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My research focuses on the design and analysis of fast and theoretically justified algorithms
for fundamental linear algebra tasks, with the overarching goal of developing tools to
support the advancement of knowledge in current scientific applications. Towards this end, I work
on problems from numerical linear algebra and nearby related disciplines. To date, this
includes (i) work on Krylov subspace methods [CGMM22; CGMM23; CGW23; ACGMM23;
XC23], where I have successfully integrated ideas from theoretical computer science, (ii)
work on randomized numerical linear algebra [CTU22; CH23; PCM23; CC22; Che+23],
including (iii) problems relating to optimization/machine learning [CTU21; BCW22] and
(iv) algorithms designed specifically for tasks in computational quantum physics/chemistry
[Che23a; CC22; Che+23], and (v) work on problems in the intersection of numerical linear
algebra and random matrix theory [CGT23; CT23]. I am proud of the fact that much of my
research provides conceptually simple insights into the behavior of widely used methods,
which will help scientists more effectively address the problems they are interested in.

My current research program is centered on the following topics, each of which serves to
further my overall goal of supporting basic science:

« Krylov subspace methods methods: classical problems relating to the stability of the
Lanczos algorithm, improving how we think about the convergence of Krylov
subspace methods in exact and finite precision arithmetic

« Randomized numerical linear algebra: algorithms for (partial) trace estimation, al-
gorithms for low-rank approximation, the interplay between randomized algo-
rithms and matrix functions

+ Computational quantum physics/chemistry: thermodynamics of spin systems, par-
tition functions, reduced density matrices,

« Facilitation of cross-disciplinary knowledge transfer: applications of Krylov subspace
methods and randomized numerical linear algebra can be applied to problems
in other disciplines, understanding how numerical linear algebra can benefit
algorithm already used in these areas

The mentorship of students is an important aspect of my research program. Over the
past several years, | have dedicated significant resources to mentoring students in research,
with the goal of helping them develop into more independent researchers. My efforts
including conceptualizing projects suitable for students without a PhD level background in
computational math, as well managing as weekly meetings with student, and searching for
opportunities for students to present about their research. While I have been consistently
successful in leading projects which lead to publishable results [XC23; Che+23], I am most
proud of the fact that of the majority of the students I have worked with are from groups
historically underrepresented in math and science. As I progress into a tenure-track role,
[ intend to continue my current efforts working with undergraduate students while also
providing new opportunities for graduate students.

In the remainder of this research statement I provide further details into the topics listed
above, specifically on directions I am actively/interested in pursuing.
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DESIGN AND ANALYSIS OF KRYLOV SUBSPACE METHODS

Krylov subspace methods (KSMs) are a powerful class of iterative methods, which are the
method of choice for solving many large-sparse linear systems and eigenvalue problems
[TB97; Gre97b; Saa03]. They are therefore among the most important algorithms in nu-
merical linear algebra and computational science at large.

Methods for matrix function approximation. Approximating f(A)b, the product of a matrix
function! with a vector is an important linear algebra task. The most common example
is the inverse f(A)b = A~'b which corresponds to solving a linear system Ax = b, but
other functions such as the exponential, logarithm, square and inverse square root, and step
function each have applications throughout the computational science|[Hig08]. In most such
applications A is too large to compute an eigendecomposition, so iterative methods such as
the Lanczos method for matrix function approximation (Lanczos-FA) [DK89; Saa92] are the
methods of choice.

For linear systems, algorithms such as Conjugate Gradient and MINRES enjoy strong
instance optimality grantees, outputting the best possible approximations to A~'b from
Krylov subspace [Gre97b]. Amazingly, for many other function, algorithms like Lanczos-
FA seem to behave nearly as good as the optimal KSM. A more precise understanding of
this algorithms behavior is important for guiding future algorithm development; if the
algorithms truly are near optimal, then major algorithmic advances necessarily must come
from moving beyond KSMs. On the other hand, finding cases for which the algorithm may
lead to insights in how to develop better KSMs.

