Skip to article frontmatterSkip to article content

An important property of a sketching matrix is that it preserves the geometry of a subspace. This is quantified by the following definition:

In particular, a subspace embedding ensures that the lengths of all vectors within a subspace are preserved by the sketch.

Equivalent Characterizations

It will sometimes be useful to work with the following equivalent characterizations of subspace embeddings:

Proof

Suppose S\vec{S} is a subspace embedding for VV. Any xV\vec{x} \in V can be written as x=Vc\vec{x} = \vec{V}\vec{c} for some cRd\vec{c} \in \R^d. Thus, the subspace embedding condition can be rewritten as (this is true even if V\vec{V} isn’t orthonormal)

cRd:(1ε)VcSVc(1+ε)Vc.\forall \vec{c}\in \R^d: (1-\varepsilon)\|\vec{V}\vec{c}\| \leq \|\vec{S}\vec{V}\vec{c}\| \leq (1+\varepsilon)\|\vec{V}\vec{c}\|.

Since V\vec{V} is orthonormal, Vc=c\|\vec{V}\vec{c}\| = \|\vec{c}\| and hence we have the equivalent condition

cRd:(1ε)cSVc(1+ε)c.\forall \vec{c}\in \R^d: (1-\varepsilon)\|\vec{c}\| \leq \|\vec{S}\vec{V}\vec{c}\| \leq (1+\varepsilon)\|\vec{c}\|.

We can rewrite this as

σmax(SV)=maxcRdSVcc1+ε,σmin(SV)=mincRdSVcc1ε.\smax(\vec{S}\vec{V}) = \max_{\vec{c}\in \R^d} \frac{\|\vec{S}\vec{V}\vec{c}\|}{\|\vec{c}\|} \leq 1+\varepsilon ,\qquad \smin(\vec{S}\vec{V}) = \min_{\vec{c}\in \R^d} \frac{\|\vec{S}\vec{V}\vec{c}\|}{\|\vec{c}\|} \geq 1-\varepsilon.

Finally, note that

VTSTSVI2=maxiλi(VTSTSV)1=maxiσmax(SV)21=max{(1+ε)21,1(1ε)2}=ε(2+ε).\begin{aligned} \| \vec{V}^\T \vec{S}^\T \vec{S} \vec{V} - \vec{I} \|_2 &= \max_{i} |\lambda_i(\vec{V}^\T \vec{S}^\T \vec{S} \vec{V}) - 1|| \\&= \max_{i} |\smax(\vec{S}\vec{V})^2 - 1| \\&= \max\{ (1+\varepsilon)^2 - 1, 1 - (1-\varepsilon)^2 \} \\&= \varepsilon(2+\varepsilon). \end{aligned}

In TCS, where the rates as ε0\varepsilon\to0 are important, the set of “equivalent” definitions is larger. For instance, the condition on the spectral norm is often written as VTSTSVI2ε\| \vec{V}^\T \vec{S}^\T \vec{S} \vec{V} - \vec{I} \|_2 \leq \varepsilon. Similarly, in some cases, a subspace embedding is defined with respect to the squared norms, since 1+ε=1+ε/2+O(ε2)\sqrt{1+\varepsilon} = 1 + \varepsilon/2 + O(\varepsilon^2) as ε0\varepsilon \to 0.