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INTRODUCTION

Computational approaches to the pressing and world-changing questions of today
are reliant on sub-routines for fundamental linear algebraic tasks. One important set
of such tasks is computing matrix functions and products of matrix functions with vectors.
Matrix functions transform the eigenvalues of a symmetric (or Hermitian) matrix according
to some scalar function while leaving the eigenvectors untouched. For example, the matrix
inverse, which corresponds to the inverse function f(z) = 1/z, inverts each of the eigenval-
ues of the given matrix. Other common matrix functions include the matrix sign, logarithm,
exponential, square root, and inverse square root.

In many situations, it is desirable to compute a vector equal to the product of a matrix func-
tion with a fixed vector (rather than the matrix function itself). For instance, the matrix in-
verse applied to a vector corresponds to the solution of a linear system of equations, which
is useful, even without knowing the inverse matrix. Beyond the multitude of applications of
linear systems, matrix functions applied to vectors are used for computing the overlap op-
erator in quantum chromodynamics 7], solving differential equations in applied math 8, 9],
Gaussian process sampling in statistics [10], principle component projection and regression
in data science [11], and a range of other applications [12].

Computing a scalar equal to the quadratic form of a matrix function and fixed vector is simi-
larly desirable and is often combined with stochastic trace estimation[13, 14] to approximate
the trace of a matrix function [15, 3]. Applications of the trace of matrix functions include
characterizing the degree of protein folding in biology [16], maximum likelihood estimation
in statistics [17, 18], designing better public transit in urban planning [19, 20] and finding
triangle counts and other motifs in network science [21]. The trace of matrix functions is in-
timately related to spectral density estimation, which is used in electronic structure compu-
tations[22, 23, 24] and other tasks in physics[25], probing the behavior of neural networks in
machine learning[26, 27, 28], and load balancing modern parallel eigensolvers in numerical
linear algebra [29, 30].

PERSONAL BACKGROUND/ACOMPLISHMENTS

Thesis. My thesis work is centered on the Lanczos method for matrix function approxi-
mation (Lanczos-FA) [31, 8]. Lanczos-FA is an algorithm for applying matrix functions to
vectors and computing quadratic forms involving matrix functions and is among the most
efficient and widely used method for all of the applicationslisted above. Critically, like many
methods for solving linear systems, Lanczos-FA does not require computing a full matrix
function in order to compute the product of a matrix function with a vector. Changing com-
puting goals and environments necessitate continued research, and my thesis aims to ad-
dress this need by (i) analyzing existing Lanczos-FA based algorithms for tasks which have
emerged inrecent years (e.g. studying large neural networks)[3, 32, 5,6, 33]and (ii) designing
more efficient implementations of Lanczos-FA for use in modern computing environments
(e.g. distributed memory supercomputers) |1, 6].



Accomplishments. During my PhD, I was fortunate to be supported by the NSF Graduate
Research Fellowship Program (GRFP). The GRFP provided me the freedom to work on prob-
lems which interested me individually and which aligned with my career goal of supporting
basic science. As a result, over the past several years, my research has repeatedly received
special recognition. In particular:

+ I won best student paper award at the 16th Copper Mountain Conference on It-
erative Methods.

I gave a long presentation at the International Conference on Machine Learning
(ICML) 2021 (=~ 3% of submissions were selected for long presentations).

- I'was awarded Boeing research award by my department.

Collaboration.

Throughout my PhD, I sought out collaborators from a range of distinct disciplines. I have
found such collaborations extremely effective in stimulating the development of new ideas,
and this experience motivates me to pursue a similarly diverse research environment as
preparation for a career of collaborative and cross-disciplinary work.

OVERVIEW OF PROPOSAL

During my postdoc, I will build on my PhD work by combining the power of recent ran-
domization techniques from theoretical computer science and optimization with the
practicality of Krylov subspace methods (like Lanczos-FA) from applied math. The
chosen research objectives require combining ideas and techniques from a range of back-
grounds, but, as a result, have the potential to significantly benefit the advancement and
sharing of knowledge across the sciences. Simultaneously, my outreach objective of organiz-
ing equitable conference and seminar sessions will contribute to building a more inclusive
scientific community.

