Project Description

1 Overview

Scientists in a wide range of fields are increasingly making use of randomized Krylov subspace methods
(KSMs) for computing quantities involving matrix functions. Applications of such algorithms include (but
are certainly not limited to) studying properties of quantum materials in physics and chemistry [EFLSV02

WWAFO06} [GPS15}[GCR15}[LSY16}[CMFCLK17}[CGMLFR18} [VFAPP20} JWWLMDR?21} [CC22], prob-

ing the behavior of neural networks in machine learning [GKX19} [Pap19} [GWG19} [YGKM20], finding
triangle counts and other graph motifs in network science [Avr10} [DBB19} [BB20], designing better pub-

lic transit in urban planning [BS22} [WSMB2I], and load balancing modern parallel eigensolvers in high
performance computing [[Pol09} [LXES19].

However, despite the growing prominence of randomized Krylov subspace methods for tasks involving
matrix functions, there are a number of theoretical and practical hurdles which are preventing such algorithms
from being used to their full potential. These can be roughly categorized as arising from one or both of the
following larger barriers:

Barrier 1. Lack of sufficient cross-disciplinary knowledge transfer between those who study these
algorithms and those who use these algorithms
Barrier 2. Limited theoretical understanding of the behavior of (randomized) KSMs in modern
computing environments
While neither barrier precludes the use of randomized KSMs for matrix functions in application areas, each
barrier represents a concrete roadblock in the practical effectiveness of such methods. Thus, eliminating, or
at least reducing, these barriers will have a significant impact on the advancement of computational science.

This grant proposal, titled Randomized Krylov subspace methods for matrix functions, describes a

research program aimed at reducing the aforementioned barriers via the following objectives:
Objective 1. Develop randomized methods for low-rank approximation of matrix functions, traces and
partial traces of matrix functions, and spectral density estimates which work in practice.
Objective 2. Prove theoretical guarantees about existing algorithms and the above-mentioned algo-
rithms, with an emphasis on a posteriori bounds and stopping criteria.
Objective 3. Facilitate the use of such algorithms and bounds in application areas.
Mentorship of undergraduate researchers is a key aspect of this proposal, and a number of the research
directions described are designed to address the objectives above while simultaneously being suitable for the
inclusion of undergraduate researchers.

1.1 Organization of proposal

The proposal is centered around three research topics: (i) low-rank approximation, (ii) trace and spectrum
approximation, and (iii) partial trace approximation. For each topic, we provide context for the current state
of the art as well as describe how Barriers 1 and 2 listed above are limiting further progress. We then provide
details on specific research directions which align with Objectives 1, 2, and 3 with the aims of reducing
the aforementioned barriers. Finally , the broader impacts and intellectual merit of the overall proposal are
addressed, as is the plan for supporting the training and development of undergraduate students, particularly
female students and students from racial minority groups underrepresented in computational mathematics in
the United States.



2 Background

For clarity of exposition, throughout this proposal H will be a n X n Hermitian matrix. Thus, H admits an
eigenvalue decomposition

n
H= Z Auaul, (1)
i=1

where A := {4;}" | are the eigenvalues of and {u;}!_, are the (orthonormal) eigenvectors. Typically, H will
be sparse and of very large dimension (z on the order of millions for computations on laptops/desktops, and
n or the order of billions or trillions for computations on clusters and supercomputers).

A matrix function transforms the eigenvalues of a Hermitian matrix according to some scalar function,
while leaving the eigenvectors untouched. Specifically, the matrix function f(H), induced by f : R —» R
and H, is defined as

FH) = f(Au;. )
i=1

Perhaps the most well known example of a matrix function is the matrix inverse H™!, which corresponds
to the inverse function f(x) = x~!. Other common matrix functions including the matrix sign, logarithm,
exponential, square root, and inverse square root, each of which has many applications throughout the
mathematical sciences . Throughout, we will use A to represent a n X n matrix of interest, and
typically A := f(H).

It is important to note that even if we have H in hand, in all of the applications of interest to this proposal,
it is prohibitively expensive to compute f(H) itself. In fact, while H may be sparse, f(H) is typically is
dense and therefore too large to store, even if it were somehow possible to compute! As such, avoiding
forming f(H) explicitly is a key aspect of the algorithms related to this proposal. As a concrete example,
when n = 220 ~ 109, storing a dense n X n matrix of 64 bit floating point numbers would require over 8.7
terabytes of memory! While this is too large even for many desktop computers, the algorithms discussed in
this proposal can easily handle even larger problems on laptops.

2.1 Matrix-free algorithms

Matrix-free algorithms access a matrix of interest only through matrix-vector products (as opposed to having
random access to the entries of the matrix). While random access can be simulated through matrix-vector
products, using matrix-vector products to access a single entry is inefficient. For many linear-algebraic
tasks involving a generic matrix A (e.g. low-rank approximation or trace estimation), there are well-known
matrix-free algorithms which are highly successful in practice. In the particular case A = f(H), matrix-
vector products with A are commonly approximated by Krylov subspace methods in a black-box manner.
This is described in the next section. A major theme of this proposal is looking into this black-box in order
to seek out efficiencies that would otherwise be missed.