My past work [CGMM22; ACGMM23; XC23] incorporate ideas from theoretical computer
science, such as reductions and instance optimality, to shed new light on the impressive
performance of Lanczos-FA. In particular, these works help explain the fact that Lanczos-
FA benefits when A has a favorable spectrum (i.e. large gaps, outlying eigenvalues, etc.). This
is important, because many previous bounds for Lanczos-FA do not take into account fine-
grained spectral properties, and therefore are sometimes misinterpreted as begin indicative
of the typical behavior of the algorithm. My work has also resulted in the development
of new optimal (in a certain norm) KSMs [CGMM23; CGW23] for a broad class of rational
matrix functions.

Better bounds and better algorithms. Owing to the ubiquity of matrix functions in the sciences,
there are still many theoretical and practical topics of study in this area. These range from
theoretical tasks like deriving stronger optimality guarantees to more practical problems
like developing tools for user friendly error estimates and optimized variants of existing
algorithms.

Stability in finite precision arithmetic. Algorithms like Conjugate Gradient and Lanczos-
FA are very computationally efficient: they access A using just matrix-vector products,
and require storing only a 3 or 4 vectors of the dimension of A. However, the Lanczos
algorithm, on which they are based, behaves very differently in finite precision arithmetic
than exact arithmetic; i.e. it is unstable. Because of this, there is a widespread hesitance
towards Lanczos-based approaches for problems involving matrix functions, at least without the

!Given eigendecomposition A = "I Auu/, the matrix functionis f(A) = Y7, f(A;)uu!. Note we assume
the symmetric case for simplicity of exposition, but many of the ideas are relevant to the non-symmetric case
as well.
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use of computationally expensive reorthogonalization techniques [JP94; SRVK96; ADELO03;
WWAFO06; UCS17; GWG19]. This hesitance has resulted in alternative algorithms being
used in place of Lanczos-based methods, even though the alternatives have less desirable
convergence properties, even in finite precision arithmetic!

Convergence of Lanczos-FA. There is actually a lot of work showing that the Lanczos algorithm
is still effective for many tasks, even in finite precision arithmetic [Pai70; Pai72; Pai76;
Pai80; Gre89; DK91; Kni96; MMS18]. One of the major themes of my thesis was addressing
how we think about the tradeoffs between Lanczos-based methods and their alternatives.
As I discuss more in a subsequent section, trying to disseminate this knowledge is a large
aspect of my work facilitating cross-disciplinary knowledge transfer [CTU22; Che23a].

Maximum attainable accuracy. A distinct but related question is bounding the final accuracy
of CG. That is, the minimum possible error (or residual) attained after the algorithm has
stagnated due to the effects of finite precision arithmetic. A reasonable goal is to try and
show a linear dependence of the error on the condition number of the system. ller than past
analyses show [Gre89; Gre97a; MMS18], but seems to align with numerical experiments.
As with all finite precision analyses, subtle details such as whether the analysis is for
the standard CG implementation or a Lanczos-based implementation are important. I
first became interested in this problem after discussions with Yuji Nakatsukasa about the
stability of randomized algorithms for least squares problems [MNTW23].

Backwards stability. A career-long goal of mine is to find a simpler and more intuitive
proof of Greenbaum’s seminal backwards stability analysis for Lanczos [Gre89]. We made
incremental progress towards this objective in [CT23], in which we proved a stronger
backwards stability result for a restricted class of matrices by significantly extending an
overlooked work of Knizhernman [Kni96].

RANDOMIZED NUMERICAL LINEAR ALGEBRA

Randomized numerical linear algebra involves introducing randomness into linear algebra
algorithms in order to get them to run faster (asymptotically and practically) on the vast ma-
jority of problem instances. This paradigm has enabled the study of previously intractable
scientific problems [HMT11; MT20].

Low-rank approximation. Obtaining a low-rank matrix which approximates to some target
matrix is one of the key tasks in randomized numerical linear algebra. The most powerful

randomized low-rank approximation methods are based on the Lanczos algorithm [MM15;
TW23].

Low-memory algorithms. Unfortunately, unlike Lanczos-FA, if reorthogonlization is not used,
current Lanczos-based low-rank approximation fail completely. Therefore, I am currently
working on developing variants of these methods that enjoy the same theoretical guarantees
as state of the art algorithms, but that can be implemented stably in a computationally effi-
cient way; i.e. with the same computational profile as Lanczos without reorthogonalization.