At a high level, my research and outreach objectives are:

RO 1. Compare the convergence guarantees and practicality of the conjugate gradient
algorithm with recently developed fast stochastic gradient methods for the task
of solving linear systems.

RO 2. Derive sharper, spectrum dependent, bounds for the convergence of Krylov sub-
space methods used to approximate a matrix function applied to a vector and
quadratic forms of matrix functions.

RO 3. Design refined estimates for matrix function trace estimation and develop new
randomized sketching based approaches for computing general matrix functions
from the ground up, rather than as ad-hoc combinations of existing techniques.

00. Organize conference and seminar sessions with diverse speaker lineups and re-
search focuses.

RESEARCH OBJECTIVES

Throughout this section, A will be a n X n symmetric matrix with eigenvalues A\pax = A1
- > A = Amin and corresponding (orthonormal) eigenvectors uy, ..., u,. Thus, A
S Awu! andulu; = 0ifi # jand1ifi = j. The average eigenvalue is \yye =

v



(M +---4+Ay)/n =tr(A)/n. Given a function f : R — R, we define the matrix function f[A]
in the usual way by f[A] := 37, f(\)wu/]. Thus, f[A] is a matrix with the same eigen-
vectors as A but whose eigenvalues are transformed by f (again, the proptotypical matrix
function is the matrix inverse which corresponds to f(x) = 1/xz). Finally, when A is positive
definite (i.e. Amin > 0), the A-norm of a vector y, denoted ||y||a, is givenby /y T Ay.

Research Objective 1: Compare conjugate gradient and fast stochastic gradient meth-
ods. When A is positive definite, the conjugate gradient algorithm (CG)[31], which can be
viewed as a special case of Lanczos-FA, is of the most used methods for approximating A ~!'b,
the solution to the linear system Ax = b. CG outputs an estimate X satisfying ||[A~'b —
X||a < einruntime O(nsy/klog(1/¢)), where s = s(A) is the maximum number of nonzero
entries in a row of A and K = Amax/Amin is the condition number of A [34]. However, in
the past few years, a collection of fast stochastic gradient methods (SGMs), such as acceler-
ated coordinate descent and stochastic variance reduced gradient, offer runtime guarantees
of O(nsv/k*log(1/¢)), where £* = Aaye/Amin is the “smoothed condition number” of A [35,
36, 37).

It’s always true that x* < k, and in practice, it’s often the case that k* < k. Thus, in set-
tings where CG’s y/k runtime bound is tight, fast SGMs provably outperform CG. However,
CG often performs far better than the \/x bound, and it’s unclear whether SGMs still outper-
form CG in such settings. Moreover, while CG accesses A through matrix-vector products,
SGMs, which are based on randomized estimates to the gradient, access A through sequen-
tial inner products with individual rows of A. Since a matrix-vector products is equivalent
to n inner products, the theoretical runtimes of the algorithms are comparable. However,
the inner products in a matrix-vector product can be optimized through parallelization or
other hardware-aware approaches, so the real-world runtime of a matrix-vector product is
often far shorter than if the constituent inner products were computed sequentially.

Spectrum dependent bounds. The optimality of CG over Krylov subspace means there exist a
range of “spectrum dependent” bounds which account for more information about the spec-
trum of A than just the largest and smallest eigenvalues[38, 34]. During my PhD I extended
many existing bounds for CG to bounds for Lanczos-FA and related algorithms|5, 3, 6]. How-
ever, existing bounds are not easily compared directly to the v/x* bound for SGMs described
above. Thus, in order to make a more direct comparison between CG and SGMs, I will seek
spectrum dependent bounds for CG depending on the smoothed condition number x*.

