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Solving linear systems is a fundamental task in numerical linear algebra because of the wide
range of applications to applied fields such as the sciences, medicine, and economics. Recently,
there has been a rapid increase in the amount of data which scientists are able to collect and store.
As a result, the linear systems which scientists now seek to solve have also been increasing in size.
Iterative methods are often the only tractable way to deal with such large systems, and Krylov sub-
space methods are among the most successful and widely used iterative methods [1, 2]. However,
the standard techniques developed years ago are no longer sufficient for many of today’s applica-
tions. As such, new iterative methods, designed explicitly to deal with high-dimensional data,
are required to handle the problems scientists now seek to solve.

Krylov subspace methods for linear systems (henceforth referred to as Krylov methods!) iter-
atively find an approximate solution to the n x n linear system Az = b from a sequence of nested
subspaces (called Krylov subspaces). In at most n steps the sequence of Krylov subspaces will con-
tain the exact solution. This means that in exact arithmetic, Krylov methods converge in at most
n iterations. However, since in practice finite precision arithmetic is used, the convergence of
Krylov methods is usually very different than in exact arithmetic. When analyzing the numer-
ical convergence of iterative methods important considerations are (i) how long a single iteration
takes (ii) how many iterations are required to reach a given level of accuracy and (iii) what is the
highest level of accuracy can eventually be attained. These tell us about how long it will take to
solve a given problem and how good our solution will be, three critical pieces of information for the
scientists applying such methods in the course of their research. The primary objectives of this
proposal are (i) develop parallelized CG methods whose convergence properties are desirable
and well understood, and (ii) develop a framework for approximate Krylov methods.

My current research with Anne Greenbaum focuses on the first objective. Recent work has
aimed to reduce the runtime of Krylov methods such as conjugate gradient (CG) and GMRES
through parallelization [3, 4, 5]. For a given method, the parallel variants are equivalent to the
nonparallel variants in exact arithmetic. However, this is no longer true in finite precision arithmetic
where the behavior can be very different. In fact, the parallel CG algorithms can converge much
slower and to a lower degree of accuracy than the standard (non-parallel) implementation.

Our current approach is to first understand what criteria will ensure good convergence proper-
ties, and then, once these criteria are isolated, develop a method which satisfies them. To determine
sufficient criteria for a “good” method we have been running experiments comparing the results of
various methods when applied to linear systems arising in structural engineering and fluid dynam-
ics. These tests allow us to look at various indicators such as the residual b — Ax,, for each of the
methods. At the moment we have isolated potential criteria based on previous work by Greenbaum
[6]. We are working to prove that certain methods satisfy these critera, and that others do not.
However, since these critera are quite strong and are independent of the system being solved. This
means there is room to find weaker sufficient and problem dependent critera which would allow
methods to be chosen on a system by system basis.

The second objective is based on the observation that, while in exact arithmetic Krylov meth-
ods minimize some quantity over successive Kyrlov spaces, this is not the case in finite precision
arithmetic. Since these quantities are never actually minimized in practice, a reasonable question to
ask is if it is necessary to try to exactly minimize them in the first place. Broadly speaking, the class

'Krylov subspace methods can be used for the more general problem of computing f(A)b. We have limited the
scope of the proposal to the special case f(A) = A~! for solving linear systems.
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of approximation algorithms I am proposing will only approximately minimize these quantities at
each step in order to decrease the computational cost per iteration. For instance certain projections
and matrix products could be approximated by using sub-sampling techniques [7]. T hope to de-
crease the overall compute time without sacrificing the final accuracy by properly balancing how
many more iterations are required with how much faster each iteration can be run.

OTHER RESOURCES: The majority of my intended work will be theoretical algorithm design.
However, having access to supercomputer time on through XSEDE would provide means of testing
the algorithms on data too large for local machines.

INTELLECTUAL MERITS: The proposed work on parallelized Krylov methods for linear sys-
tems will provide insights into how to choose the “right tool for the job”. At the moment there
is no clear consensus on which, if any, parallel variants of Krylov subspace methods should
be chosen for a given system. Finding critera which would allow researchers to pick a Krylov
subspace solver based on the problem they are trying to solve would be an important contribution
to numerical analysis. Similarly, creating a framework to develop approximation methods for lin-
ear systems based on Krylov subspace methods has the potential to provide insights into how other
classes of algorithms can be sped up using randomization.

Past experiences working on interdisciplinary projects has convinced me of the necessity of
cross-discipline collaboration. My background in computer science and probability will help me
to construct novel new Krylov subspace methods, while my background in physics will allow me
to be able to collaborate directly with researchers in the physical sciences to understand how best
to apply our developments in algorithm design to their problems.

BROADER IMPACTS: The overarching motivation for this project is the fact that the less time
scientists have to wait for code to run, the more time they can spend thinking about the prob-
lems they are tackling. When working in computational physics, I saw first hand how the faster
algorithm I introduced allowed the group to rapidly test new hypotheses, resulting in faster model
validation. Faster methods means that the time researchers currently spend waiting for for the
results of large computations will be able to be spent analyzing those results of these computations.
In particular, Krylov subspace methods are widely used for solving linear systems too large
for direct methods. Among other sources, systems with hundreds of millions or even billions of
equations commonly are used in nonlinear solvers (such as Newton type methods), and arise in from
the analysis of circuit architecture, and the discretization of partial differential equations. Currently,
high precision electrodynamics simulations, or large scale atmospheric simulations can often day
days or even weeks to run. Speeding up such computations has the potential to immediately
facilitate tasks such as the development of better weather forecasting, cleaner energy, and
more efficient traffic networks.
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