Krylov-aware algorithms. A somewhat more specific task is obtaining a low-rank approxima-
tion of f(A), and itis commonly suggested to simply combine existing low-rank algorithms
with Lanczos-FA. However, as we show in [CH23], there are significant efficiencies to be
gained by taking a more careful look at how low-rank algorithms interact with Lanczos-
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FA. The theoretical convergence of the algorithm with respect to various parameters was
analyzed more carefully in [PCM23], but a number of practical questions regarding how
these parameters should be set and whether they can be determined adaptively remain.
I am interested in exploring this further in order to obtain a more practical and usable
implementation, and I believe this would be a particularly suitable project for student
involvement.

Trace estimation.

Stochastic trace estimation involves estimating the trace of a matrix only using matrix-
vector products [Gir87; Hut89; Ski89]. This is useful in cases where the matrix of interest
might not be know explicitly (e.g. because it is a matrix function, corresponds to solving a
differential equation, etc.).

Probing and query methods. The most basic trace estimators make use of isotropic test vectors
(e.g. vectors with independent and identically distributed Gaussian entires) to construct an
unbiased estimator It is possible to use structured test vectors to construct estimators with
lower variance than Gaussian test vectors, at least when the matrix of interest has some
structure (e.g. is tridiagonal) [TS11; HT22; FRS23].

I am most interested in developing probing techniques for problems arising in quantum
physics (described in the next section), where certain types of kronecker structure is com-
mon. I designed Algorithm 1 in [MA23]for exact recovery of a matrix with a certain kind of
Kronecker structure. It would be interesting to extend the method to matrices which only
approximately have the relevant structure.

Easy-to-use software. In [Che23a]I introduced implementation of the well-known kernel
polynomial method (KPM) based on the Lanczos algorithm. This implementation avoids
the need for certain hyperparameters to be determined a priori, making it feasible to test
out many different choices of parameters, such as the orthogonal polynomial family, which
can improve the qualitative features of the approximation.

While there are presently a number of one-off packages which make use of KPM ap-
proximations, particularly in condensed matter physics [GWAW14; RF20; MMF20], these
lack the flexibility of the method in [Che23a]. Thus, I am currently developing the
spectral_density package [Che23b] which allows users to compute KPM approximations
from the output of their favorite Lanczos implementation. I hope to eventually include
more tools, including practical error estimates for related algorithms for trace estimation.

Sampling methods.  For the task of solving linear least squares problems, randomized
algorithms such as stochastic gradient descent and randomized Kaczmarz can theoretically
beat the runtime (but not iteration count) of classical KSMs in some cases. In [BCW22], we
show that, with a large enough batch size, minibatch stochastic gradient descent can in fact
match the iteration count of of classical KSMs.

Methods for matrix functions. I'm also currently in the early stages of a project with a student
on applying stochastic optimization methods (like randomized Kaczmarz or stochastic
gradient descent) to compute samples of a Gaussian vector whose covariance is determined
by the sample covariance matrix of some data. Broadly, 'm interested in understanding the
extent to which randomization can be used to accelerate Lanczos-based methods.
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QUANTUM PHYSICS/CHEMISTRY

While all of my research broadly aims to support advancement of knowledge in current
scientific applications, I also work on a algorithms designed specifically to study scientific
questions in quantum physics and chemistry.

Dissemination / implementation. A number of algorithms related to trace estimation have
been developed more-or-less independently by the Physics community and the numerical
linear algebra and theoretical computer science communities [LSY16; Jin+21]. Over the past
several years I have worked on bridging the gap between these communities. For instance,
in [CTU22], we provide a unified analysis of stochastic Lanczos quadrature (SLQ) and the
kernel polynomial method (KPM). These are two widely used methods for approximating
tr(f(A)), with SLQ more widely used in applied math and KPM more widely used in physics.
Subsequently, in [Che23a], we show how the Lanczos algorithm can be used to stably
implement the KPM, avoiding the need for choosing certain hyperparameters ahead of time.
I also gave talks discussing connections between these communities at the “Perspectives on
Matrix Computations: Theoretical Computer Science Meets Numerical Analysis” workshop,
as well as a recent seminar talk to a physics department.