2.2 Krylov subspace methods

Given a vector v, Krylov subspace methods for matrix functions build an approximation to f(H)v or v* f (H)v
from the Krylov subspace K;.1(H, v) = span{v,Hv, ... ,H9v}. This can be done in a matrix-free manner
using just g matrix-vector products with H. When H is symmetric, the Lanczos algorithm produces an
orthonormal basis Q for Krylov subspace and a tridiagonal matrix T containing the coefficients for a three-
term recurrence satisfied by the basis vectors. These matrices can then be used to approximate quantities
such as f(H)v and v* f (H)v without ever forming f(H) itself. The most common algorithm for doing so is
called the Lanczos method for matrix function approximation (Lanczos-FA) [DK89%[Saa92].

In some settings it is desirable to approximate f(H)V or V* f(H)V, where V is a matrix. This can clearly
be done using by approximating f(H)v; for each column v; of V. However, there are more efficient block



algorithms which work over the block Krylov subspace K,4+1(H, V) = span{V,HV, ..., H?V}, where the
span is over the columns of the constituent matrices. The analogous algorithm to Lanczos-FA, based on the
block-Lanczos algorithm is called block-Lanczos-FA.

We remark that when H is non-Hermitian, there is a recent line of work on randomizing Krylov subspace
methods for approximating f(H)v to reduce orthogonalization costs. These include modifying methods for
linear systems such as GMRES and FOM [NT21}[BG22}[TGB23]| and methods for general matrix functions
like Arnoldi-FA [GS22]. This proposal focuses on primarily on the Hermitian case as well as the
use of randomness at a much higher level. It is therefore distinct (yet complimentary) to such methods.

3 Low rank approximation

The first topic of focus is low-rank approximation of matrix functions. Given a n X n matrix A and a positive
integer k, the task of low-rank approximation is to find a rank k matrix A so that A ~ A. When the error is
measured in any unitarily invariant norm (e.g. the spectral norm or Frobenius norm), the optimal solution
to this problem is the truncated rank-k singular value decomposition (SVD). This proposal targets the case
A = f(H).

3.1 Existing sketching-based algorithms

Computing the SVD of A is expensive (even if we know A). A number of randomized algorithms based
on a technique called skerching have been used to great success [HMT11} [MT20a} [TW23]. At a high
level, sketching involves efficiently obtaining a simplified n X £ matrix Y containing key information about
A (analogous to how a sketch is a simplified representation of a scene). Using the information in Y, a
n X k orthonormal matrix Q (ideally aligned with the dominant subspace of A) is obtained. Low-rank
approximations such as A = Q(Q*A) or A = Q(Q*AQ)Q* can then be obtained [HMT]11}[MT20a} TW23).

The choice of Y is clearly important. The most basic choice is Y = AS, where S is a n X £ random matrix
whose entries are chosen from a suitable distribution. This is computationally efficient as Y can be computed
using just £ matrix-vector products. That such an approach might work is intuitive: when we multiply A
with a random matrix S, then Y = AS is most aligned with the singular vectors of A corresponding to the
largest singular values. Of course, the decay of the singular values impacts the quality of the resulting low-
rank approximation, and slow decay can result in poor approximations. To alleviate slow decay, it is often
suggested to use the sketch Y = A9S. This approach, called subspace iteration, works because the singular
values of A4 decay more quickly than those of A. Such an approach now requires g£ matrix-vector products
with A. One can instead use the sketching matrix Y = [S,AS,...,A94S] which can also be computed
using g¢ matrix-vector products but is much larger and has provable and easily observable benefits
[TW23]\. This is called block Krylov iteration.

3.2 Barriers

The above approaches access A using just matrix-vector products. When A = f(H), products AS = f(H)S
are commonly approximated via a Krylov subspace method. In this case, the natural primitive is matrix-
vector products with H, rather than f(H). Despite its obvious importance, this setting is under-explored,
and is ripe for practical and theoretical improvements. This is arguably due to two factors. First, one of
the largest applications of low-rank approximation of matrix functions is to trace estimation (see section ,
and the use of low-rank approximation in trace estimation was not popularized until recently. Second, the
design and analysis of KSMs for matrix functions has historically been pursued by classical numerical linear
algebrists, and those interested in randomized methods are less familiar with methods for matrix functions.



3.3 Proposed approaches

RD 1: Theoretical analysis of Krylov-aware algorithms (01, 02). When A = f(H), rather than apply A
to S using a black-box KSMs, efficiencies can be gained by taking a careful look into the black box. While
conceptually simple, to the best of our knowledge, this observation has only started to be explored in earnest
in recent years [CH23|[PK22}[PCM23].

In PK22I, it is proven that for operator monotone functions (e.g. f(x) = v/x) it makes sense to use a
sketch Y = HS rather than Y = f(H)S, even if the costs of computing the two sketches are equal. Intuitively,
this is because the the singular values of H decay more quickly than those of A = f(H) and therefore more
information about the dominant eigenspace of A (which is the same as the dominant eigenspace of H) is
obtained from the sketch involving H.

