓(𝑥) 1-Lipschitz} . (8.4)

This characterizationwill be useful in our analysis.

Webeginbystating Jackson’s theorem [Jac12],whichasserts that all Lipschitz

functions can be approximated by a low-degree polynomial with nice Cheby-

shev coefficients; see [Riv81, Theorem 1.4] and [Tre19, Theorem 7.1] for details.

Theorem 8.5. Suppose 𝑓(𝑥) is 1-Lipschitz. There exists2 a polynomial

𝑝(𝑥) = 𝑐0𝑇0(𝑥) + 2
2𝑘−1

∑
𝑛=1

𝑐𝑛𝑇𝑛(𝑥)

such that

|𝑐𝑛| = 𝑂(𝑛−1), ‖𝑓 − 𝑝‖[−1,1] = 𝑂(𝑘−1).
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Next, we show that if two densities have similar Chebyshevmoments, then

they are close inWasserstein distance.3

Corollary 8.6. Suppose 𝜇1(𝑥) and 𝜇2(𝑥) are two probability density func-
tion satisfying, for all 𝑛 < 1/𝜀,

∣ ∫ 𝑇𝑛(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ = 𝑂( 𝜀
log(𝜀−1)).

Then

dW(𝜇1, 𝜇2) = 𝑂(𝜀).

Proof. Set 𝑘 = 1/𝜀. Let 𝑓(𝑥) be an arbitrary 1-Lipschitz function and 𝑝(𝑥)
as in Theorem 8.5. By the triangle inequality,

∣ ∫ 𝑓(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣

≤ ∣ ∫(𝑓(𝑥) − 𝑝(𝑥))(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ + ∣ ∫ 𝑝(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣. (8.5)

Since 𝜇1(𝑥) and 𝜇2(𝑥) are both probability density functions, Theorem 8.5

implies

∣ ∫(𝑓(𝑥) − 𝑝(𝑥))(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ ≤ ∫ |𝑓(𝑥) − 𝑝(𝑥)||𝜇1(𝑥) − 𝜇2(𝑥)|d𝑥 (8.6)

≤ ‖𝑓 − 𝑝‖[−1,1] ∫ |𝜇1(𝑥)| + |𝜇2(𝑥)|d𝑥 (8.7)

≤ 2‖𝑓 − 𝑝‖[−1,1] = 𝑂(𝑘−1) = 𝑂(𝜀). (8.8)

Next, using the expansion of 𝑝(𝑥), and again noting that 𝜇1(𝑥) and 𝜇2(𝑥)
are both probability density functions, then using Theorem 8.5 and the

fact that 1 + 1/2 + ⋯ + 1/𝑛 = 𝑂(log(𝑛)), we have that

∣ ∫ 𝑝(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ = ∣2
2𝑘−1

∑
𝑛=1

𝑐𝑛 ∫ 𝑇𝑛(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣. (8.9)

≤ 2
2𝑘−1

∑
𝑛=1

|𝑐𝑛|∣ ∫ 𝑇𝑛(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ (8.10)

≤ 2
2𝑘−1

∑
𝑛=1

1
𝑛

𝜀
log(𝑘) = 𝑂(𝜀). (8.11)

2In fact, the polynomial can be obtained constructively.
3This bound ismore-or-less sharp; it’s not hard to show there exist distributionswithmatchingmoments

through degree 1/𝜀withWasserstein distancesΩ(𝜀) [KV17; Jin+23].
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Plugging (8.8) and (8.11) into (8.5) we have that

∣ ∫ 𝑓(𝑥)(𝜇1(𝑥) − 𝜇2(𝑥))d𝑥∣ = 𝑂(𝜀). (8.12)

Hence, since 𝑓(𝑥) is arbitrary, using (8.4) gives the result. �

The proof of proof of Theorem 8.4 then follows as an immediate result of

the previous to facts.

Proof of Theorem 8.4. W.l.o.g., scale 𝐀 so that ℐ = [−1, 1]. By Lemma 3.25
we have that ‖𝑇𝑛‖ℐ ≤ 1. Therefore, using Theorem 7.8,we have that

∀𝑛 < 2𝑘 ∶ ℙ[∣𝑑−1 tr(𝑇𝑛(𝐀)) − SLQ𝑘,𝑚(𝑇𝑛)∣ > √log(4𝑘/𝛿)
𝐶𝑑𝑚 ] ≤ 𝛿

2𝑘.