Algorithms for partial traces. In [CC22], we introduced a simple matrix-free stochastic
estimator for the partial trace’, an operation ubiquitous in quantum physics. To the best of
my knowledge, this is the first stochastic estimator for partial traces, perhaps due to the
simple fact that most linear algebraists have never heard of the partial trace! In subsequent
work [Che+23], we improved the estimator of [CC22] by introducing a variance reduction
technique based on ideas from standard trace estimation [Gir87]. This project was done with
undergraduate students at NYU and one high-school student from Stuyvesant HS.

Both [CC22; Che+23] focus on applications to quantum thermodynamics. In particular,
the state of an open quantum systems with Hamiltonian A held in thermal equilibrium
due to weak coupling with a “super bath” is described by a total system density matrix. To
understand how one part of the system of interest behaves (e.g. its entanglement with other
parts of the total system, its energy, heat capacity, etc.), one must compute the partial trace of
the total system density matrix with respect to the part of the system not of interest [CZT10;
IHT09; TH20].

In many cases, A is highly structured. However, the algorithms of [CC22; Che+23] do not
use this structure in a fine-grained way. Taking advantage of the structure inherent to A
provides a potential approach to developing more efficient algorithms.

Residual estimation methods. The most basic example of structure in Aisif A = A; + 6A,,
where 0 is some parameter of interest (e.g. the magnetic field strength). If we are interested
in understanding the partial trace of f(A) for a range of 6, then we may hope to do
something better than applying existing algorithms to each value of 6 independently. In
particular, the partial trace and matrix exponential are continuous functions of 8, and so
we can try to use some kind of residual estimation methods [Gir87; MMMW21; DM21].
This project would be suitable for involvement of student researchers.

Methods for dynamics. Besides considering systems in thermal equilibrium, physicists are

“The partial trace can intuitively be though of as the quantum analog to integrating out irrelevant degrees of
freedom; e.g. computing a marginal density from a joint density
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interested in the time evolution of quantum systems. While there are a number of tensor
network methods for this task [Cyg+22; CSK22, etc.], such methods are not particularly
suitable for systems with long-range interactions if the initial state is is a thermal state at
high temperature. In this setting classical randomized Krylov subspace methods and offer
speedups over dense liner algebra methods.

CROSS-DISCIPLINARY KNOWLEDGE TRANSFER

I enjoy acting as an intermediary between disciplines in order to facilitate the transfer of
what would otherwise remain domain specific knowledge, and my efforts have resulted
in progress on topics which would have been intractable without communication between
disciplines.

Theoretical computer science. ~ During my PhD I worked to incorporate perspectives from
theoretical computer science into my research, and initiated collaboration with theoretical
computer scientists Christoper Musco and Cameron Musco, who have since become some of
my closest collaborators. Our collaborations [CGMM22; CGMM23; ACGMM23]incorporate
ideas from theoretical computer science such as instance optimality and reductions in order
to analyze classical algorithms in numerical linear algebra.

Optimization and theoretically justified machine learning. ~ Following discussions with Rachel
Ward about how CG and related KSMs are viewed in the optimization and machine learning
communities, as well as some open questions I was interested in resolving, we began a
collaboration analyzing stochastic minibatch gradient descent, a widely used algorithm for
training machine learning models [BCW22]. I am broadly interested in understanding how
stochastic sampling techniques from optimization into algorithms for computing f(A)b.

In addition mywork [CTU21], published in the proceedings for the International Conference
on Machine Learning, provides the first theoretical grantees for a spectrum estimation
algorithm used to study the Hessians of neural networks. The quality of the work is evidence
by the fact it was one of roughly 3% of submitted papers selected for a long-presentation.

Random matrix theory. Testing numerical algorithms on random matrices is a widespread
practice. However, as noted by Edelman and Rao [ER05], “It is a mistake to link psychologi-
cally a random matrix with the intuitive notion of a ‘typical’ matrix or the vague concept of
‘any old matrix”. In [CGT23], we prove a version of Crouzeix’s conjecture [CP17] for a class
of random matrices, and in [CT23], we prove that the Lanczos algorithm is forward stable
when run on many random matrix models. These provide further evidence that care must
be taken when using random matrices as test matrices, as the behavior can be very different
from worst case behavior.

Computational quantum physics. As noted in the previous section, [ am especially interested
in applications in computational quantum physics, and have been successful in developing
algorithms designed specifically for studying problems in this domain [CC22; Che+23;
Che23a].
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