An independent yet complimentary observation was made by the PI in in which a so-called
“Krylov-aware” method for low-rank approximation is introduced. In particular, in order to approximate
f(H)S via a Krylov subspace method, the Krylov subspace K,.1(H,S) = span{S,HS,...,H?S} (for
some g > 0) is constructed. Thus, rather than using a sketch Y =~ f(H)S with ¢ columns, a sketch
Y = [S,HS,...,H?S] with (¢ + 1){ columns can be obtained for the same number of matrix-vector
products with H. The latter sketch contains strictly more information than the former. Many low-rank
approximation algorithms then require f(H)Y to be computed, and such a product can be approximated
from K, (H, Y) (for some p > 0). If Y has more columns, computing K (H, Y) is ostensibly more expensive
if Y = [S,HS, ..., H4S] than if Y » f(H)S. However, in the special case Y = [S,HS, ... ,H4S], it is not
hard to see that K, (H,Y) = K,.+4(S). In other words, f(H)Y can be approximated from %, (H,Y) using
the same number of products regardless of which of the sketches was originally used.

There are a number of concrete theoretical and practical concerns with such a method. First, we might
address the question: how should parameters p and q be set? This was not studied in detail in [CH23],
as the method for low-rank approximation was used as a subroutine in a larger trace estimation algorithm
in which sufficient lower bounds for p and g were essentially known. In subsequent work, the PI and
collaborators derived theoretical guarantees for the output of Krylov-aware algorithms in terms of the best
low-rank approximation . However, the resulting bounds are stated in terms of certain polynomial
minimization problems which are not easily solved explicitly. Deriving more explicit bounds would provide
a clearer picture about the precise situations in which Krylov-aware methods provide the most bennefit.

Second, while theoretical a priori error bounds provide information about how well algorithms work
on various types of inputs, but are typically not very useful for use as stopping criteria. Thus, it is also
reasonable to ask: can we derive practical a posteriori bounds suitable for use as stopping critera? The
PI has developed a posteriori bounds for Lanczos-based methods for matrix functions [CTU21}|[CGMM?22}
, but such approaches do not consider the aspect of randomization. To address this, approaches to a
posteriori error estimates for low-rank approximation must also be incorporated. When the
two are combined, potential for further efficiencies should be explored.

RD 2: Memory efficient algorithms (01,02). A potential limitation of the Krylov-aware algorithm
suggested in is the large memory required to store a large sketch Y = [S,HS,...,H4S]. There
are a number of potential approaches to addressing this issue. It is reasonable to maintain a basis for some
smaller subspace of the Krylov subspace K,+1(H, S), and such an approach was studied breifly in .
This naturally raises the question of how to choose such a subspace. In particular, it is desirable that the
sketching space aligns with the top subspace of A = f(H). Algorithms such as Implicitly Restarted (Block)
Arnoldi/Lanczos serve as a natural starting point for obtaining such a subspace [Sor92| [CRS94| [LS96;
. The convergence of such methods depends on the choice of acceleration polynomial, but
we are unaware of theoretical guarantees similar in strength to those for low-rank approximation. We will
study whether there exist simple choices of acceleration polynomial, reasonably related to the choices used
in practice, which have provable convergence guarantees.
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Figure 1: Performance of the Krylov-aware algorithm in compared to the previous state-of-the-art
trace estimation algorithm for approximating tr(exp(A)) (Estrada index) for the Roget’s Thesaurus graph.
The PI’s algorithm attains an order of magnitude reduction in costs. This proposal would support the
development of similarly powerful randomized algorithms for key linear algebra tasks.

There are complimentary open questions relating to memory efficient algorithms, even for the most simple
case A = H. For instance, while possible in theory using a two-pass approach [Bor00} [EFLSV02} [FS08a],
it is not clear how to stably implement block Krylov iteration [TW23] without storing the entire
block Krylov subspace in the presence of non-deterministic computation (as is typical on supercomputers
[ICDGI5]). Addressing this question by developing a practical and robust algorithm would lead to state of
the art methods for low-rank approximation. Addressing this problem, and problem for general A = f(H)
are complimentary, and neither appears strictly easier than the other. Thus, they will be pursued in parallel.

RD 3: Stability of Sketching under inexact products (01, 02). It is also interesting to consider how
classical sketching algorithms behave in the presence of large noise. Suppose, for some € > 0, we have a
black-box which takes in an arbitrary vector x and outputs a vector y satisfying ||Ax — y|| < €||A]|||x]|. Such
a guarantee is standard for important settings such as errors due to floating point roundoff or due to inexact
applications of A = f(H) via Krylov susbpace methods.

In the past several years, a number of works have addressed the questions how does nonzero € impact
sketching algorithms? Algorithm analyzed include variants of the Nystromm method and
the randomized SVD and subspace iteration . These analyses focus mostly on small € associated
with rounding errors (e ~ 107'¢ for double precision to € = 107* for single precision). We will focus on
analyses which target large € of similar magnitude to the desired accuracy of the low-rank approximation.

For some applications, it is important to understand the matrix Q itself. In the PI and collaborator
obtained a bound for the difference between the orthogonal projectors onto the column spans of Y and Y,
where Y = AS and Y = AS + E, where E accounts for inexact matrix-vector products satisfying a guarantee
like that stated above. However, the resulting bound was unsatisfying in that it depended on the condition
number of A which can be large or even infinite even in cases where sketching (with inexact products) is
observed to work well. A natural target would be bounds depending on the condition number of the best
rank k approximation to A or on the gap between the k and (k + 1)-st singular values of A.

It also makes sense to ask: can we design algorithms which are more robust to inexact products than
existing algorithms? In particular, can we design algorithms which take advantage of our knowledge about
how error arises in different settings (e.g. as due to roundoff, due to discretization error in a PDE solver,
due to statistical noise, etc.)? Similarly, we may consider sketching algorithms for settings in which € is only
large because a small number of the entries of the matrix-vector product are corrupted; e.g. due to soft faults




on a high performance machine [HH11}|[AGGRZ13].