Thus, applying a union boundwe therefore have that

ℙ[∃𝑛 < 2𝑘 ∶ ∣𝑑−1 tr(𝑇𝑛(𝐀)) − SLQ𝑘,𝑚(𝑇𝑛)∣ > √log(4𝑘/𝛿)
𝐶𝑑𝑚 ] ≤ 𝛿. (8.13)

Our choice of 𝑚 allows us to instantiate Corollary 8.6, and our choice of 𝑘
(and removing the condition on [𝜆min, 𝜆max]) then gives the result. �

8.2 The Kernel Polynomial Method

Lanczos quadrature can be viewed as approximating 𝜓(𝑥; 𝐀, 𝐛) by Gaussian
quadrature. A common alternative is the kernel polynomial method (KPM)

[Ski89; SR94; Sil+96;Wei+06].

Definition 8.7. Fix a reference density 𝜈(𝑥)with orthogonal polynomi-
als {𝑞𝑛(𝑥)}. The 𝑘-th KPM approximation 𝜇KPM𝑘 (𝑥) to 𝜇(𝑥) is the “density
function”

𝜇KPM𝑘 (𝑥) ∶= 𝜈(𝑥)
2𝑘−1

∑
𝑛=0

( ∫ 𝑞𝑛(𝑧)𝜇(𝑧)d𝑧)𝑞𝑛(𝑥).

Amotivation for thedefinitionof theKPMis the following. Expand𝜇(𝑥)/𝜈(𝑥)
in an orthogonal polynomial series

𝜇(𝑥)
𝜈(𝑥) =

∞

∑
𝑛=0

( ∫ 𝑞𝑛(𝑧)𝜇(𝑧)
𝜈(𝑧)𝜈(𝑧)d𝑧)𝑞𝑛(𝑥) =

∞

∑
𝑛=0

( ∫ 𝑞𝑛(𝑧)𝜇(𝑧)d𝑧)𝑞𝑛(𝑥). (8.14)

Soweobtain theapproximatingbytruncating theseriesat2𝑘−1andmultiplying
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up the 𝜈(𝑥). This also makes it clear that we need that the support of 𝜇(𝑥) is
contained in the support of 𝜈(𝑥), otherwise 𝜇(𝑥)/𝜈(𝑥)will not be defined.

We note that when 𝜇(𝑥) = 𝜓(𝑥; 𝐀, 𝐛), then the coefficients in the KPM

approximation can be computed by the identity

∫ 𝑞𝑛(𝑥)𝜇(𝑥)d𝑥 = 𝐛⊺𝑞𝑛(𝐀)𝐛. (8.15)

Most commonly, the reference density 𝜈(𝑥) is taken to be a shifted and scaled
version of the Chebyshev density 𝜇𝑇(𝑥) defined in (3.17). In this case, the co-
efficients (8.15) are often computed using an explicit Chebyshev recurrence

(3.15); see for instance [Wei+06]. As we discuss in Section 8.2, Lanczos-based

approaches are also possible.

As with the Gaussian quadrature approximation, the KPM approximation

satisfies an exactness property for integrating polynomials.

Lemma 8.8. Suppose the support of 𝜇(𝑥) is contained in the support of
𝜈(𝑥). Then for any polynomial 𝑝(𝑥) of degree less than 2𝑘,

∫ 𝑝(𝑥)𝜇KPM𝑘 (𝑥)d𝑥 = ∫ 𝑝(𝑥)𝜇(𝑥)d𝑥. (8.16)

Proof. Fix𝑚 < 2𝑘. By the orthonormality of {𝑞𝑛(𝑥)}with respect to 𝜈(𝑥),

∫ 𝑞𝑚(𝑥)𝜇KPM𝑘 (𝑥)d𝑥 = ∫
2𝑘−1

∑
𝑛=0

( ∫ 𝑞𝑛(𝑧)𝜇(𝑧)d𝑧)𝑞𝑛(𝑥)𝑞𝑚(𝑥)𝜈(𝑥)d𝑥 (8.17)

