Skip to article frontmatterSkip to article content

Let ARn×n\vec{A}\in\R^{n\times n} be a symmetric matrix with eigendecomposition A=i=1nλiuiuiT\vec{A} = \sum_{i=1}^{n} \lambda_i \vec{u}_i \vec{u}_i^\T, where λi\lambda_i are the eigenvalues and ui\vec{u}_i are the orthonormal eigenvectors of A\vec{A}.

We are interested in a coarse approximation to the spectral density of A\vec{A}; e.g. in Wasserstein distance.

Relation to spectral sums

Spectrum approximation is closely related to the task of approximating spectral sums. Observe that

tr(f(A))=nf(x)φ(x;A)dx,\tr(f(\vec{A})) = n\int_{-\infty}^{\infty} f(x) \varphi(x;\vec{A}) \d{x},

Likewise,

Φ(z):=zφ(x;A)dx=tr(fz(A)),fz(x)={n1if xz,0otherwise.\Phi(z) := \int_{-\infty}^{z} \varphi(x;\vec{A}) \d{x} = \tr(f_z(\vec{A})),\quad f_z(x) = \begin{cases} n^{-1} & \text{if } x \leq z,\\ 0 & \text{otherwise.} \end{cases}

Hence approximating the spectral density and approximating spectral sums are equivalent; i.e. being able to approximate spectral sums gives us a way to approximate spectral densities and vise-versa.