4 Trace and spectrum estimation

The aim of trace approximation is to approximate the trace tr(A) = ; A;; of a square matrix A, where
A; jis the (i, j)-entry of A. If A is known explicitly this task is trivial, but in other situations, for instance
A = f(H), the task is more difficult.

4.1 Existing trace and spectrum algorithms and bounds

Matrix-free trace estimation. A large amount of past work has been done in the setting where A can only
be accessed via matrix-vector products. In situations where some error is tolerable, randomization can be
introduced to significantly decrease the number of matrix-vector products required [Gir87} [Ski89} [Hut89}
[MMMW?21]. The simplest estimator is the quadratic trace estimator,

v*(Av), v has independent standard normal entries 3)

This estimator is unbiased and has variance 2||A||,2:. The variance can be improved to 2||A||,2: /m by averaging
m independent copies of v*(Av), so the number of copies (and therefore matrix-vector products with A)
needed scales as m = O(e~?), where € is the target accuracy.

If A is a low-rank approximation to A, the exact trace of A can be computed cheaply and the estimator
eq. (3) applied to the remainder A — A |Gir87}[WWAF06| WLKSG16{/GSO17}|Lin16}[MT20b| MMMW?21}
PK22 . Assuming ||A — A||2 < ||A||2, this approach has a reduced variance. If sketching used
to compute the low-rank approximation A, it is possible to improve the number of matrix-vector products
with A to O(e™") . Perhaps the most well-known algorithm for doing so is called Hutch++
[MMMW?21], and a number of practical improvements to Hutch++ enjoying the same theoretical guarantee

have been studied [|[PK22} | ETW23].

Spectral sums and spectrum approximation. Many of the applications of implicit trace estimation algorithms
involved estimating tr(f (H)), which is often called a spectral sum. Merging implicit trace estimation and
KSMs for approximating f(H)v immediately yields algorithms for approximating spectral sums, and such
algorithms have been studied for nearly as long as implicit trace estimation [Ski89}[BEG96} MT20a].

The spectral density (also called the density of states in Physics) for H is defined by

1 n
px) =~ > 64,0, (4)
i=1

where 6, is a Dirac delta mass located at A. It is important to note that the spectral sum tr( f(H)) can be
written

w0 = Y 7 = [ e, )
i=1

Thus, algorithms for approximating the spectral density immediately give algorithms for approximating the
trace of a matrix function. As the spectral density quantity encodes all of the eigenvalues of H it cannot
be computed exactly without obtaining all of the eigenvalues of H (expensive!). However, often the overall
“shape” of the spectral density is what is actually important in many cases, so a natural goal is to obtain
a coarse approximation to p(x). If this approximate accurately integrates functions, then it can be used to
approximate spectral sums.

10ther common choices of distribution include independent +1 entries, or drawing v from the uniform distribution on the
hypersphere. In the case of +1 entries, this is commonly called Hutchinson’s trace estimator.



There are a number of quadrature based methods for approximating spectral densities (and therefore spec-
tral sums). The most well-known are the Kernel Polynomial Method (KPM) [Ski89} [SRVK96} W WAFO06]
and Stochastic Lanczos Quadrature (SLQ) . These algorithms combine quadratic trace estimation
eq. (3) with KSMs in order to estimate the moments of p(x) to obtain quadrature approximations. A number
of theoretical analyses which aim to balance the number of random vectors and the degree of the Krylov

subspace [HMAS17}[UCS17}[DBB19}[CTU21}[BKM22}|CGT23].

4.2 Barriers

Application area scientists are often unacquainted with the subtleties of Lanczos-based methods. This
results in algorithmic design choices which result in less efficient and less reliable algorithms. Conversely,
numerical analysts have seemingly missed a number of important algorithms and analyses from application
literature, and this has resulted in significant time being spent re-inventing the wheel.

Misconceptions about the Lanczos algorithm. ~ The Lanczos algorithm is unstable; the Lanczos vectors
and symmetric tridiagonal matrix produced in finite precision arithmetic may be completely different than
what would have been obtained in exact arithmetic. Because of this, there has been a widespread hesitance
towards Lanczos-based approaches for problems involving matrix functions, at least without the use of

computationally expensive reorthogonalization techniques [JP94} [SRVK96} [ADEL03} [WWAF06} [UCS17}
GWG19|. However, there is actually a lot of work showing that the Lanczos algorithm is still effective for

many tasks, even in finite precision arithmetic [Pai70}[Pai72}[Pai76}[Pai80} [Gre89}[DK91}[Kni96; MMS18§].
Re-inventing the wheel. What we are calling a quadratic trace estimator is often called the Hutchinson’s
trace estimator, especially when v is chosen uniformly from the set of vectors with entries +n~'/2. However,
was not the first use of quadratic trace estimators for the task of approximating the trace of an implicit
matrix; itself cites which addresses the same task by using samples of v drawn uniformly
from the unit hypersphere. Algorithms based on the use of random vectors back at least to the mid 1970s
[ABKST5}[WW76{[WW77}[RV8I).