=
2𝑘−1

∑
𝑛=0

( ∫ 𝑞𝑛(𝑧)𝜇(𝑧)d𝑧) ∫ 𝑞𝑛(𝑥)𝑞𝑚(𝑥)𝜈(𝑥)d𝑥 (8.18)

= ∫ 𝑞𝑚(𝑧)𝜇(𝑧)d𝑧. (8.19)

The result follows since {𝑞𝑛(𝑥)} is a basis for polynomials of degree less
than 2𝑘. �

Damping Unlike the SLQ approximation, the KPM approximation could be

negative at some values. This can sometimes be mitigated through the use of

damping. Given damping coefficient {𝜌𝑛,𝑘}, the damped KPM approximation is

defined as

𝜇dKPM𝑘 (𝑥) ∶= 𝜈(𝑥)
2𝑘−1

∑
𝑛=0

𝜌𝑛,𝑘( ∫ 𝑝𝑛(𝑧)𝜇(𝑧)d𝑧)𝑝𝑛(𝑥). (8.20)

Clearly the case 𝜌𝑛,𝑘 = 1 recovers the KPM approximation.
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When 𝜈(𝑥) = 𝜇𝑇(𝑥) and the support of 𝜇(𝑥) is contained in [−1, 1], then
Jackson’s damping coefficients

𝜌𝑛,𝑘 = (2𝑘 + 1)−1 ((2𝑘 − 𝑛 + 1) cos ( 𝑛𝜋
2𝑘 + 1) + sin ( 𝑘𝜋

2𝑘 + 1) cot ( 𝜋
2𝑘 + 1)) (8.21)

can be used to ensure that the resulting approximation is a actually a density

function [Wei+06]. In this case, a bound similar to Corollary 7.4 can be obtained

[BKM22; CTU22].

Spectrum adaptivity The reference density 𝜈(𝑥) must be chosen before the
coefficients (8.15) can be computed. However, this does not require fixing the

reference density before productswith𝐀 are performed. In particular, as noted

in [Che23], the Lanczos quadrature method from Section 7.4 can be used to

compute the coefficients (8.15). This allows the reference density to be chosen

adaptivelybasedon the spectrumof 𝐀,which can lead to better approximations
in a number of settings.

TL;DR

We can directly approximate the spectral density of a matrix using quadrature

methods. This is closely related to trace estimation.
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9 Block Methods

There are a number of situations in which we are simultaneously interested

in the Krylov subspaces corresponding to a matrix 𝐀 and multiple vectors

𝐛1, … , 𝐛𝑚. This motivates the definition of a block Krylov subspace.

Definition 9.1. The dimension 𝑘 block Krylov subspace generated by𝐀
and amatrix𝐁 = [𝐛1, … , 𝐛𝑚] is defined as

𝒦𝑘(𝐀, 𝐁) ∶= 𝒦𝑘(𝐀, 𝐛1) + ⋯ + 𝒦𝑘(𝐀, 𝐛𝑚).

In particular, note that each Krylov subspace 𝒦𝑘(𝐀, 𝐛𝑖) is contained in the
block Krylov subspace 𝒦𝑘(𝐀, 𝐁).

The block Krylov subspace can equivalently be defined as

𝒦𝑘(𝐀, 𝐁) = span{𝐁, 𝐀𝐁, … , 𝐀𝑘−1𝐁}, (9.1)

where the span of a collection of matrices is interpreted as the span of all of the

constituent columns of the matrices. Such a definition is more reminiscent of

Definition 1.2 for standard Krylov subspaces.

9.1 Block Lanczos

The Lanczos algorithm naturally generalizes to the block setting [GU77]. An

implementation of the block-Lanczos algorithm for obtaining an orthonormal

basis for 𝒦𝑘(𝐀, 𝐁) is described in Algorithm 9.2.

Algorithm 9.2 (Block Lanczos).