Average case analysis. My second approach, complimentary to the first, will be to consider the
average case behavior of CG and fast SGMs when applied to a large random system. CG has
been studied extensively in this setting, and in certain cases it is known that the /x bound
is tight [39, 40] whereas in others it is known that it is loose [41, 42]. Gradient descent and
accelerated gradient descent have also been studied in this setting [43, 44]. The range of ex-
isting works will provide the groundwork for a similar analysis of fast gradient methods.
However, fast SGMs access the matrix A in fundamentally different ways than CG and (ac-
celerated) gradient descent; specifically, the fact SGMs use randomized estimators of the
gradient rather than the full gradient. Therefore, analyzing these algorithms in this setting
is non-trivial and will require the development of new analysis techniques.



Research Objective 2: Spectrum dependent error bounds for Krylov subspace based matrix
function approximation.

The most general bounds for Krylov subspace methods (KSMs) used to approximate f[A]b
or bTf[A]b are based on polynomial approximation theory, and in particular, on approxi-
mation of f over a single fixed interval such as [Amin, Amax]- Such bounds are useful in that
they provide simple convergence guarantees which require only minimal information about
A and b. Necessarily, however, this type of bound does not account for fine-grained prop-
erties of the spectrum of A such as isolated or clustered eigenvalues.

In the case that f(z) = 1/x, algorithms such as the conjugate gradient algorithm (CG) and
minimum residual algorithm (MINRES) have instance optimality guarantees; i.e. they pro-
vide optimal (in a certain norm) approximations to f[A]b = A~!b over Krylov subspace. As
a result, error bounds depending on the best approximation to on the eigenvalues of A can
be obtained for such algorithms. These error bounds can be significantly better than bounds
based on the best uniform approximation over [Amin, Amax] when the spectrum of A has fa-
vorable properties.

It's often possible to approximate f[A]b by a proxy rational matrix function of the form
S (A + D)7 tbor Y (A2 + ¢I)"!b[45]; i.e. by solving a series of shifted linear systems.
Such approximations can be derived by districting an integral representation of f, and when
Lanczos-FA is used to approximate each system, the resulting approximations converge to
the Lanczos-FA approximation to f[A]b (as the numerical integral approximation to f is
refined). In [5] we take advantage of this fact to leverage existing fine grained convergence
guarantees for Lanczos-FA on linear systems to provide refined error bounds for analytic
or piecewise analytic functions f. Our work extends past work [46, 47, 48, 49, 50] in that
it applies to a much broader class of functions and that the impact of a perturbed Lanczos
recurrence in finite precision is considered.

Interestingly, existing KSMs, such as Lanczos-FA, often perform nearly optimally in numer-
ical experiments. While [5] provides spectrum dependent bounds for general functions, it
does not explain this near optimality. In [6] we take a step towards understanding this phe-
nomenon by describing memory-efficient algorithms to compute nearly optimal approxi-
mations to f[A]b for any rational matrix function f. The algorithms we describe are closely
related to Lanczos-FA and therefore help to illuminate convergence properties of Lanczos-
FA. Even so, the question of optimality for general f remains open.

If my application is successful, I will work towards a better understanding of the conver-
gence of Lanczos-FA and other KSMs in terms of optimality over Krylov subspace. Because
we already have stronger guarantees for rational functions, a natural approach is to consider
functions “well approximated” by rational functions. As preliminary steps, there are a inter-
esting technical problems to explore. For instance, it would be interesting to study properties
of the generalized “harmonic Ritz values” induced by the optimal algorithms from [6].

Research Objective 3: trace and low-rank approximation of f[A]. The most widely used
algorithms forestimating tr(f[A]) = f(A1)+- - -+ f(\,) areclosely related to the task of com-
puting bTf[A]b for a suitible choice of random vector b; i.e. using stochastic trace estimation
[13]. While a range of existing analyses balance the errors of stochastic trace estimation with



the convergence guarantees of Krylov subspace methods|[15, 3, 32], these analyses do not take
advantage of the specific properties of the randomized estimator, and instead apply general
worst-case bounds for KSMs. Thus, I will design (high probability) bounds which take ad-
vantage of the full random structure of b. This is closely related to the average case analysis
approach in Objective 1, although here the randomness is due to b rather than A.