In fact, such estimators are a special case of the concept of typicality in quantum physics. Typicality has
its origins in work of Schrodinger and von Neumann from the late 1920s but was dismissed
and/or forgotten until a resurgence in the mid 2000s IGLTZ06| [Rei07]; see [GLMTZ10]
for a historical overview and discussion in a modern context and [JWWLMDR21] for a review of algorithms
based on typicality.

Likewise, while the first tail bounds for quadratic trace estimators are typically attributed to I@l
, quadratic trace estimators were analyzed before either of these papers. For instance, @
provides tail bounds based on Chebyshev’s inequality for quadratic trace estimators used for the specific
purpose of estimating the trace of a symmetric matrix. Sub-Gaussian concentration inequalities for quadratic

trace estimators, similar to those in [AT11} RKA14| are derived in [PSWO06| using Levy’s Lemma, a general
result about concentration of measure |Led01 ; see also [[Gog10| Theorem 2.2.2].

4.3 Proposed approaches

Algorithms for spectrum and spectral sum approximation are relatively mature compared to algorithms for
the other topics discussed in this proposal. Even so, there are a number of important problems relating to
the use of these algorithms in practice which we target in this proposal. These have significant potential to
advance basic science due to the widespread use of the related algorithms.

RD 4: practical a posteriori error estimates (02,03). The focus of this research direction is on KPM
and SLQ, as these are the most fundamental and widely used algorithms for spectrum and spectral sum
approximation. Both methods have two primary sources of error (i) statistical error due to averaging m
independent and identically distributed random variables, and (ii) approximation error due to the use of a



Krylov subspace method. These sources of error should be balanced, and a number of existing work provides
a priori bounds for these two sources of error [HMAS17}[UCS17}[DBB19}[CTU21}[BKM22}/CGT23].
However, while a priori bounds provide insight into the types of problems on which a given algorithm
may be suitable, they are rarely useful for estimating the actual error of the algorithm when it is run. As such,
a posteriori error bounds and/or estimates suitable for use as stopping criteria are needed to make algorithms
practical.
We will combine statistical variance estimation techniques such as the jackknife method and bootstrapping

[JohOT] with fine-grained error bounds and estimates for Lanczos-based methods [FSO8b} [FS09} [ITS09}
[FKLR13} [FGS14}[FS15}[CGMM?22} [XC23]. To facilitate ease of use, these will be integrated into a python
program which can easily be integrated into existing codes. We note that error estimates will also naturally
lead to estimates for variance reduced estimators which apply eq. (3) to a remainder term [W WAF06; MT20b}
[MMMW?21}[PK22}[ETW23] including the Krylov-aware based methods introduced in [CH23].

In addition, despite being one of the aspects of this proposal with the largest potential for benefiting basic

science, this research direction is particularly suitable for collaboration with undergraduate students.
RD 5: practical/extensible software for KPM and SLQ (03). To address the lack of software designed
specifically for spectrum and spectral sum approximation, we will develop a general purpose Python library
for fundamental tasks relating to spectrum and spectral sum approximation based on KPM and SLQ. There are
presently a number of one-off packages which make use of KPM approximations, particularly in condensed
matter physics [MME20]. There are also some one-off packages for SLQ, particularly
in machine learning [Pap19}[YGKM20]. However, these packages are focused on specific applications, and
therefore the implementations of the KPM/SLQ are fairly specific to the application at hand.

As far as we are aware, all existing KPM implementations make use of a Chebyshev recurrence on an
interval containing the spectrum of H. If this interval is not chosen correctly the algorithm may fail to
converge, so there is typically a pre-processing step in which the extremal eigenvalues of H are estimated.
This step results in extra computation. In , the PI introduced implementation of the KPM based
on the Lanczos algorithm which avoids the need for hyperparameters such as the interval of approximation
to be selected a priori. Moreover, this Lanczos-based approach makes it feasible to test out many different
choices of parameters, such as the orthogonal polynomial family, which can improve the qualitative features
of the approximation.

The PI has developed a basic library spectral_density which implements the spectrum
aware KPM from . The library takes as input the tridiagonal matrix output by the Lanczos
algorithm and outputs various spectrum and spectral sum approximations via KPM and SLQ. This proposal
will support extending the functionality of the spectral_density, primarily by the inclusion of automatic
error estimates. Such estimates will be developed as part of research direction and our proposed approach
is described more carefully there.

RD 6: dissemination of theory on finite precision behavior (03). As described above, some of the largest
barriers relating to trace estimation arise from a lack of cross-disciplinary knowledge transfer. Addressing
misconceptions and lack of knowledge about the Lanczos algorithm in finite precision arithmetic has the
potential to significantly benefit application areas, particularly computational quantum physics. In fact,
even within the numerical analysis community, the behavior of Lanczos in finite precision arithmetic is not
fully understood, and what is known, is not widely known. For example, despite arguably being one of the
most important stability analyses of the Lanczos algorithm (especially for tasks relating to trace estimation),
has only 7 total citations before 2022.