1: block-Lanczos(𝐀, 𝐁, 𝑘)
2: 𝐐̂0, 𝐁̂−1 = QR(𝐁), 𝐁̂−1 = 𝟎, 𝐐̂−1 = 𝟎
3: for 𝑛 = 0, 1, … , 𝑘 − 1 do
4: 𝐘𝑛+1 = 𝐀𝐐̂𝑛 − 𝐐𝑛−1𝐁̂⊺

𝑛−1
5: 𝐀̂𝑛 = 𝐐̂⊺

𝑛𝐘𝑛+1
6: 𝐙𝑛+1 = 𝐘𝑛+1 − 𝐐̂𝑛𝐀𝑛
7: orthogonalize against 𝐐̂0, … , 𝐐̂𝑛 ▷ optional
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8: 𝐐̂𝑛+1, 𝐁̂𝑛 = QR(𝐙𝑛+1) ▷ deflate to ensure orthogonality

9: return {𝐐̂𝑛}, {𝐀̂𝑛}, {𝐁̂𝑛}

Assuming the algorithm terminates successfully, the output satisfies a sym-

metric three term recurrence

𝐀𝐐̂𝑛 = 𝐐̂𝑛−1𝐁̂⊺
𝑛−1 + 𝐐̂𝑛𝐀̂𝑛 + 𝐐̂𝑛+1𝐁̂𝑛. (9.2)

This recurrence can bewritten inmatrix form as

𝐀𝐐𝑘 = 𝐐𝑘𝐓𝑘 + 𝐁⊺
𝑘−1𝐐𝑘𝐄⊺

𝑘 (9.3)

where 𝐄𝑘 = 𝐞𝑘 ⊗ 𝐈, where “⊗” denotes the Kronecker product, and

𝐐𝑘 ∶=
⎡⎢⎢
⎣

| | |
𝐐̂0 𝐐̂1 ⋯ 𝐐̂𝑘−1
| | |

⎤⎥⎥
⎦

, 𝐓𝑘 ∶=
⎡
⎢
⎢
⎢
⎣

𝐀̂0 𝐁̂⊺
0

𝐁̂0 𝐀̂1 ⋱
⋱ ⋱ 𝐁̂⊺

𝑘−2
𝐁̂𝑘−2 𝐀̂𝑘−1

⎤
⎥
⎥
⎥
⎦

. (9.4)

Here the 𝐁̂𝑛 are upper triangular, so𝐓𝑘 is of bandwidth at most 2𝑏 + 1.
Block Lanczos is substantially more difficult to implement in practice than

than Lanczos. As with Lanczos, omitting the orthogonalization in Line 7 of

Algorithm 9.2 will result in a loss of orthogonality in the columns of 𝐐𝑘. How-

ever, even if full reorthogonalization is used, the blocks 𝐙𝑛+1 may themselves

become rank-deficient. This is becausewhen𝑚 > 1, dim 𝒦𝑘(𝐀, 𝐁) < 𝑘𝑚 does not

imply that𝒦𝑘(𝐀, 𝐁) is an invariant subspace of 𝐀. As such,we donot necessarily
want to terminate the block-Lanczos algorithm as soon as dim 𝒦𝑘(𝐀, 𝐁) < 𝑘𝑚.
However, this means that even in exact arithmetic, QR algorithm used in in Line 8

of Algorithm 9.2 must return 𝐐̂𝑛+1 with rank equal to that of 𝐙𝑛+1. This is

complicated further in finite precision arithmetic, where the algorithm must

identify the numerical rank of 𝐙𝑛+1 and deflate appropriately.

9.1.1 Finite precision arithmetic The behavior of block Lanczos in finite pre-

cision arithmetic is much less understood than the behavior of the standard

Lanczos algorithm. For instance, as far as we are aware, there is no Paige style

analysis (see Section 4.1) which guarantees that a perturbed version of (9.3)

holds in finite precision arithmetic. Even so, good implementations (which

deflatewhennecessary) seem toworkwell in practice, producing outputswhich

nearly satisfy (9.3).

9.2 Block CG, block Lanczos-FA, and block Lanczos-QF

The conjugate gradient, Lanczos-FA, and Lanczos-QF algorithms have natural

generalizations to the block setting.
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9.2.1 Block CG We can define a block conjugate gradient iterate analogously

to the standard conjugate gradient iterate.