Following the successful analysis of stochastic matrix function trace estimation, I will study
the more general task of low-rank approximation via matrix sketching. Low rank approxi-
mations to a matrix are widely useful because they they can easily speed up essentially any
downstream applications involving the original matrix. A variety of algorithms for obtain-
ing a low rank approximations have been developed, and a large number of such algorithms
are based on an algorithmic technique called sketching [51, 52]. A core step of sketching in-
volves computing the product of the matrix in question with a set of suitably chosen random
vectors. If this matrix is a matrix-function f[A], then each of these products can be computed
approximately using Lanczos-FA or the proposed methods from Objective 2. This naturally
yields algorithms for obtaining low rank approximations to f[A], and balancing the error
from the sketching step with the error from Lanczos-FA is a reasonable and fairly straight-
forward task. However, as with matrix function stochastic trace estimation, there is signif-
icant potential for redundancies, and accounting for this has the potential to lead to better
algorithms.

Extensions to non-normal matrices. Objectives 2 and 3 have been framed in the setting of
symmetric matrices (which are normal). The Cauchy Integral Formula yields a natural way
of defining a matrix function of a non-normal matrices, and the same questions are still rel-
evant in the non-normal setting. However, the behavior of non-normal matrices is far more
subtle and difficult to analyze than the behavior of their normal counterparts. Therefore,
the extension of these objectives to the non-normal setting provides a set of new non-trivial
problems.

Arange of the work from my PhD focuses on algorithms for symmetric matrices, but in many
cases, the ideas can be naturally generalized to non-normal matrices. In fact, in several cases
we have preliminary results in this direction. Generalizing these analyses to the non-normal
setting is more straightforward than generalizing some of the objectives in this section since
we have already addressed the symmetric/normal case. Working on generalizing the work
from my PhD will provide a natural entry point to non-normal numerical linear algebra
which I will use to familiarize myself with the tools and techniques needed to address the
proposed research objective in the non-normal setting.

OUTREACH OBJECTIVE

My outreach objective is to continue organizing conference and seminars sessions with the
aim of ensuring speaker lineups are representative of broader society, not just the current
state of science or academia. Finding potential speakers from underrepresented groups
isinherently difficult, but during my PhD I have gained experience doing exactly this.
For example, in th

chieving this level of representation took a deliberate



and extended effort on my part, not only to find and invite a diverse set of speakers, but also
to design a topic for the session which would maximize the number of potential speakers
from underrepresented groups as well as provide a range of research backgrounds and per-
spectives.

I also aim to invite speakers who will provide a diversity of perspectives, especially perspec-
tives which are directly relevant to increasing equity within the field. As an example, when
organizing thedepartment’s numerical analysisseminar I broughtin a data-ethicist tospeak
about her research, which addresses important questions such as the role of data and algo-
rithms in perpetuating system injustices along the lines of rage, gender, and ability. Such
topics are obviously of great importance, but are not formally taught in most STEM pro-
grams, necessitating the need for other means of dissemination.

Other Service. Beyond research, I will continue to work to empower the next generation
of scientists by advocating for increasing student representation in academia, by creating
inclusive and engaging classroom environments, and by direct mentorship.

I have demonstrated a commitment to this type of outreach during grad school. For instance,
I served as my department’s graduate student representative (GSR) for the 2020-2021 aca-
demicyear during which I (i) organized the student body to (successfully) petition the depart-
ment for more transparency and representation in future faculty hirings, and (ii) requested,
and helped implement, the use of gender-neutral phrasing on the department’s website. I
have also helped organize and served on many student panels related to grad student well-
being, including panels on mental health and department climate.
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