The PI has already made incremental progress towards this goal. In , published in the Journal
of Chemical Physics, the PI argued that the Lanczos algorithm could be used to stably implement the KPM.
While there are a number of practical benefits to this approach, one of the main aims of the paper was to try
and transfer the key ideas from to the Physics community. A more detailed explication for a general



102

orthogonality

1071 A B

L 107% 4 -

moment error
Nl

orthogonality
L

10-10 4 4

1013 4

10-16

T T T T T
0 100 200 300 400 500 0 50 100 150 200 250
moment degree n index n

Figure 2: Comparison of error computed by Lanczos with and without reorthogonalization (left) and the
loss of orthogonality without reorthogonalization (right). This illustrates that despite the massive loss of
orthogonality, the Lanczos algorithm can still be used to accurately obtain the moment information used by
algorithms such as the KPM [WWAF06} [Che23a]. This proposal would support the dissemination of this
behavior to communities outside of physics ensuring they can make the most efficient use of algorithms.

audience is also found in . In addition, the PI has raised this point in discussions and seminar talks
with computational physicists.

This goal will be addressed with a dual approach. The PI will continue to produce exposition which can
be easily understood by domain scientists. In addition, the PI will increase their efforts to present at seminars
and conferences relevant to domain scientists. To facilitate this, funding for conference travel is requested.

5 Partial trace estimation

The final topic of focus is on algorithms for partial trace estimation approximation. While closely related
to trace estimation, there are a number of practical and pedagogical differences which merit treating partial
trace estimation as a distinct topic.

If A is a dm X dm matrix, then we can decompose A as

A A o0 Ay
Ar1 Axp - Ay
Ag1 Agp - Aga

where each A; ; is a m X m matrix. The partial trace of A (with respect to this partitioning) is defined as

tr(Ar1) tr(Arp) - tr(Arg)
A A A
(ro(A) = tr( :2,1) tr( :2,2) ; tr( :2,4) . ©
tr(Ag,1) tr(Agp) - tr(Agq)

In other words, we just take the trace of each of the blocks!

The partial trace arises naturally in quantum mechanics where the state of a quantum system is represented
by a density matrix p. To obtain the density matrix for a particular subsystem of the total quantum system
we “trace out” the effects of the irrelevant part of the quantum system (similar to how we might integrate
out irrelevant variables of a joint probability density). Mathematically, “tracing out” is done via the partial
trace, where the partitioning for the partial trace is determined by the particular subsystem of interest; i.e.
the density matrix for the system of interest is tr,(p).



von Neumann entropy temp: J/3

1.0 A

0.8

0.6 4

0.4 -

0.2

0.0 4

T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5
magnetic field strength: h/.J

Figure 3: Von Neumann entropy of the 1D solvable spin chain computed with the algorithm in [CCLNPW23
(colored lines) compared with true solution (dotted lines). The research project culminating in [CCLNPW23]
included several undergraduate students, including two female students and one Black student. This proposal
seeks funding for similar projects involving students from groups underrepresented in STEM.

5.1 Barriers

Partial trace approximation faces more acute versions of of the same barriers as trace and spectrum approx-
imation. As discussed in the next section, there are only a few algorithms for this task all of which have
been introduced in the last 5 years. Moreover, there is extremely little in the way of theoretical guarantees
for these algorithms since most mathematicians and computer scientists have seemingly never heard of the
partial trace! It is the PI’s belief that the single largest barrier to the development of partial trace algorithms
is the compartmentalization of disciplines.

5.2 Past work

As with the trace, computing the partial trace is trivial when A is known. However, the relevant setting for
quantum systems is when A = f(H).

PI Chen has recently developed an algorithm for approximating the partial trace of a matrix function
[CC22]. The proposed algorithm is conceptually simple and uses the simplest implicit trace estimation
algorithm to approximate each entry of the partial trace and uses a Krylov subspace method to approximate
the matrix exponential. In particular, the quadratic trace estimator eq. (3) can be used to obtain an unbiased
estimator for try(A),
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Krylov subspace methods for approximating V* f (H)V can then be used in cases A = f(H). In [CCLNPW23],
variance reduction techniques are studied.

Both [CC22} [CCLNPW?23] focus on applications to quantum thermodynamics. In particular, open
quantum systems in which a the total system is held in thermal equilibrium due to weak coupling with a
“super bath” are described by a total system density

p=pB) =2 'exp(-pH),  Z(B) = tr(exp(-AH)). (8)

Thus, approximating the partial trace of A = exp(—BH) for a range of S is the main computational difficultly
in studying the reduced system density matrix try, ().




5.3 Proposed approaches

RD 7: Partial trace of large subsystems (O1). When d is large, it might be intractable to explicitly
compute and/or store a d X d matrix such as p* = trp(p). The existing methods for approximating the
estimator eq. (7) with a quadratic form requires storing at least d vectors of length md. However, we might
hope to obtain a compressed representation more cheaply. One approach would be to try to sketch the
estimator eq. (7) to obtain a low-rank approximation. This can potentially be done using only a few vectors
of length md which, in the case d > m, would result in significant storage savings over the d vectors of
length md required by the estimator eq. .

As a starting point, we will first consider two simpler problems. First, we will develop methods to estimate
quantities such as tr(Op*), where O is some fixed d X d operator which we can access via matrix-vector
products. Using a standard trace estimator, where u is a suitable random vector, we have an estimator

w'O(I;®v)" f(H)(I; ® v)u,

which can be approximated with a Krylov subspace method. We will study the convergence of such
methods for common choices of O. Second, we will consider the task of estimating spectral properties of
p*, for instance the top eigenvalues or the spectral density. This is intermediate to obtaining a low-rank
approximation, but still provides useful insights into properties of p*.