Definition 9.3. The 𝑘-th block conjugate gradient iterate𝐗CG
𝑘 is given by

𝐗CG
𝑘 = 𝐗CG

𝑘 (𝐀, 𝐁) ∶= 𝐐𝑘𝐓𝑘
−1𝐄1𝐁̂−1.

Define thematrix𝐀-norm ‖⋅‖𝐀 by‖𝐗‖𝐀 = tr(𝐗⊺𝐀𝐗)1/2 = ‖𝐀1/2𝐗‖F. A similar
proof gives the block version of Theorem 5.2.

Theorem 9.4. If 𝐀 is positive definite, the block CG iterate satisfies the

formula

𝐗CG
𝑘 = argmin

range(𝐗)⊆𝒦𝑘(𝐀,𝐁)
‖𝐀−1𝐁 − 𝐗‖𝐀.

The optimality of the block-CG iterate over the block Krylov subspace im-

plies that block-CG performs at least aswell as CG.

Corollary 9.5. Let [𝐗CG
𝑘 ]ℓ denote the ℓ-th column of 𝐗CG

𝑘 . Then

𝑏

∑
ℓ=1

‖𝐀−1𝐛ℓ − [𝐗CG
𝑘 ]ℓ‖2

𝐀 ≤
𝑏

∑
ℓ=1

‖𝐀−1𝐛ℓ − 𝐱CG𝑘 (𝐀, 𝐛ℓ)‖2
𝐀

Proof. Using Theorems 5.2 and 9.4,we have that

‖𝐀−1𝐛ℓ − [𝐗CG
𝑘 ]ℓ‖𝐀 = min

𝐱∈𝒦𝑘(𝐀,𝐁)
‖𝐀−1𝐛ℓ − 𝐱‖𝐀 (9.5)

≤ min
𝐱∈𝒦𝑘(𝐀,𝐛ℓ)

‖𝐀−1𝐛ℓ − 𝐱‖𝐀 (9.6)

= ‖𝐀−1𝐛ℓ − 𝐱CG𝑘 ‖𝐀. (9.7)

The result then follows. �

One can use Corrolaries 5.3 and 5.4 to derive bounds in terms of polynomial

approximation.

9.2.2 Block Lanczos-FA The block Lanczos-FA iterate can be defined analo-

gously to the standard Lanczos-FA iterate.

Definition 9.6. The 𝑘-th block Lanczos-FA approximation to 𝑓(𝐀)𝐁 is

lan-FA𝑘(𝑓) = lan-FA𝑘(𝑓; 𝐀, 𝐁) ∶= 𝐐𝑘𝑓(𝐓𝑘)𝐄1𝐁̂−1.
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Analogously to Theorem 6.2 for Lanczos-FA, block Lanczos-FA is exact for

low-degree polynomials.1

Theorem 9.7. Suppose deg(𝑝) < 𝑘. Then,

lan-FA𝑘(𝑝) = 𝑝(𝐀)𝐁.

As such, block Lanczos-FA satisfies bounds similar to Theorem 9.8.

Theorem 9.8. The Lanczos-FA iterate satisfies

‖𝑓(𝐀)𝐛 − lan-FA𝑘(𝑓)‖ ≤ 2‖𝐁‖F min
deg(𝑝)<𝑘

‖𝑓 − 𝑝‖ℐ.

9.2.3 Block Lanczos-QF The block Lanczos-QF iterate can be defined analo-

gously to the standard Lanczos-QF iterate.

Definition 9.9. The 𝑘-th Lanczos-QF approximation to𝐁⊺𝑓(𝐀)𝐁 is

lan-QF𝑘(𝑓) = lan-QF𝑘(𝑓; 𝐀, 𝐁) ∶= ‖𝐛‖2𝐁̂⊺
−1𝐄⊺

1𝑓(𝐓𝑘)𝐄1𝐁̂−1.

Theorem 9.10. Let 𝑝(𝑥) be a polynomialwith deg(𝑝) < 2𝑘. Then

lan-QF𝑘(𝑝) = 𝐁⊺𝑝(𝐀)𝐁.