RD 8: Extension of partial trace methods to non-equilibrium systems (O1). Many critical questions
in physics related to the dynamic (time-evolution) behavior of quantum systems. The time evolution of a
quantum system with density p(z) and Hamiltonian H(#) is described by the Schrodinger equation

op(1)
ot

This raises the question: how can we compute p(t) over some time interval t € [0,T]? In the case that H is
time-independent it is easy to obtain the solution

p(1) := exp(—itH) p(0) exp(irH). (10)

This serves as a natural starting point towards addressing general time evolution. Even so, the development
of algorithms for this more restricted setting would immediately allow important physical problems to be
studied.

There are a number of existing methods for simulating the evolution eq. when p(0) is a pure state
(p(0) = uu*) via time-stepping techniques. In particular, tensor network methods such as the Density Matrix
Renormalization Group (DMRG), Matrix Product States (MPS), Projected Entangled Pair States (PEPS), and
time-evolving matrix product operator (TEMPO) have found widespread success in computational quantum
physics, particularly for local, gapped Hamiltonians [MM95] [Sch05] [Oru14} [SKKKL18} [CCVALKG22|
. Loosely, such methods work by representing length n vectors in a basis of vectors that can each be
represented using just O (poly(log(n))) numbers. For systems with the right kind of structure and suitable
p(0), these basis vectors can be chosen in such a way that only a small number of them are needed to
represent every vector used in the computation. As such, these approaches can be incredibly memory
efficient (requiring only O(poly(log(n))) memory), and can be applied to systems where even storing a
single dense vector with n entries is impossible.

The case p(0) is a thermal state of some system with Hamiltonian Hy (p(0) = exp(—BH)y) /tr(exp(—8Hy)))
is also of interest. If 8 is very large, then p(0) has only a few non-negligible components, and the above
techniques can be applied. However, when $ is small, p(0) may have up to n components of roughly equal
importance. In some cases, p(0) can still be represented in a compact tensor network format
, but for general Hamiltonians there is no general technique for obtaining such a compact repre-
sentation. Moreover, for generic systems, the number of basis vectors required for tensor network based
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approaches can limit their benefits. In such cases, we are unaware of any existing work which avoids the
O (n?) storage required to store the initial thermal state p(0).

We propose to apply randomization to avoid this cost when the goal is to output tr,(p(?)). In particular,
we will make use of the estimator

Tz ®v) p(t) Iy ® v) « (I ® v)" exp(—irH) exp(—SHy) exp(itH) (I ® v). (11

For fixed ¢, this can be evaluated by first approixmating V(¢) = exp(irH)(I; ® v) with a KSM, and then
approximating V(#)* exp(—SHp)V(#) with another KSM. However, it is not immediately clear how to
efficiently obtain approximations for multiple times without simply repeating this process. Addressing this
will be the main goal of this research direction.

6 Broader impacts
6.1 Facilitate basic science

While the topics of focus are relevant to many domain and application areas, they have all been selected
due to their potential for facilitating the advancement of basic science. The objectives of this proposal are
designed specifically with the goal of improving practitioner’s abilities to easily use numerical methods for
tasks involving matrix functions, and the specific research directions reflect concrete and tractable approaches
to successful completion of these objectives.

Particular emphasis is placed on the design of applications which can be used to help explore fundamental
questions in quantum physics and chemistry. Successful completion of research directions or would
open up the possibility of numerically studying aspects of quantum systems for which no tractable methods
previously existed. This would immediately allow several important open theoretical questions to be studied
numerically, allowing theorists to gain further insight. Simultaneously, practitioners could use such methods
to inform and verify physical experiments. Progress on research directions|T} [6] and[5]would improve
existing methods for a number of tasks in studying the equilibrium thermodynamics of quantum systems by
providing more powerful and user-friendly algorithms thereby allowing scientists to spend less time waiting
for algorithms to run and more time on science.

6.2 Advance cross-disciplinary collaboration

One of the barriers to the development of randomized KSMs for matrix functions identified by this proposal
is the lack of cross-disciplinary knowledge transfer. This proposal is broadly aimed at mitigating this barrier,
and progress on any of the proposed research direction would address this barrier. Research directions@
and|8]all explicitly target this barrier.

7 Broader impacts: Undergraduate mentorship

Mentorship of undergraduate researchers is a key component of this proposal, and the PI is committed to
mentoring students, particularly those from underrepresented groups. He has a demonstrated record of
current and past success in doing so.

Funding for 3-4 undergraduate students as research technicians is one of the main costs in the proposed
budget. It is expected that each student will serve a tenure of roughly 12 months if they begin at the start of
their final year of their undergraduate studies, or 12-18 months if they begin in their penultimate year. Since
mentorship of these students is an important aspect of the proposal, we have included an overview similar to
what would be required for an REU supplement. The preference of the PI is to hire students as technicians
(rather than support them via an REU) in order to more easily prioritize students eligible for federal work
study through the internal hiring process for student employees at NYU. Based on communications with the
Program Director, it is the understanding of the PI that the DMS Computational Mathematics program has
no real preference of one mechanism over the other (REU vs technicians).



7.1 The Research Environment

New York University (NYU) is a world-renowned research institution with many opportunities for under-
graduate researchers. In particular, the College of Arts and Sciences hosts an annual Undergraduate Research
Conference (URC) and has a twice-yearly application for research funding through the Dean’s Undergraduate
Research Fund (DURF). Students hired with support from this proposal will be expected to take advantage
of these opportunities which will help their development into independent researchers. Students will also
be encouraged to make use of other institutional resources such as the Greene supercomputer, writing cen-
ter, and the many seminars and events hosted by the Courant institute. Finally, due to NYU’s location in
the northeastern US, conferences and seminars relevant to this proposal are regularly held within a short
commute of NYU. Students will be supported in attending events relevant to their research.

7.2 Nature of Student Activities

A significant difficulty in undergraduate research is finding meaningful projects which are suitable for
students with relatively little background. The PI has successfully organized several research projects
which are expected to result in publications of significant scientific value. It is the opinion of the PI that
undergraduate research projects can and should result in an real scientific contribution, and substantial effort
will be allocated to conceptualizing such projects.

Research Directions and [8] all have potential to be partially addressed by research projects
suitable for undergraduates new to research. The PI is prepared to immediately begin hiring undergraduate
researchers for projects relating to these directions once funding is received. More detailed descriptions



were provided in the respective sections above. All projects involving undergraduates will contain a mix
of implementing and running numerical algorithms as well as understanding their theoretical justifications.
The extent to which a given project will focus on software vs. algorithm development vs. theoretical analysis
will be determined based on student interest and background, as well as the overall state of the field when
the students begin the project.

Students will work with 1-2 other students who begin around the same time. Having peers working
on the same project gives students a chance to discuss research in a lower-stakes/less stressful setting than
one-on-one with a faculty member such as myself. In addition, it provides them with additional social aspects
which may benefit their overall undergraduate course of study. At the outset of a project, students will work
on the same general tasks in order to gather sufficient background knowledge and become more familiar
with their peers. This will take the form of reading suggested resources and implementing basic algorithms,
as well as weekly group meetings to check progress and provide a chance for questions to be answered. As
the students’ familiarity with the project mature, students will begin to focus their time on individual goals
related to their particular strengths/interests. Weekly group meetings will allow the students will share their
progress and receive feedback and suggestions.

Students will be involved in all aspects of the paper preparation and publication process, allowing them
to gain insight into the writing process, figure generation, peer review, etc. This will aid in their development
into more independent researchers. In addition, students will prepare a presentation or poster for the URC.
Students may also attend a research conference to present their results if a suitable conference occurs in the
late stages of the research project.

7.3 Student and Mentor Professional Development

It is the view of the PI that mentorship should be tailored to the unique relationship between mentor and
(each) mentee. The student activities described in the previous section are all designed to directly benefit the
professional development of students, with a particular emphasis on advancing their capacity as independent
researchers in computational mathematics.

In order to improve his own mentorship, the PI will continue to engage with training to improve the
quality of their mentorship. In particular, the PI will continue to regularly attend university sponsored events,
as well as events focused on student development at conferences.

To monitor the progression of students supported with funds from this proposal prepare, the PI will
require that students an end of semester report each semester. The report will ask students to describe what
they have done, what they have learned, identify areas of strength and for improvement, and what they hope
to do in the future. The students will then meet with the PI to review the report and discuss how best the
student’s professional goals can be supported in the upcoming semester. While the report will allow the PI
to make adjustments to their mentorship, filling out such a report also forces students to think critically about
their own development, and to begin to take further ownership of their development as researchers.

Finally, the PI intends to maintain professional contact with students once they finish working with him
(either due to graduate, end of a project, etc.). The PI believes that this is important in supporting the
professional development of mentees, as well as tracking the success of past mentees in order to improve the
way current mentees are supported.

All incoming students will go through NYU’s employee on-boarding process, which includes compre-
hensive information on workplace expectations. In addition, the PI will make it clear, through modeling
and explicit discussion, that students supported by this proposal (and in fact anyone working with the PI in
any capacity) are expected to actively contribute towards making the research environment a welcoming and
inclusive environment.



7.4 Student Recruitment and Selection

7.5 Project Evaluation and Reporting

The primary way in which individual student progress will be evaluated is through the end-of-semester reports
and meetings described above. Successful student-involved progress on the research directions described
above will be viewed as success and is expected. However, it is intended that students will still be able to
benefit from their involvement with activities supported by this proposal even if they do not make significant
progress on the research directions outlined above, and success will be evaluated holistically. As the number
of students involved overall will be small, the PI will track participating students beyond graduation through
informal professional contact.

8 Results from Prior NSF Support
8.1 NSF Graduate Research Fellowship, NSF DGE 1762114, 06/2019-05/2022, $138,000

Intellectual Merit.  The fellowship resulted in 12 papers focusing primarily on Lanczos-based KSMs for

tasks involving matrix functions [Che21}[CTU21}[CTU22} [CGMM?22} [CGMM?23} [CC22} BCW22} [CH23]|
[XC23} [CT23} [CGT23} [ACGMM23]. Beside publications in numerical analysis, these include publications
in statistics [Che21], optimization [BCW22|, machine learning [CTU2I], and chemical physics [CC22].
Broader Impacts. A number of the works produced during the fellowship aimed specifically to address cross-
disciplinary gaps in understanding [CTU21} [CTU22{ [CC22] related directly to this proposal. In addition,
the PI put considerable energy towards synergistic actives including organizing two mini-symposiums
at international conferences, serving as the department’s graduate student representative, organizing the
department’s reading group on numerical analysis, and mentoring several undergraduate students.