Proof. It suffices to verify the result for 𝑝(𝑥) = 𝑥ℓ for ℓ = 0, 1, … , 2𝑘 − 1.
For𝑚, 𝑛 < 𝑘, using Theorem 9.7 and the fact that𝐐⊺

𝑘𝐐𝑘 = 𝐈, we have that

𝐁⊺𝐀𝑚+𝑛𝐁 = (𝐀𝑚𝐁)⊺𝐀𝑛𝐁 (9.8)

= (𝐐𝑘(𝐓𝑘)𝑚𝐄1𝐁̂−1)⊺(𝐐𝑘(𝐓𝑘)𝑛𝐄1𝐁̂−1) (9.9)

= lan-QF𝑘(𝑥
𝑚+𝑛). (9.10)

Next, using that𝐐⊺
𝑘𝐀𝐐𝑘 = 𝐓𝑘,

𝐁⊺𝐀2𝑘−1𝐁 = (𝐀𝑘−1𝐁)⊺𝐀𝐀𝑘−1𝐁 (9.11)

= (𝐐𝑘(𝐓𝑘)𝑘−1𝐄1𝐁̂−1)⊺𝐀(𝐐𝑘(𝐓𝑘)𝑘−1𝐄1𝐁̂−1) (9.12)

= lan-QF𝑘(𝑥
2𝑘−1). (9.13)

Hence, the result follows by linearity. �

1In fact, a stronger result about “matrix polynomials” is true [FLS20, Theorem 2.7].
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Thus, since ‖𝐁̂−1‖F = ‖𝐁‖F, we obtain an analog of Corollary 7.4.

Corollary 9.11. The Lanczos-QF iterate satisfies

∣𝐁⊺𝑓(𝐀)𝐁 − lan-QF𝑘(𝑓)∣ ≤ 2‖𝐁‖2
F min

deg(𝑝)<2𝑘
‖𝑓 − 𝑝‖ℐ.

9.3 Some facts and observations

9.3.1 The Krylov subspace of Krylov subspace is a Krylov subspace The

following observation about blockKrylovsubspaces has founduse in the design

and analysis of algorithms [CH23;MMM24].

Theorem9.12. Suppose thecolumnsof 𝐐areeachcontained in𝒦𝑘+1(𝐀, 𝛀).
Then

𝒦𝑡(𝐀, 𝐐) ⊆ 𝒦𝑘+𝑡(𝐀, 𝛀),

with equality if and only if the columns of 𝐐 span 𝒦𝑘+1(𝐀, 𝛀).

Proof. Wehave

𝒦𝑡(𝐀, 𝐐) = span{𝐐, 𝐀𝐐, … , 𝐀𝑡−1𝐐}
⊆ span{𝛀, 𝐀𝛀, … , 𝐀𝑘𝛀,

𝐀𝛀, 𝐀2𝛀, … , 𝐀𝑘+1𝛀,
⋱

𝐀𝑡−1𝛀, 𝐀𝑡𝛀, … , 𝐀𝑘+𝑡−1𝛀} = 𝒦𝑘+𝑡(𝐀, 𝛀). (9.14)

The second result follows similarly,with the subset inclusion replaced by

equality. �

We note that a good block-Lanczos implementation would multiply𝐀with

𝐐, realize that 𝐀𝐐 has a small rank, and automatically do deflation. Thus,

while it would unnecessarily do some products with 𝐀, the overall cost would
be similar to an algorithm designed with Theorem 9.12 in mind. Even so,

Theorem 9.12 is of conceptual value.

9.3.2 Random block Krylov subspaces In many settings where block KSMs

areused,𝐁 is a randomGaussianmatrix. In this case,we canprovide a sufficient

conditions for the Krylov subspace 𝒦𝑘(𝐀, 𝐁) to be of rank 𝑘𝑚.



Block Methods page 70

Theorem 9.13. Suppose each distinct eigenvalue of 𝐀 has multiplicity

at most 𝑚, and let 𝐁 be a 𝑑 × 𝑚 random Gaussian matrix. Then, with

probability one,

dim(𝒦𝑘(𝐀, 𝐁)) = min{𝑘𝑚, 𝑑}.

Inspired bywork analyzing block Krylov subspaces over finite fields [Kal95]

wemake use of the Schwartz–Zippel Lemma; see also [Rao24].

Lemma 9.14 (Schwartz–Zippel). Suppose 𝑝 ∶ ℝ𝑞 → ℝ is a a nonzero

polynomial of finite total degree and 𝐱 is a random Gaussian vector.

Then,with probability one, 𝑝(𝐱) ≠ 0.

Proof. For convenience, suppose 𝑘𝑚 ≤ 𝑑. We will subsequently describe
how to relax this condition.

Webegin byrelating the blockKrylovsubspace to amultivariate poly-

nomial of the entries of the starting block as follows. Define the matrix

𝐊𝑘(𝐁) by
𝐊𝑘(𝐁) = [𝐁 𝐀𝐁 ⋯ 𝐀𝑘−1𝐁] ∈ ℝ𝑑×𝑘𝑚, (9.15)

and define the polynomial 𝑝 ∶ ℝ𝑑×𝑘 → ℝ by

𝑝(𝐁) = det(𝐊𝑘(𝐁)⊺𝐊𝑘(𝐁)). (9.16)

Recall that 𝑘𝑚 ≤ 𝑑 by assumption. Therefore, the matrix𝐊𝑘(𝐁) is of full-
rank 𝑘𝑚 exactlywhen 𝑝(𝐁) ≠ 0.

If we can show that 𝑝 ∶ ℝ𝑑×𝑘 → ℝ is not the zero polynomial,

then the result follows immediately from the Schwartz–Zippel Lemma

(Lemma 9.14); i.ewemust exhibit a matrix 𝐁̂ such that 𝑝(𝐁̂) ≠ 0.
Since each distinct eigenvalue has multiplicity at most 𝑏, we can par-

tition the 𝑑 eigenvalues of 𝐀 into 𝑏 groups such that (i) each group has at
least 𝑘 eigenvalues, and (ii) no eigenvalueswithin in a group are repeated.
Work in a basis such that

𝐀 =
⎡
⎢
⎢
⎢
⎣

𝐀1
𝐀2

⋱
𝐀𝑚

⎤
⎥
⎥
⎥
⎦

, (9.17)

where each𝐀𝑖 is diagonal and corresponds to one of the aforementioned

groups of eigenvalues. Denote the all onesvector (of appropriate size) by
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𝟏 and define 𝐁̂ by

𝐁̂ =
⎡
⎢
⎢
⎢
⎣

𝟏
𝟏

⋱
𝟏

⎤
⎥
⎥
⎥
⎦

. (9.18)

Observe then that, for some permutationmatrix 𝐏

𝐊𝑘(𝐁̂) =
⎡
⎢
⎢
⎢
⎣

𝐊̂1
𝐊̂2

⋱
𝐊̂𝑚

⎤
⎥
⎥
⎥
⎦

𝐏, 𝐊̂𝑖 = [𝟏 𝐀𝑖𝟏 ⋯ 𝐀𝑘−1
𝑖 𝟏] . (9.19)

For each 𝑖, 𝟏 has nonzero projection onto each of the 𝐀𝑖 and hence by

Lemma 2.2, rank(𝐊̂𝑖) = 𝑘. So then

rank(𝐊𝑘(𝐁̂)) = rank(𝐊̂1) + ⋯ + rank(𝐊̂𝑚) = 𝑘𝑚. (9.20)

Therefore,𝐊𝑘(𝐁̂) is full rank and 𝑝(𝐁̂) ≠ 0 as desired.
Now, assume 𝑘𝑚 > 𝑑. The proof is similar, but nowwe define 𝑝(𝐁) =

det(𝐊𝑘(𝐁)𝐊𝑘(𝐁)⊺) which has nonzero determinant when 𝐊𝑘(𝐁) is of full
rank 𝑑. Since 𝑑 < 𝑘𝑚, we can group the eigenvalues so that each group
has atmost 𝑘 eigenvalues. Then the rank of 𝐊̂𝑖will be exactly the number

of eigenvalues in that group, and the sum is 𝑑. �

TL;DR

Blockmethods can be used for many tasks involvingmatrix functions, and sat-

isfymany of the same bounds as single-vector methods. While theory for their

behavior (in exact or finite precision arithmetic) is less developed than their

single-vector counterparts, they are often used in practicewith good results.
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